
Stability and asymptotic observers of binary distillation processes
described by nonlinear convection/diffusion models
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Abstract—Distillation column monitoring requires shortcut
nonlinear dynamic models. On the basis of a classical wave-model
and time-scale reduction techniques, we derive a one-dimensional
partial differential equation describing the composition dynamics
where convection and diffusion terms depend non-linearly on the
internal compositions and the inputs. The Cauchy problem is
well posed for any positive time and we prove that it admits,
for any relevant constant inputs, a unique stationary solution.
We exhibit a Lyapunov function to prove the local exponential
stability around the stationary solution. For a boundary measure,
we propose a family of asymptotic observers and prove their
local exponential convergence. Numerical simulations indicate
that these convergence properties seem to be more than local.

I. INTRODUCTION

Distillation is one of the most commonly employed in-
dustrial separation processes. Distillation columns are known
to exhibit highly nonlinear behaviors, all the more that they
operate at high purity. To help stabilizing the products purity
or managing transient operation, several approaches have been
explored to develop nonlinear control models.

The broadly investigated stage-by-stage models suffer from
their inherent complexity, resulting from the high number
of involved elementary separation stages. Thus they hardly
cope with real-time control and robust tuning requirements.
Various reduced models can be obtained from the stage-by-
stage approach, such as compartmental models ([1][2][3])
or collocation models, although not without decreasing their
accuracy or range of validity, notably in dynamics.

A different approach was initiated in [4]. Distillation
columns are envisaged as continuous beds along which molar
fraction profiles move as propagating waves, depending on
the liquid and gas flows. This wave model leads to a very
concise formulation of the profiles. Yet the effects of the
column’s boundaries on the profiles’ shape are not rendered
with enough accuracy for high-purity separation purposes.
More recent works on the wave-model use off-line estimated
shape parameters thanks to steady-state plate-models [5] or
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Kalman filtering [6]. [4] is originally for binary mixture
separation, but has been later extended to multi-component
mixtures [7].

In this paper, we investigate a non-linear dynamic model
for binary mixture separation in a packed column. Similarly
to [4], we use a continuous framework to establish local
balance equations. Taking advantage of two different time
scales in the system, we obtain a concise model: a partial
differential equation (PDE) for an internal distributed variable
(model (22)), and two output maps giving the molar fraction
profiles ((19) and (20)). This model also accounts for the
wave propagation and deformation concepts introduced within
the wave-model approach. The associated Cauchy problem is
shown to have a unique solution for all positive time: the
solution behaves as regular molar fraction profiles and remains
between 0 and 1. Then we investigate the stationary solutions,
proving their existence, uniqueness, and strict monotonicity
along the column s-axis. Next, we exhibit a strict Lyapunov
function with exponential decay rate to prove the local ex-
ponential stability of the stationary solution in L2 topology.
Using the same Lyapunov function, we then propose a family
of tunable non-linear state observers relying on the molar
fraction measures on the boundary. Some simulation results
illustrate the stationary solution stability and the observers
performances, before we conclude on future works.

II. REDUCED BINARY DISTILLATION MODEL

We consider the separation of a binary mixture in a single
packed distillation column, whose geometry and functioning
are summarized on Fig. 1 (left). The column is fed at its
bottom with gas molar flow V and heavy component molar
fraction yh. The gas rises through the packed section of
height h, before it is totally liquefied in the top condenser.
The obtained liquid is separated in an extracted product
flow L − V , and a reflux flow L, which finally leaves the
column at the bottom. Note that this geometry corresponds
to a peculiarity of cryogenic air separation processes, where
stripping and rectifying operations usually take place in two
separated columns.

As the molar fractions always sum to 1, it is sufficient to
compute the molar fraction of one of the chemical species
to characterize the system. We focus arbitrarily on the heavy
component, that is, the less volatile. We denote x (resp. y) its
molar fraction in the liquid (resp. gas) phase.

A. Simplified model for phase-to-phase molar exchanges

The complex geometry of interlaced liquid and gas pathes
is usually simplified as follows (see, e.g., [4]): we assume
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Fig. 1. Left: simplified scheme of a binary mixture separation column
with liquid and gas flows, and heavy component molar fractions. Right:
simplified model for the phase-to-phase exchanges in an infinitesimal column
slice; inhomogeneous molar fractions in the radial dimension create internal
diffusion flows coupled by the interface exchange flow.

that all the liquid (resp. gas) flows can be represented by a
single equivalent liquid (resp. gas) flow. The equivalent liquid
and gas phases are in contact through a single interface. In
the following, subscript L (resp. V ) stands for the equivalent
liquid (resp. gas) phase.

Consider a slice of the distillation column of infinitesimal
height such as illustrated on Fig. 1 (right). In the radial
dimension, the molar fraction profiles result from the com-
petition between vertical transport by liquid and gas flows,
and radial exchanges between the liquid and gas phase. The
latter predominate at the liquid-gas interface, where the two
phases are permanently at the thermodynamical equilibrium.
On the contrary, the farther from the interface, the less the
thermodynamics couple the liquid and gas molar fractions.
Consequently, far from the interface, vertical transport phe-
nomenon predominates.

This results in non-homogeneous profiles in the radial
dimension, hence in radial diffusion flows. Orientating these
flows as on Fig. 1 (right), we roughly write them λL

ε (x∗−x) in
the liquid phase, λVε (y−y∗) in the gas phase, where λL,V > 0
are equivalent to diffusion coefficients, 0 < ε � 1 is a small
scaling coefficient, and x∗, y∗ are the molar fractions at the
interface.

Assuming that the two components of the mixture have
the same heat of vaporization, the coupling equation at the
interface reads λV (y∗ − y) + λL(x∗ − x) = 0, while the
thermodynamical equilibrium imposes the non-linear relation
y∗ = k(x∗). One often, but non-necessarily, uses

k(x) =
αx

1 + (α− 1)x
, (1)

where 0 < α < 1 stands for the relative volatility of
the considered heavy component with respect to the second
light one. For the moment, we do not impose any particular
constraint on k.

Adding two last equations arising from molar balances in

the liquid and in the gas phases, we obtain the system σL∂tx = −∂s(Lx) + λL
ε (x∗ − x),

σV ∂ty = ∂s(V y) + λV
ε (y∗ − y),

0 = λV (y∗ − y) + λL(x∗ − x), y∗ = k(x∗),
(2)

where L, V are the liquid and gas molar flows, respectively,
and the σ′s > 0 are the liquid and gas molar hold-ups,
assumed to be constant. We use the notations ∂t := ∂

∂t ,
∂s := ∂

∂s .
The boundary conditions of the model express on the heavy

component molar flow rather than on molar fractions. At the
bottom of the column, the inlet heavy component molar flow
is directly Φinlet = V yh, where yh ∈ (0, 1) is the fixed inlet
heavy component molar fraction. At the top of the column,
neglecting the condenser’s dynamics, the heavy component
molar flow Φout exiting the packings separates in
• a heavy component product flow Φprod = V−L

V Φout,
• a heavy component recycled flow Φin = L

V Φout which
is re-injected in the packings.

B. Model reduction based on two time-scales

The system (2) is reduced for small yet non-zero values of
ε. We remove here the stable and fast dynamics and provide an
approximation of the slow dynamics including order one term
versus the small positive parameter ε. Such model reduction
is inspired of invariant manifold techniques applied to two-
time scale systems and described in [8] for finite dimensional
systems (see also [9]). The derivation of this order one slow
system is only formal here and requires certainly additional
mathematical justifications to cope with our infinite dimension
framework.

The reduction is intended to preserve the slow balance
equation on the total amount of heavy component

(σL + σV )∂tZ = −∂s(Lx) + ∂s(V y), (3)

where

Z =
σLx+ σV y

σL + σV
. (4)

Thus, whatever the value of ε, that is, whatever the phase-to-
phase exchanges, the reduced model of the 2-phases system
remains conservative.

Let us define X(s, t) such that

Z =
σLX + σV k(X)

σL + σV
, (5)

and thus with the notation k′(X) = dk(X)
dX :

∂tZ =
σL + σV k

′(X)

σL + σV
∂tX (6)

Assuming that ε is small, let us consider the asymptotic
development of the unknown molar fractions:

x = x0(X) + εx1(X) + . . . , y = y0(X) + εy1(X) + . . . ,

x∗ = x∗0(X) + εx∗1(X) + . . . , y∗ = y∗0(X) + εy∗1(X) + . . . ,
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with the notations xi := ∂ix
∂εi (ε = 0), yi := ∂iy

∂εi (ε = 0),
x∗i := ∂ix∗

∂εi (ε = 0), y∗i := ∂iy∗

∂εi (ε = 0), ∀i ∈ N.
We assume in our derivations that neither V nor L depend

on s. This assumption is reasonable for the gas, yet it certainly
is a simplification of the liquid hydraulics in many separation
columns.

Limiting the asymptotic development to the order 0 versus
ε, the dynamical system (2) and the definition of Z give

x∗0 = x0, y
∗
0 = y0, y

∗
0 = k(x∗0), Z =

σLx0 + σV y0
σL + σV

.

Thus at the order 0 versus ε we have

x0 ≡ X, y0 ≡ k(X), (7)

∂tX =
−L+ V k′(X)

σL + σV k′(X)
∂sX. (8)

Notice that the boundary conditions on the heavy compo-
nent molar flows become

Φinlet = V y0(t, h) = V yh,
Φprod = V−L

V (V y0(t, 0)) = (V − L)y0(t, 0),
Φin = Ly0(t, 0).

Since Φin = Lx0(t, 0), we have x0(t, 0) = y0(t, 0) =
k(x(t, 0)). Thus x(t, 0) = 0 or 1, which gives no valuable
information on the small but non-zero value of the actual heavy
component molar fraction in the product.

An additional order in then required in the asymptotic
development. To the order 1 versus ε, the system (2) rewrites

σL∂tX = −∂s(LX) + λL(x∗1 − x1), (9)
σV k

′(X)∂tX = k′(X)∂s(V X) + λV (y∗1 − y1), (10)
0 = λL(x∗1 − x1) + λV (y∗1 − y1), (11)
y∗1 = k′(X)x∗1, (12)

and the definition of Z gives

σLx1 = −σV y1. (13)

Using (8),(9) and (10) rewrite

k′(X)
σV L+ σLV

σL + σV k′(X)
∂sX = λL(x∗1 − x1), (14)

−k′(X)
σV L+ σLV

σL + σV k′(X)
∂sX = λV (y∗1 − y1). (15)

According to (12) and (13), one has

λV (y∗1 − y1) = −λL(x∗1 − x1) = λV (k′(X)x∗1 +
σL
σV

x1),

then multiplying (14) by λV
λL
k′(X) and subtracting (15) yields

x1 =
−σV

(
k′(X)2

λL
+ k′(X)

λV

)
(σL + σV k′(X))2

(σV L+ σLV )∂sX, (16)

y1 =
σL

(
k′(X)2

λL
+ k′(X)

λV

)
(σL + σV k′(X))2

(σV L+ σLV )∂sX. (17)

Let us define

G(X) =

k′(X)2

λL
+ k′(X)

λV

(σL + σV k′(X))
2 (σV L+ σLV )2.

Developing (3) up to order 1 versus ε yields

(σL + σV k
′(X))∂tX = ∂s [V y0 − Lx0 + ε(V y1 − Lx1)] .

Injecting (7),(16) and (17), we obtain the following non-linear
convection-diffusion partial-differential equation for X:

(σL + σV k
′(X))∂tX = ∂s [−LX + V k(X)]

+ ε∂s [G(X)∂sX] . (18)

The profiles are available through output maps:

x(s, t) = x0(X) + εx1(X) = X − εσV G(X)
σV L+σLV

∂sX, (19)

y(s, t) = y0(X) + εy1(X) = k(X) + εσLG(X)
σV L+σLV

∂sX. (20)

At the top of the column, we now have

Φout = V k(X(t, 0))+εG(X(t, 0))∂sX(t, 0), Φin = LX(t, 0),

thus the top boundary condition leads to

V X(t, 0) = V k(X(t, 0)) + εG(X(t, 0))∂sX(t, 0), (21)

and the heavy component molar fraction in the product is

k(X(t, 0)) + ε
G(X(t, 0))

V
∂sX(t, 0).

At the bottom of the column, the boundary condition similarly
rewrites V yh = V k(X(t, h)) + εG(X(t, h))∂sX(t, h).

Notice that (large) radial diffusion flows in (2) create small
nonlinear diffusion flows along the axis of the column in (18).
Therein the column dynamics is distinguished from tubular
chemical reactors, where the (large) axial diffusion term is
on the contrary cut by perturbation reduction techniques as
in [10]. The axial diffusion can be scaled with respect to the
axial convection thanks to the diffusion scaling parameter ε.
The axial diffusion is also directly impacted by the value
of (σV L + σLV )2, that is, by the operating set-point of
the column. Roughly speaking, this would correspond to a
set-point dependant wavefront shape in Marquardt’s wave-
model [4]. Boundary condition (21) would then describe the
pinching profile due to the repelling effect of the condenser.
In the wave-model, the wavefront speed is driven by the liquid
and gas traffics; this is reflected here by the convection term
of (18).

C. The nonlinear partial-differential model

Let us recall that

f(X) := σL + σV k
′(X),

G(X) :=

k′(X)2

λL
+ k′(X)

λV

(σL + σV k′(X))
2 (σV L+ σLV )2.
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We consider from now on the following nonlinear partial-
differential equation dynamic model for the binary mixture
separation column:

f(X)∂tX = ∂s [−LX + V k(X) + εG(X)∂sX] ,
V yh = V k

(
X(t, h)

)
+ εG(X(t, h))∂sX(t, h),

V X(t, 0) = V k
(
X(t, 0)

)
+ εG(X(t, 0))∂sX(t, 0),

(22)

for t ∈ (0,+∞), with the following hypotheses:
• 0 < yh < 1, ε > 0, h > 0,
• k : [0, 1] → [0, 1] is a C1, strictly increasing function

on [0, 1] such that k(0) = 0, 0 < k′(0) < 1, k(1) = 1,
1 < k′(1). By convention, the function k is extended to
the whole line by the following definition

k(x) :=

{
k′(0)x if x < 0,
1 + k′(1)(x− 1) if x > 1.

(23)

• L, V ∈ R∗+ may be time varying, and satisfy

k′(0)V < L, 0 < L < V, yhV < L. (24)

III. MAXIMUM PRINCIPLE FOR STRONG SOLUTIONS

The existence and uniqueness of strong solutions to the
Cauchy problem associated to (22) is a classical result
(see [11]): if the initial condition is C2 versus s, then for
t > 0, the solution remains C2 versus s. With the hypotheses
of II-C, such solutions X remain inside (0, 1).

Proposition 1: Let k, L, V be as in the previous section. Let
X0 ∈ C2([0, h],R) be such that 0 ≤ X0(s) < 1,∀s ∈ [0, h]
and X be the solution of the system (18) associated to the
initial data X(0, s) = X0(s), s ∈ (0, h). Then, ∀(t, s) ∈
[0,+∞)× [0, h], 0 ≤ X(t, s) < 1.

Proof: The result is obtained by contradiction, apply-
ing the maximum principle to the function Yλ(t, s) :=
X(t, s)e−λt, λ > 0, and limit arguments for λ→ 0.

IV. STATIONARY SOLUTION

Consider R 3 φ 7→ LXC(h)+C
V ∈ R where XC is the unique

C1(R,R) solution of the Cauchy problem

−LXC + V k(XC) + εG(XC)dXCds = C, XC(0) = C
V−L .

Proposition 2: For every ε > 0, with the hypotheses of II-C
and L, V constant, there exists a unique stationary solution
Xε ∈ C∞([0, h],R) to the system (22). Moreover, [0, h] 3
s 7→ Xε(s) is strictly increasing and 0 < Xε(0) < Xε(h) < 1.

Proof: Let us rewrite system (22) in steady-state:
−LXε + V k(Xε) + εG(Xε)

dXε
ds = Cε,

V yh = V k
(
Xε(h)

)
+ εG(Xε(h))dXεds (h),

V Xε(0) = V k
(
Xε(0)

)
+ εG(Xε(0))dXεds (0).

(25)

We will prove that for every ε > 0, there exists a unique
Cε ∈ R such that the system (25) has a solution Xε ∈
C∞([0, h],R). Additionally, for every ε > 0, we will have
• 0 < Cε < yh(V − L),
• 0 < Xε(s) < Xε(h) = V yh−Cε

L ,∀s ∈ [0, h)

• dXε
ds (s) > 0,∀s ∈ [0, h].

Notice also that if Cε satisfies (25), then Xε(0) = Cε
V−L and

yh = LXε(h)+Cε
V .

First step: Let us define an auxiliary function φ. For every
C ∈ R, there exists a unique solution XC ∈ C1(R,R) of the
Cauchy problem

−LXC + V k(XC) + εG(XC)
dXC

ds
= C, XC(0) =

C

V − L
..

Indeed, the ordinary equation may be written dXC
ds = F (XC)+

C
εG(XC) , where F (X) := LX−V k(X)

εG(XC) . Thus the right hand side
is a Lipschitz function of XC with an affine growth when
|XC | → +∞. The function R 3 C 7→ φ(C) = LXC(h)+C

V ∈
R is C1 and satisfies φ(0) = 0 because X0 = 0 (uniqueness
in Cauchy-Lipschitz theorem).
Second step: Let us prove that φ is increasing. For every
C ∈ R, φ′(C) = LYC(h)+1

V where dYC
ds = αC(s)YC + 1

εG(XC) ,

YC(0) = 1
V−L and αC := F ′(XC) − CG′(XC)

εG(XC)2 . Thus

YC(h) =
[

1
V−L +

∫ h
0
e−

∫ s
0 αC (θ)dθ

εG(XC) ds
]
e
∫ h
0
αC(θ)dθ, YC(h) > 0

and then φ′(C) > 0.
Third step: Let us prove that φ[yh(V − L)] > yh i.e.
LXC∗ (h)+C∗

V > yh where C∗ := yh(V −L). For this particular
value of C∗, notice that LXC∗ (h)+C∗

V > yh ⇔ XC∗(h) > yh.
We have

εG(XC∗)
dXC∗
ds = C∗ + LXC∗ − V k(XC∗)

= [yh − k(yh)]V > 0 at s = 0

thus XC∗ is increasing in a neighborhood of 0+. Let us assume
the existence of s∗ ∈ [0, h] such that dXC∗

ds (s∗) = 0. Then

[L−V k′(XC∗)]
dXC∗
ds = εG′(XC∗)

(
dXC∗
ds

)2
+εG(XC∗)

d2XC∗
ds2

with dXC∗
ds (s∗) = 0. Thus (uniqueness in Cauchy-Lipschitz

theorem) dXC∗ds ≡ 0, which contradicts the increasing behavior
of XC∗ in a neighborhood of 0+. Therefore, dXC∗

ds (s∗) >
0,∀s ∈ [0, h] and XC∗(h) > XC∗(0) = yh.
Fourth step: Let us prove the existence and uniqueness of
Xε. The function φ : [0, yh(V − L)] → R is continuous,
increasing and satisfies φ(0) = 0 and φ[yh(V −L)] > yh, thus
(intermediate values theorem) there exists a unique Cε ∈ R
such that φ(Cε) = yh. Moreover, Cε ∈ (0, yh(V − L)). Then
Xε := XCε gives the answer.

In a second part, let us prove that Xε is increasing on [0, h].
Let us assume the existence of s∗ ∈ [0, h] such that dXεds (s∗) =
0. Working as in the previous third step, one deduces that Xε

is constant. But this is impossible because Xε(0) = Xε(1)⇒
Cε = yh(V − L). We have proved dXε

ds (s) 6= 0,∀s ∈ [0, h].
Necessarily, dXεds (s) > 0,∀s ∈ [0, h] and ∀s ∈ (0, h),

0 <
Cε

V − L
= Xε(0) < Xε(s) < Xε(h) =

V yh − Cε
L

and consequently 0 < Cε < yh(V − L) ∀s ∈ (0, h).
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V. LOCAL ASYMPTOTIC STABILITY

In this section we prove that the unique stationary solution
X of (22) is locally exponentially stable by exhibiting a strict
Lyapunov function for the tangent linearized system with at
least exponential decay rate.

Let us define X := X + δx. To the order 2 versus δx, (22)
rewrites for t ∈ (0,+∞)

f(X)∂tδx = ∂s
[(
−L+ g(X)

)
δx+ εG(X)∂sδx

]
,

g(X(h))δx(t, h) + εG(X(h))∂sδx(t, h) = 0,
V δx(t, 0) = g(X(0))δx(t, 0) + εG(X(0))∂sδx(t, 0),

(26)
where g(X) := V k′(X)+εG′(X)X

′
, with the notations X

′
=

dX
ds , G′ = dG

dX . Introducing the new variable ξ = δx

X
′ , (26)

rewrites:
f(X)X

′
∂tξ = ∂s

[
εG(X)X

′
∂sξ
]
,

Lξ(t, h) + εG(X(h))∂sξ(t, h) = 0,
V ξ(t, 0) = Lξ(t, 0) + εG(X(0))∂sξ(t, 0).

(27)

Proposition 3: the function

V(ξ) :=

∫ h

0

f(X(s))X
′
(s)ξ(s)2ds (28)

is a strict Lyapunov function for (27): exists λε > 0 such that
dV/dt ≤ −λεV.

Proof: Let f∗ := maxs∈[0,h] f(X(s))X
′
(s) > 0, µ :=

mins∈[0,h]G(X(s))X
′
(s) > 0. We have

1

2

dV
dt

=

∫ h

0

ξ(t, s)∂s

[
εG(X)X

′
∂sξ(t, s)

]
ds.

Integrating by part yields

1

2

dV
dt

= −LX ′(h)ξ(t, h)2 − (V − L)X
′
(0)ξ(t, 0)2

− ε
∫ h

0

G(X)X
′
(∂sξ(t, s))

2ds. (29)

Thanks to the formula ξ(t, s) = ξ(t, h) +
∫ s
h
∂sξ(t, θ)dθ, one

finds a constant P > 0 such that∫ h

0

ξ(t, s)2ds ≤ P

(
ξ(t, h)2 +

∫ h

0

(∂sξ(t, s))
2
ds

)
. (30)

This inequality is proved by contradiction, similarly to the
classical Poincaré inequality. Injecting (30) in (29) and taking
m := min

(
LX
′
(h) ; εµ

)
> 0, one obtains

1

2

dV
dt
≤ −m

(
ξ(t, h)2 +

∫ h

0

(∂sξ(t, s))
2
ds

)
≤ − m

Pf∗
V.

VI. ASYMPTOTIC OBSERVERS FOR TIME-VARYING
PROFILES

The molar fraction is supposed to be measured at the top
of the column. Let yM(t) := k(X(t, 0)) + εG(X(t,0))

V ∂sX(t, 0)
be the measure. Let L = L+ l(t), V = V + v(t), such that L
and V still satisfy (24). Let X the stationary solution of (22)
for L = L, V = V .

We consider the following 1-parameter family of observers:

f(X̂)∂tX̂ = ∂s

[
−LX̂ + V k(X̂) + εG(X̂)∂sX̂

]
,

V yh = V k
(
X̂(t, h)

)
+ εG(X̂(t, h))∂sX̂(t, h),

X̂(t, 0) = (1− a)yM(t)

+a

[
k(X̂(t, 0)) +

εG(X̂(t, 0))

V ∂sX̂(t, 0)

]
,

(31)

where a ∈ R.
Let X = X + δx, and X̂ = X + x̃. In the vicinity of X ,

linearizing the PDE of the system (22) yields

f(X)∂tδx = ∂s
[(
−L+ g(X)

)
δx+ εG∂sδx

]
+ ∂s

[
−l(t)X + εl(t)X

′ ∂G

∂L (X,L,V )

]
+ ∂s

[
v(t)k′(X) + εv(t)X

′ ∂G

∂V (X,L,V )

]
,

where G = G(X) with L = L, V = V .
Replacing δx by x̃+δx in this equation gives the linearized

PDE of the observer (31), in the vicinity of X too. Thus the
dynamics of the observation error x̃ are given by

f(X)∂tx̃ = ∂s
[(
−L+ g(X)

)
x̃+ εG∂sx̃

]
.

Since at s = 0

V X̂ − V yM (t) = a
(
−V yM + V k(X̂) + εG(X̂)∂sX̂

)
=

aV (k(X̂)− k(X)) + aε
(
G(X̂)∂sX̂ −G(X)∂sX

)
,

we obtain

V x̃(t, 0) = a
(
V k′(X(0))x̃(t, 0)

)
+ aε

(
G(0)∂sx̃(t, 0) +

∂G

∂X (X,L,V )
x̃(t, 0)X

′
(0)

)
.

Thus the boundary conditions for the observation error are

V x̃(t, 0) = a
(
g(X(0))x̃(t, 0) + εG(0)∂sx̃(t, 0)

)
,

g(X(h))x̃(t, h) + εG(h)∂sx̃(t, h) = 0.

Replacing x̃ by ξX
′

yields

f(X)X
′
∂tξ = ∂s

[
εGX

′
∂sξ
]
,

LX
′
(h)ξ(t, h) + εG(X(h))X

′
(h)∂sξ(t, h) = 0,

V X
′
(0)ξ(t, 0) = a

(
LX
′
(0)ξ(t, 0) + εG(0)X

′
(0)∂sξ(t, 0)

)
.

Proposition 4: ∀a ∈ [0, V /L], the function V defined in
(28) is a strict Lyapunov function of the observation error,
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Time (h) 0 to 1 1 to 5 5 to 9 9 to 11 11 to 13
L/V 0.61 0.5 0.61 0.64 0.61

V (mol/s) 70 70 70 70 70

TABLE I
REFLUX RATE STEPS FOR NUMERICAL SIMULATION IN VII-A

with exponential decay rate.

Proof: Integrating dV
dt by parts yields

1

2

dV
dt

= −LX ′(h)ξ(t, h)2 −
(
V

a
− L

)
X
′
(0)ξ(t, 0)2

− ε
∫ h

0

G(X)X
′
(∂sξ(t, s))

2
ds.

For any a ∈ [0, V /L],
(
V
a − L

)
X
′
(0)ξ(t, 0)2 ≥

0. Notice that this term is still well defined when
a = 0, since ξ(t,0)2

a → 0 when a → 0. Thus
1
2
dV
dt ≤ −m

(
ξ(t, h)2 +

∫ h
0

(∂sξ(t, s))
2
)
, where m :=

min
(
LX
′
(h) ; εµ

)
> 0. As in Proposition 3, one finds a

constant P > 0 such that 1
2
dV
dt ≤ −

m
Pf∗V.

Consequently, ∀a ∈ [0, V /L], the estimation given by
observer (31) exponentially converges towards the actual time-
varying profile X , provided that X is close enough to the
stationary profile X associated to (L, V ).

Tuning the parameter a allows making dV
dt more negative,

thus fastening the convergence of the observer. It should also
allow tuning the observer’s robustness to measurement noise,
by weighting the internal model effects in the top boundary
condition of (31).

VII. TRANSIENT SIMULATIONS

In this section, we solve numerically the nonlinear
model (22) and the nonlinear asymptotic observer (31), with
the following parameters: h = 8 m, σL = 2100 mol.m−1,
σV = 70 mol.m−1, λL = 20 mol.m−1.s−1, λV = 10λL,
ε = 0.1428, yh = 0.21. We use the thermodynamical
relation (1) with α = 0.42. The partial differential equations
are computed using an implicit finite difference method, with
1 s time-steps and 0.1 m space-steps. We have checked that
smaller time and space steps do not significantly impact the
numerical results.

A. Open-loop convergence of the nonlinear model

Fig. 2 illustrates the uniqueness and stability properties of
the stationary solution. Reflux rate L/V undergoes several
steps as summarized in Table I, with V kept constant to
70 mol/s. Simulation shows that the same L and V values lead
to the same stationary solution, regardless of previous profile
excursions. Incidentally, Fig. 2 also illustrates the column
asymmetric dynamics, that is, transient behavior depending
on whether the molar fraction increases or decreases over the
flow change.

Fig. 2. Stability of the stationary solutions. Top: internal variable X at the
top of the column (log scale). Center: internal variable X in the middle of the
column (log scale). Bottom: internal variable X at the bottom of the column
(linear scale). The column undergoes reflux step changes at t = 1 h, t = 5
h, t = 9 h and t = 11 h.

B. Observer convergence around a steady state

Fig. 3 illustrates the estimation of the stationary solution
corresponding to V = 70 mol/s, L/V = 0.61 with various
values of the tuning parameter a in nonlinear observer (31).
The initial estimated solution is X̂(0, s) = 2X(0, s). The
bigger a, the less the top measurement is used, and the slower
the convergence. Yet the estimation error vanishes for every
a ∈ [0, V/L].

The influence of a on the observation error is maximum
at s = 0, yet rapidly decreases when s increases. Thus,
when estimating molar fractions far from the top boundary,
the influence of the top molar fraction estimation turns out to
be negligible compared to the impact of measurement errors
on L and V (illustrated on Fig. 3 (center and bottom) with 1%
underestimation of L). Inversely, the value of a can be chosen
freely to meet the top molar fraction estimation requirements
(balancing the direct measurement and the estimated internal
dynamics) without significantly impacting the rest of the
estimated profile.

C. Observer convergence with a time-periodic L/V

We now consider the case of an unsteady liquid flow. L/V
sinusoidally oscillates between 0.43 and 0.725 with period 1
hour and V ≡ 70 mol/s. The corresponding periodic regime
of the top molar fraction is plotted on Fig. 4 (top) versus
estimations obtained with various values of a in observer (31).
The initial estimated solution is again X̂(0, s) = 2X(0, s).
Simulations show all the observations converge after some os-
cillations (yet high values of a lead to huge relative estimation
error over the first cycles). Note that the variations of L cause
the molar fractions to vary over a wide range (about four orders
of magnitude at the top of the column) without compromising
the convergence of the observers. This could indicate that the

3357



Fig. 3. Observation of a stationary solution. Several observers with various
values of the tuning parameter (solid line: a = 0, dashed: a = 0.5, dashdot:
a = 1, dotted: a = V/L > 1, points: a = 0 with 1% error on L) estimate
the actual stationary solution (circles). Top: estimation at s = 0. Center:
estimation at s = h/10. Bottom: estimation at s = h/5, the influence of a
is almost negligible.

Fig. 4. Oscillating solution observation. The reflux rate L/V oscillates
between 0.43 and 0.725 with period 1 h; the periodic regime (circles) is
estimated with various values of the tuning parameter (solid line: a = 0,
dashdot: a = 1, dotted: a = V (t)/L(t)). Top: estimation at s = 0 over
the two first oscillations. Center: relative estimation error at s = 0 over
the two first oscillations. Bottom: relative L2-norm of the observation error,
‖ X̂−X

X
‖L2 over eight oscillations.

proposed family of observers has more global convergence
properties than those we have proved in proposition 4.

VIII. CONCLUSIONS AND FUTURE WORKS

Inspired by the wave-model approach, we proposed a re-
duced non-linear partial differential equation dynamic model
for binary distillation in a packed column. The reduction
takes advantage of two separable time-scales in the system
when an internal diffusion scaling coefficient is small enough.
The resulting model accounts for non-linear wave propagation
phenomenon, changing wave-front shape depending on inter-
nal flows, and repelling end-effects. Mathematical analysis
of some of the model properties has been carried out, with
only little assumptions on the thermodynamical equilibrium
relation. The associated Cauchy problem admits a unique
solution for all positive time. We proved the local exponential
stability of the stationary solution via the use of a strict Lya-
punov function. We proposed a tunable family of asymptotic
observers to estimate time-varying profiles; using the same
Lyapunov function, we guaranteed that the estimation error
asymptotically vanishes provided the time-varying profile is
close enough to a stationary profile. Through simulations, we
showed that the proven local stability of the stationary solution
and estimation error are in practice valid over wide molar
fraction ranges. Future works should focus on determining
whether or not these local properties can be globally extended.
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