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Back and forth nudging for quantum state reconstruction

Ashley Donovan, Mazyar Mirrahimi, Pierre Rouchon

We are dealing with a dissipative linear time-invariant system
and we are aiming at estimating its initial state. The approach

configuration known as a homodyne detector. This provides
a continuous measurement of the spin component along
the direction of propagation: the measured observable is
therefore given by 0 = az, where az is the Pauli matrix
in direction z. The average evolution of the ensemble is
modeled here by a Lindblad master equation:

d
dtP(t) = -i [Bx(t)O'x + By(t)O'y + Bz(t)O'z,p(t)]

+ T (O'zpO'z - p), (1.1)

where, p(t), the density matrix of the system, is a Hermitian
positive 2 by 2 matrix of trace 1, by changing the time­
scale, we have taken Ii = 1 and I' > 0 is the strength of the
interaction between the probe and the atoms.

Indeed, we are dealing with an ensemble of N identically
prepared systems initialized at p~N, whose average evolution
is given by (1.1). The system output is given by the average
of the identical observable 0 = az on each member. Because
of the central limit theorem the measurement record of this
probe has the form

where W (t) is a Gaussian white noise with variance 0'2 =
1/N2fD.t, D.t being the detector's response time (time
interval over which the detector's output is averaged).

The goal of quantum state reconstruction is to reconstruct
the initial state Po, having access to the measurement record
on a time interval [0, T]. The degree of freedom on the
control field B (t) can be used to provide more observability
to the system. However, for the simple case of 2-level
systems, it appears (as will be seen later in the paper) that
a constant control field that admits a non-zero component
along the axes y and z is sufficient to identify the initial
state of the system. Here, we will assume

B(t) = (Bx,By,Bz), By and B z non-zero.

For simplicity of the computations, we write the sys­
tem (1.1)-(1.2) in Bloch sphere coordinates ((X, Y, Z)
(Tr (O'xp) ,Tr (O'yp) ,Tr (O'zp))):

dX - -
---;It =ByZ-BzY-fX

dY - -
---;It = BzX -BxZ -fY

dZ - -di = BxY - ByX

Y(t) = Z(t) + W(t). (1.3)

Abstract-We propose an estimation method allowing to
identify the initial state of a quantum system based on the
continuous weak measurement of a certain physical observable
over a fixed interval of time. The algorithm is based on the back­
and-forth nudging method consisting in iterative application of
Luenberger observers for the time-forward and time-backward
dynamics. A clever change of variables unveils the needed
symmetry in the observer design leading to the decrease of
a certain distance (in an appropriate metric) between the
estimator and the main system, both in forward and backward
directions.

I. INTRODUCTION

Reconstruction of a quantum state is an essential task in
quantum control context. It allows to verify the preparation,
to measure the decoherence, and to determine the fidelity of
control protocols. In the literature, two main paradigms have
been considered to tackle the problem of the quantum state
reconstruction. The standard paradigm is based on strong
measurements of a large set of observables performed on
many copies of the unknown state (see for example [3]).
In this paradigm, after the preparation, a single strong mea­
surement of one observable is performed. This measurement
erases the original quantum state and the ensemble must
be re-prepared and the measurement apparatus reconfigured
at each step. A less developed paradigm is based on con­
tinuous, weak measurement of a single observable on a
single ensemble of identically prepared system [4], [5], [2].
Applying weak measurement spreads the backaction across
the ensemble and therefore does not disturb significantly any
individual member.

Through this paper, we consider the second paradigm
and we propose a new inversion algorithm based on the
application of asymptotic observers. In contrast to previous
algorithms based on statistical techniques (such as Bayesian
filters), our observer-based approach must improve the ro­
bustness with respect to the measurement noise, particularly
when the dissipation due to the decoherence is important.

Here, for simplicity sakes, we concentrate on a toy model
consisting of an ensemble of spin 1/2 systems controlled
by a magnetic filed B(t) = (Bx(t), By(t), Bz(t). A laser
probe (along the axis z) interacts dispersively with the
cloud of atoms and is then detected using a photodetector
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II. BACK-AND-FoRTH NUDGING: OPTIMAL DESIGN

on a time interval [0, T] and its corresponding backward
system: x» = -A x», yb = Y(T - t). The couple (A, C)
being observable, one can choose a Luenberger observer gain
L such that A - LC is stable. In the same manner, one can
choose an observer gain t» for the backward system such
that - A - LbC is stable. This leads to considering the back-

Note that, as soon as the system (1.3) is observable, the
system (1.4) is also observable. However, the system (1.3)
being dissipative the backward system (1.4) is expansive and
therefore one needs higher observer gains to achieve the same
poles for the error dynamics as the ones for (1.3). If these
gains are chosen so that the whole back-and-forth procedure
induces a contraction for the error dynamics, we will be able
to estimate the initial state of the system.

In the next section, we provide various possibilities to
design the Back-and-Forth Nudging algorithm. Referring to
the analysis of the Appendix , we provide an optimal BFN
algorithm. Finally, in Section III, we test the performance of
the algorithm through numerical simulations and we provide
a proof of convergence based on Lyapunov techniques for
time-periodic systems.

t E [0, T],

t E [0, T],

(11.2)

and-forth estimator:

d A A A

dt X = A X + L(Y - CX),

~Xb = -A X + Lb(yb - eX),

Xb(O) = X(O).

After a back-and-forth iteration, the error with respect to the
system of the estimator is given by:

Xb(T) - X(O) = e(-A-LbC)Te(A-LC)T(X(O) - X(O)).

Restarting the iteration by taking as the initial state X(0) to
be the final state Xb(T) of the last iteration, and doing the
iteration k times the error is given by

XZ(T)-X(O) = (e(-A-LbC)Te(A-LC)Tf (Xo(O)-X(O)).

The matrices A - LC and -A - LbC being stable, one
might expect that the above error dynamic converge to 0 as
k tends to infinity. However, this is not true as the matrices
A - LC and -A - LbC do not commute necessarily and
therefore the eigenvalues of e( -A-LbC)Te(A-LC)T are not
necessarily in the unit disk. Having fixed the measurement
time interval [0, T], we can consider two scenarios to remedy
this situation:

1) we can try to push the gains of the observer to ensure
that the operators e(A-LC)T and e( -A-LbC)T are both

of norm less than one. In this way their product is
also of norm less than one and the error dynamics is
contracting;

2) we choose the observer gains Land L b in a clever
way to ensure the decrease of the distance between the
estimator and the real system in an appropriate norm
and this for both the forward and backward dynamics.

While the first possibility seems clear but could not be
successful, the second one needs some more explanations
. Indeed, as soon as the matrices A - LC and - A - LbC
are stable, we can find two quadratic Lyapunov functions

\ p X I X'> and \ pbX b I Xb) (P and pb positive definite)
that are decreasing respectively for the forward and the
backward error dynamics (X = X- X and Xb = X b- X b).

The second alternative consists in finding the gains Land
Lb in an appropriate way so that the matrices P and p b

coincide. In this way, the distance between the estimator
and the system's state will decrease in a same metric for the
forward and backward dynamics. By applying some LaSalle
invariance principle for time-periodic systems, we can then
hope to prove the convergence of the estimator.

This second alternative being an iterative adaptation of
an asymptotic algorithm, normally, one needs to do many
iterations before achieving a desired error threshold. How­
ever, for the first alternative, by pushing enough the gains,
one back and forth iteration might be enough to achieve
this error threshold. This fact rises the question of whether
why to choose the second alternative while the first one is
much simpler to put in place (one does not need to worry

(11.1)Y=CX,

Consider an observable linear system

that we propose here is to apply back and forth Luenberger
observers. This approach developed for partial differential
equations under the name of Back-and-Forth Nudging [1]
have been tested numerically for some oceanography prob­
lems. However, up to our knowledge, no deep analysis on
how to choose the observer gains to ensure the convergence
of the algorithm together with keeping it robust with respect
to measurement noise exists and this not even for simple case
of a few-dimensional linear system. The aim of this article
is to study different possibilities for designing the observer
gains for the simple toy model of (1.3) and to provide the
most efficient one from the viewpoint of robustness to noises.

The idea of the Back-and-Forth Nudging consists in ap­
plying a Luenberger observer for the system (1.3) on a fixed
time interval [0, T] and to apply another one for the system
when the sense of time is changed. Indeed, if we consider
the system (1.3) backward in time, we are dealing with the
system
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B; = 0.84, By = 1.26, B, = 1.68, r = 3. (111.1)

Also, we consider a signal to noise ratio of 5 leading to a
standard deviation of 0.2 for the additive noise W (t) to the
measurement output.

(11.6)

where c > 0 is a positive constant, we have

dV -2di = -E(l + 2E)ce1·

where E > 0 is a positive constant. Note that, by changing
the sign of f,2, the Lyapunov function does not change. Then
by choosing the gains

III. NUMERICAL SIMULATIONS AND CONVERGENCE
PROOF

Here, we consider the following parameters for the sys­
tem (1.3) (units are atomic ones):

d -b -b b -b
dt e1 = -e2 + (-0"1 - ll)e1'

d -b -b b -b
dte2 = -e3 + (0"2 -l2)e1'

d -b b -b
dt e3 = (-0"3 -l3)e1·

However a simple change of variables of the form
- - - -b -b-b

((1, (2, (3) = (e1' -e2' e3) leads to the dynamics

d -b -b b -b
dt (1 = (2 + (-0"1 - II)(1 ,

d -b -b b -b
dt(2 = (3 - (0"2 -l2)(1'

d -b b -b
dt (3 = (-0"3 - l3)(1·

By choosing the gains (l~, l~ , l~) as follows

l~ = II - 20"1, 19 = -l2' l~ = l3 - 20"3, (11.3)

we obtain the exact same dynamics for ((1,(2,(3) and
(f,1' f,2' f,3). We realize that to obtain a quadratic Lyapunov
function for the error dynamics which is decreasing in
both forward and backward directions, one only needs to
find a quadratic Lyapunov function for the forward system
which is invariant by the change of variables (f,1' f,2, f,3) ---+

(f,1' -f,2,f,3). We propose the following Lyapunov function:

- - - 1 - - 2 E-2 E-2 1 -2
V(e1,e2,e3) = 2(e1 - e3) + 2e1 + 2e3 + 2e2' (11.4)

Through the next Section, we will illustrate the performance
of the above estimator for the state reconstruction of the
system (1.3)by numerical simulations and we will give a very
simple proof of the convergence based on LaSalle invariance
principle for time-periodic systems.

converge to zero. In the same way, for the backward system,
we look for the observer gains (l~, 19, l~) of the following
error dynamics

d A A A A

dte1 = e2 + 0"1e1 + ll(Y - e1),
d A A A A

dt e2 = e3 - 0"2e1 + l2(Y - e1),
d A A A

dte3 = 0"3e1 + l3(Y - e1),

so that the error dynamics «= e-e)
d - - -
dte1 = e2 + (0"1 -ll)e1,

d - - -
dt e2 = e3 + (-0"2 -l2)e1,

d - -
dt e3 = (0"3 -l3)e1

The problem of designing a forward observer becomes
therefore equivalent to finding the gains (ll' l2, l3) of the
estimator

about how to choose the gains). The answer resides in the
response of the estimator to the measurement noises. The
simple computations of the appendix show that while many
back and forth iterations for a low gain observer and one back
and forth iteration for a high gain observer admit the same
performance in average, their response to a Gaussian white
noise are completely different. Indeed, we will see in the
simple case of a low-pass filter that, the obtained variance
for the second alternative is much less than the first one.
Noting that, here, we deal with a dissipative system together
with noisy measurement, we choose the second alternative
in this paper. Throughout the following paragraphs, we will
provide a method to choose the observer gains Land t),
for a generic observable 3-dimensional system, giving rise
to the same quadratic Lyapunov functions for the forward
and backward error dynamics.

Therefore, we consider (A, C) to be an observable 3­
dimensional system where A is a 3 by 3 real matrix and
C is a line vector of dimension 3. Here, we provide a
change of variables allowing to pass the system to a standard
form, noting that this standard form will allow us to better
notice the similarities between the forward and the backward
system. So, we start by the generic system (11.1) and we
consider the following change of variables (the couple (A, C)
being observable):

(Zl,Z2,Z3) = (CX,CAX,CA2X)

In these variables the system (IT.1) becomes

d d d
dtZ1 = Z2, dtZ2 = Z3, dt Z3 = 0'1Z3 - 0'2Z2+ 0'3 Z1,

y= Zl,

where A3 - 0"1A2 + 0"2A - 0"3 is the characteristic equation
of the matrix A. Next, we consider the change of variables

(e1, e2,e3) = (Zl, Z2 - O"l Zl, Z3 - 0"1 Z2 + 0"2 Z1).

The system (11.1) writes

d d
dte1 = e2 + 0"1e1, "de2 = e3 - 0"2e1,

Y =e1.
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Taking the Lyapunov function (11.4) for these dynamics we
have

dV 2<it = -E(1 + 2E)eXI'

Applying now the LaSalle invariance principle for the time
periodic systems, we now that the trajectories of (111.3)
converge to the largest invariant set included in the set of
points where Xl = 0. This is easy to see that this set is in fact
nothing than the origin. Therefore, the error trajectories must
converge to zero and we have the proof of the convergence.

2520

Lyapunov function

10 15

0.2

40

Taking e = 1 and E = .3, and computing the observer
gains as in above, we find:

Fig. 1. Average over 50 noise realizations: the first plot illustrate the
evolution of the fidelity versus iteration numbers where the measurement
time is taken to be T = 3 and the number of iterations 25; the second
plot illustrate the evolution of the Lyapunov function (11.4) versus iteration
numbers.

:: :\
1 0 -~
0 '-----""- -'--- - - -'-- - - --'-- - - --'-- - - --'--'

x(2NT) = e-2rNTx(0)

1- e- 2rNT iT+ re-2rT ertw (t )dt
1 - e-2rT 0

1- e-2rNT rT
+ r 1 _ e-2rT J

o
e-rtw(t)dt.

The second scenario corresponds to the case where we apply
only 1 back-and-forth iteration but for a gain of Nr:

~ x = Nr(y(t mod T) - x (t ) if t E [0,T)

~ x = Nr(y(T - t mod T) - x(t )) if t E [T,2T).

The same kind of computations leads to the error:

x(2T) = e-2rNTx(0) + rNe-2rNTIT
erNtw(t )dt

+ rNIT
e-rNtw(t)dt.

ApPENDIX

The aim of this appendix is to show that for fixed
measurement time interval T, a large number of back-and­
forth iterations with small-gain observers provides a better
inversion quality than a small number of back-and-forth
iterations with high-gain ones. In order to show this we
consider the simple estimator allowing to low-pass filter a
signal. We therefor consider the trivial system:

d
dt x = 0, yet) = x (t ) + wet),

where wet) is a random white noise of amplitude 1. We
consider two scenarios.

The first one corresponds to N back and forth iterations
of an estimator with a gain r (extended as in Section III to
[0 ,2NT»:

:t x = r (y(t mod T) - x(t) if t E [0,T] mod 2T

:t x = r(y(T - t mod T) - x(t» if t E [T,2T] mod 2T.

This leads to the error dynamics

1t x = -rx + r wet mod T) if t E [0, T] mod 2T

1t x = -rx + r weT - t mod T) if t E [T,2T] mod 2T.

Simple computations, based on variation of constant's for­
mula, imply that the error after N back and forth iterations
is given by

25

(III.2)

2010 15
Iteration numbers

h = -4.7, l2 = -12.8, l3 = -5.88

l~ = 7.3, l~ = 12.8, l~ = 7.88.

We consider a measurement time of T = 3 and 25 back
and forth iterations. The simulations of figure 1 illustrate
the average result for 50 noise realizations where the initial
state of the main system has been chosen randomly at each
noise realization and the estimator has always been initialized
at (-1/02) , -1/02),0). More precisely the first plot
illustrates the value of Tr (Pk (0)p(0)) indexed by k the
number of iterations. Note that, here in order to get back
to the density matrix formulation, we have renormalized the
estimator XZ(T) and then we have computed the associated
density matrix. The second plot illustrate the value of the
Lyapunov function (11.4) after each iteration.

Here, in order to finish this section, we provide a very
rapid convergence analysis for the estimator. Getting back
to the notations of the last section, one can extend the error
dynamics over the time intervals [0, T] and [T,O] to a 2T­
periodic system over [0,(0). Indeed, one can write the error
dynamics satisfied by ~ = (~1 '~2,~3) and ~b = (~r,~~,~~),
as a unique evolution equation over [0,(0) satisfied by X =
(Xl , X2, X3):

d
dt X = (X2 - e(1 + E)xI, X3 - (1 + E)XI , -eXI)

if t E [0, T] mod 2T
d
dt X = (-X2 - e(1 + E)XI, -X3 + (1 + E)xI, -eXI)

if t E [T, 2T] mod 2T.
(111.3)
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While in average, the both estimators achieve the same
precision of e- 2rNTX(0), the variance of the achieved error
is different for the two scenarios. Calling VI and V2 the
obtained variances for the two scenarios respectively, we
have:

-2rT
VI = :C(1 - e-2rNT)2_e _

2 1 - e-2r T

r (1 - e-2r N T)2 e-2r T
+ _ +Tr2(1 _ e-2r N T)2 --=-_

2 1 - e-2r T (1 - e-2r T)2

and

V
2

= rN (1 _ e-2rNT)e-2rNT
2

+ rN (1 _ e-2r N T) + Tr2N2e-2rNT
2 .

This is now trivial that for sufficiently large N the second
variance is larger than the first one as it tends to infinity
when N goes to infinity.

REFERENCES

[1] A. Auroux and J. Blum. A nudging-based data assimilation method for
oceanographic problems: the Back and Forth Nudging (BFN) algorithm.
Nonlin. Proc. Geophys., 15:305-319, 2008.

[2] J. Gambetta, W.A. Braff, A. Wallraff, S.M. Girvin, and R.J. Schoelkopf.
Protocols for optimal readout of qubits using a continuous quantum
nondemolition measurement. Phys. Rev. A, 76:012325, 2007.

[3] S. Massar and S. Popescu. Optimal extraction of information from finite
quantum ensembles. Phys.Rev.Lett., 74:1259, 1995.

[4] A. Silberfarb, P.S. Jessen, and I.H. Deutsch. Quantum state reconstruc­
tion via continiuous measurement. Phys. Rev. Lett., 95:030402, 2005.

[5] G.A. Smith, A. Silberfarb, I.H. Deutsch, and P.S. Jessen. Efficient
quantum-state estimation by continuous weak measurement and dy­
namical control. Phys. Rev. Lett., 97:180403.1-4, 2006.

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on June 17,2010 at 15:10:50 UTC from IEEE Xplore.  Restrictions apply. 


