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Abstract:
The aim of this paper is to present some recent developments and hints for future
researches in control inspired of flatness-based ideas. We explain how explicit
trajectory parameterization, a property that is central for flat systems, can be
useful for the control of various oscillatory systems (linear, nonlinear, finite and/or
infinite dimension) of physical and engineering interests. Such parameterization
provide simple algorithms to generate optimal trajectories via exact discretization.
Three key examples are detailed: a linearized Schrödinger equation describing the
interaction of an electro-magnetic field (the control) with an n-levels quantum
system; the heavy chain described by a 1D wave equation; an Euler Bernoulli
flexion beam.
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1. INTRODUCTION

The goal of this paper is to present, on three phys-
ical examples, a finite dimensional Schrödinger
equation, a 1D wave equation and a 1D Euler-
Bernoulli equation, a natural way, initiated in
(Nieuwstadt and Murray, 1998), to merge flatness
based control with optimal control. The notion of
flat-systems goes back to Monge (Monge, 1784):
for certain under-determined differential systems
appearing in differential geometry (Monge equa-
tions), he was able to describe explicitly their
general solutions in term of a finite number of ar-
bitrary functions of one variable and their deriva-
tives. Thus, for flat systems, it is easy to generate
sets of trajectories that satisfy both the initial
and final state constraints. For optimal control
problems where final state constraints are difficult
to satisfy numerically, such trajectory sets provide
an exact discretization depending on an arbitrary

numbers of real parameters that can be chosen to
minimize the cost functional.

Section 2 is devoted to a basic definition of flat-
ness for systems described by nonlinear ODE’s.
In section 4, we treated the linearized Schrödinger
equation that governs the dynamics of a ground
energy level coupled via an electro-magnetic field,
the control u, with a finite number of excited
levels. One recovers the fact that the smallest
control in L2 norm that steers from one state to
another one is the superposition of pulses with
fixed amplitudes, phases and Bohr frequencies.
Section 5 is devoted to the heavy chain: we pro-
pose a simple method to compute numerically
with finite P3 elements the control steering from
one steady-state to another one, that minimize
the L2 norm of the trolley acceleration. A similar
problem is addressed in section 6 for a flexion
beam described by an Euler Bernoulli system:



the P3 finite elements used for the heavy chain
are here transformed (convolution) into C∞ time
function of Gevrey order less than 1 to guaranty
the convergence of the series appearing in the
flatness-based exact discretization.

2. FLAT SYSTEMS

More than 10 years ago, Michel Fliess and cowork-
ers (Fliess et al., 1992; Fliess et al., 1995; Fliess et
al., 1999) introduced a special class of non-linear
control systems described by ordinary equations:
differential flat systems form a special class of
nonlinear control systems for which systematic
control methods are available once a flat-output is
explicitly known. We just sketch a tutorial defini-
tion of flatness for state-space control system. The
smooth system d

dtx = f(x, u) with m scalar con-
trol u = (u1, . . . , um) is flat, if and only if, there
exist m real smooth functions h = (h1, ..., hm) de-
pending on x and a finite number of u derivatives,
says α, such that, generically, the solution (x, u) of
the square differential-algebraic system (t 7→ y(t)
is given)

ẋ = f(x, u), y(t) = h(x, u, u̇, ..., u(α))

does not involve any differential equation and thus
is of the form

x = Φ(y, ẏ, ..., y(β)), u = Ψ(y, ẏ, ..., y(β+1))

where Ψ and Φ are smooth functions and β is some
finite number. The quantity y is of fundamental
importance: it is called flat-output or linearizing-
output. In control language, the flat output y
is such that, the inverse of ẋ = f(x, u), y =
h(x, u, ..., u(α)) has no dynamics (Isidori et al.,
1986).

Flatness is related to state feedback linearization
and in fact has a long history. Such notion goes
back to Hilbert (Hilbert, 1912) with his work on
the general solution of Monge equations, work
that has been prolonged by Cartan (Cartan, 1914)
with a characterization via the derived flag of solv-
able (in the sense of Hilbert) Monge equations of
any-order. In general, the problem of flatness char-
acterization is fully open for multi-input systems
(dim(u) > 1). There is no algorithm to decide
once the equations ẋ = f(x, u) are given, if there
exists such map h, called flat-output map.

The situation is somehow comparable to inte-
grable Hamiltonian systems: there is no algorithm
to decide whether a given Hamiltonian H(q, p)
yields an integrable system; many examples of
physical interest are integrable and for these sys-
tems we have the form of their general solution
in terms of the initial conditions; only necessary
conditions are available (see, e.g. the Morales-
Ramis theorem (Morales-Ruiz and Ramis, 2001)).

For flat systems, the situation is very similar:
no algorithm to decide whether a system is flat
or not; many examples of engineering interest
are flat and their general solution reads in term
of the derivatives of a flat-output y that has a
clear physical interpretation (Martin et al., 2003);
few necessary conditions are available (see, e.g.,
the ruled-manifold criterion (Rouchon, 1995)). To
summarize: the role of flat-systems within the set
of under-determined ordinary differential systems
is very similar to the role of integrable systems
within the set of determined ordinary-differential
systems.

3. FLATNESS AND OPTIMAL CONTROL

Consider the standard optimal control problem

min
u

J(u) =
∫ T

0

L(x(t), u(t))dt

together with ẋ = f(x, u), x(0) = a and x(T ) = b,
for known a, b and T .

Assume that ẋ = f(x, u) is flat with y =
h(x, u, . . . , u(α)) as flat output,

x = Φ(y, . . . , y(β)), u = Ψ(y, . . . , y(β+1)).

A numerical resolution of minu J(u) a priori re-
quires discretization of the state space, i.e., a
finite dimensional approximation. A better way
is to discretize the flat output space. Set yi(t) =∑N

1 zijϕj(t). The initial and final conditions on x
provide then initial and final constraints on y and
its derivatives up to order β+1. These constraints
define an affine sub-space V of the vector space
spanned by the zij ’s. We are thus left with the
nonlinear programming problem

min
∈V

J(z) =

∫ T

0

L
(
Φ(y, . . . , y(β)), Ψ(y, . . . , y(β+1))

)
dt,

where the y
(ν)
i ’s must be replaced by

∑N
1 zijϕ

(ν)
j (t).

This methodology has been first used in (Nieuwstadt
and Murray, 1998) for trajectory generation and
optimal control. It should also be very useful for
predictive control. The main expected benefit is
a dramatic improvement in computing time and
numerical stability. Indeed the exact quadrature
of the dynamics –corresponding here to exact dis-
cretization via well chosen input signals through
the mapping Ψ– avoids the usual numerical sen-
sitivity troubles during integration of ẋ = f(x, u)
and the problem of satisfying x(T ) = b.

Numerical experiments (Milam et al., 2001; Mur-
ray et al., 2003; Milam, 2003) indicate that sub-
stantial computing gains are obtained when flat-
ness based parameterizations are employed. A
systematic method exploiting flatness for predic-
tive control is proposed in (Fliess and Marquez,
2000) (see also (Findeisen and Allgöwer, 2002)
for nonlinear predictive control). See also (Petit
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Fig. 1. A three levels system interacting with a
linearly polarized electric field u ∈ R, the
control.

et al., 2001) for an industrial application of
such methodology on a chemical reactor. See
also (Oldenburg and Marquardt, 2002) where lim-
itations of such techniques are presented. Exten-
sion to infinite dimensional systems has also been
proposed in (Petit et al., 2002).

4. LINEARIZED QUANTUM SYSTEMS

Take an atom with three energy levels coupled to
a linearized polarized electromagnetic flied u(t) ∈
R, the control. Assume that its probability am-
plitude wave function ψ obeys, under the dipolar
approximation, the following finite dimensional
Schrödinger equation (ı =

√−1):

ı~
d

dt
ψ = (H0 + u(t)H1)ψ

where ψ ∈ C3 is the wave function belonging to
the Hilbert space C3 and where H0 and H1 are
Hermitian matrices

H0 =




0 0 0
0 ~ω1 0
0 0 ~ω2


 , H1 =




0 µ1 µ2

µ1 0 0
µ2 0 0


 .

The pulsations ω1 > 0, ω2 > 0 and the coupling
parameter (µ1, µ2) are real quantities. With the
standard notations,

|0〉 =




1
0
0


 , |1〉 =




0
1
0


 , |2〉 =




0
0
1


 ,

we see that |0〉 is the quantum state of energy
E0 = 0, |1〉 of energy E1 = ~ω1 and |2〉 and energy
E2 = ~ω2, ~ = h/(2π) being the Plank constant.

Thus ψ = ψ0 |0〉+ψ1 |1〉+ψ2 |2〉 where ψ0, ψ1 and
ψ2 are 3 complex numbers those square modulus
represent the probability for being states |0〉, |1〉 or
|2〉, respectively. Schrödinger equation reads thus:

ı
d

dt
ψ0 = u

µ1

~
ψ1 + u

µ1

~
ψ2

ı
d

dt
ψ1 = ω1ψ1 + u

µ1

~
ψ0

ı
d

dt
ψ2 = ω2ψ2 + u

µ2

~
ψ0.

The ground state ψ0 = 1, ψ1 = ψ2 = 0 with the
control u = 0 is a steady state. Let us linearize

the above equations around this equilibrium. De-
noting by δψk, k = 0, 1, 2, and δu the small
deviations, we get:

ı
d

dt
δψ0 = 0

ı
d

dt
δψ1 = ω1δψ1 +

µ1

~
δu

ı
d

dt
δψ2 = ω2δψ2 +

µ2

~
δu

Thus δψ0 remains constant. This non controllable
part corresponds to the conservation of probabil-
ity and will by ignored in the sequel (the length
of ψ is always equal to 1). We concentrate thus on
following linearized dynamics in C2, i.e. in R4:

ı
d

dt
δψ1 = ω1δψ1+

µ1

~
δu, ı

d

dt
δψ2 = ω2δψ2+

µ2

~
δu

Replace ψ1, ψ2 ∈ C and by (x1, v1, x2, v2) ∈ R4

via

δψ1 = z1 +
ı v1

ω1
, δψ2 = z2 +

ı v2

ω2

to get the following dynamics:

d

dt
zk = vk,

d

dt
vk = −(ωk)2zk−µkωk

~
δu, k = 1, 2

Thus for k = 1, 2, δψk = zk + ı d
dt zk

ωk
and

d2

dt2
zk = −(ωk)2zk − µkωk

~
δu.

More generally, the linearized dynamics around
a ground state |0〉, of a quantum system with n
excited states |k〉, k = 1, ..., n, in interaction with
an electro-magnetic field u, read:

d2

dt2
zk = −(ωk)2zk + bku, k = 1, . . . , n (1)

where for each k = 1, . . . , n, bk = −µkωk

~ and

δψk = zk +
ı d
dtzk

ωk

represents the complex probability amplitude to
be in the excited state |k〉. This model is valid
only for ‖δψk‖ ¿ 1 and for small u. We as-
sume here that |0〉 is coupled to n > 0 excited
state (|k〉)1≤k≤n via first order transition of fre-
quencies (ωk)1≤k≤n and coupling real parameters
(µk)1≤k≤n. We assume in the sequel that ωk 6= ωl

when k 6= l and µk 6= 0. This means that the linear
tangent system (1) is controllable.

As explained in (Lévine and Nguyen, 2003;
Lévine, 2004; Rouchon, 2005), we have for any n,
the following explicit flatness based parameteriza-
tion: with s = d/dt, (1) reads formally:

(
s2 + (ωk)2

)
zk = bku, k = 1, ..., n

that can be seen as a linear under-determined
system with n + 1 unknown variables (the zk

and the control u) and n equations. This system



admits an explicit formulation in the following
sense:

zk = Qk(s)y, u = Q(s)y with y =
n∑

l=1

clzl

where

Qk(s) =
bk

(ωk)2

n∏

l = 1
l 6= k

(
1 +

(
s

ωl

)2
)

Q(s) =
n∏

l=1

(
1 +

(
s

ωl

)2
)

ck =
1

Qk(ıωk)
∈ R.

Take T > 0, the initial probability amplitudes
δψ0

k = z0
k + ı

ż0
k

ωk
and the final probability am-

plitudes δψT
k = zT

k + ı
żT

k

ωk
. Let us compute with

the above polynomials Q et Qk, the control of
minimum energy (L2 norm) steering from the ini-
tial to final conditions fixed here above. Thus we
minimize

∫ T

0
u2(t)dt subject to these initial and

final constraints. Since u = Q( d
dt )y, This problem

is equivalent to the following one

min
[0, T ] 3 t 7→ y(t)

s.t. for l = 0, ..., 2n− 1
y(l)(0) = yl

0

y(l)(T ) = yl
T

∫ T

0

[
Q

(
d

dt

)
y(t)

]2

dt.

The initial et final derivatives of y up to order 2n−
1 are related to the initial and final probability
amplitudes via zν

k =
∑n−1

l=0 qk
l y

(2l)
ν and żν

k =∑n−1
l=0 qk

l y
(2l+1)
ν , ν = 0, T (Qk(s) =

∑
ql
ks2l).

This problem can be solved by the Euler-Lagrange
differential equation of order 4n satisfied by y:
Q2( d

dt )y = 0. Its general solution reads (c.c. means
’complex conjugate’)

y(t) =
n∑

l=1

(al + tbl)eıωlt + c.c.

where al and bl are the complex integration con-
stants implicitly fixed by the initial and final con-
straints. We have for such y(t),

Qk(
d

dt
)y(t) =

n−1∑

l=1

(Qk(ıωl)(al + tbl) + Q′k(ıωl)bl) eıωkt + c.c..

But Qk(ıωl) = 0 for l 6= k, Qk(ıωk) = pk ∈ R,
Q′k(ıωl) = ırl

k, with rl
l ∈ R. With such notations

we have

zk(t) = pk(ak + tbk)eıωkt + ı

n∑

k=1

rl
kble

ıωlt + c.c..

x=0

x=L

X(x,t)

u(t)=X(L,t)

0




Fig. 2. The homogeneous chain without any load.

Similarly, we have

żk(t) = ıωkpk(ak+tbk)eıωkt−
n∑

k=1

ωlr
l
kble

ıωlt+c.c..

It is thus simple to recover the al and the bl from
z0
k, ż0

k, zT
k and żT

k by inverting a linear system.
The optimal control is then of the form

u(t) =
n∑

k=1

Q′(ıωk)bkeıωkt + c.c.

and thus is of the form

u(t) =
n∑

k=1

uk cos(ωkt + αk)

where uk and αk are amplitudes and phases pa-
rameters. We recover the usual fact that physicists
manipulate atoms with laser lights resonant with
the transition frequencies ωk. Such manipulations
are usually justified with the rotating wave ap-
proximation and averaging techniques. In such
context, the relative phase between two different
excited state |k〉 and |l〉 is not controlled, only
populations, the module of each ψk, is controlled
via the amplitude and time window of the pulse
with frequency ωk. Here, we can also controlled
the relative phase between ψk and ψl.

5. THE HEAVY CHAIN

Consider a heavy chain in stable position as de-
picted in figure 2. Under the small angle approxi-
mation it is ruled by the following dynamics





∂

∂x
(gx

∂X

∂x
)− ∂2X

∂t2
= 0

X(L, t) = u(t).
(2)



where x ∈ [0, L], t ∈ R, X(x, t) − X(L, t) is the
deviation profile, g is gravitational acceleration
and the control u is the trolley position. Let us
recall the explicit parameterization of this system
given in (Petit and Rouchon, 2001) and based on
symbolic computations in the Laplace domain:

X(x, t) =
1
2π

∫ π

−π

y(t + 2
√

x/g sin θ) dθ, (3)

with y(t) = X(0, t). Relation (3) means that
there is a one to one correspondence between
the (smooth) solutions of (2) and the (smooth)
functions t 7→ y(t). For each solution of (2),
set y(t) = X(0, t). For each function t 7→ y(t),
set X by (3) and u as

u(t) =
1
2π

∫ π

−π

y(t + 2
√

L/g sin θ) dθ, (4)

to obtain a solution of (2). Denote by ∆ =
2
√

L/g, the travelling time between x = 0 to
x = L.

For T > 2∆ and D ∈ R, let us consider the
following problem

min
[0, T ] 3 t 7→ u(t)

X(x, 0) = 0, x ∈ [0, L]
X(x, T ) = D, x ∈ [0, L]

∫ T

0

(ü)2(t) dt.

The initial and final state impose y(t) = 0 for
t ∈ [−∆,+∆] and y(t) = D for t ∈ [T − ∆, T +
∆]. This explains why we take T > 2∆. For
t ∈]∆, T − ∆[, y(t) is free and thus, the above
problem reduced

min
y

y(t ≤ ∆) = 0
y(t ≥ T −∆) = D

∫ T

0

[∫ π

−π

ÿ(t + ∆ sin θ) dθ,

]2

dt.

To get a numerical solution to this problem, we
can approximate y via finite elements P3 over a
time grid of step h = (T − 2∆)/N , N a large
integer. Denote by φ : R 7→ R the P3 generating
function:

φ(ρ) =





0, for ρ ≤ −1;
3(1 + ρ)2 − 2(1 + ρ)3, for −1 ≤ ρ ≤ 0;
3(1− ρ)2 − 2(1− ρ)3, for 0 ≤ ρ ≤ 1;
0, for 1 ≤ ρ;

Set

y(t) =

k=N−1∑
k=1

ykh2φ

(
t + ∆− kh

h

)
+ DH

(
t + ∆− T

T − 2∆

)

where the yk’s are parameters and where

H(ρ) =





0, for ρ ≤ −1;
3(1 + ρ)2 − 2(1 + ρ)3, for −1 ≤ ρ ≤ 0;
1 for 0 ≤ ρ;

It is easy to seen that y is KC2, y(t ≤ ∆) = 0 and
y(t > T −∆) = D. Thus we have to minimize the
following quadratic function in (yk)k=1,N−1:

∫ T

0

[∫ 2π

0

(
D

(T − 2∆)2
Ḧ

(
t + ∆(sin θ + 1)− T

T − 2∆

)

+

N−1∑
k=0

ykφ̈

(
t + ∆(sin θ + 1)− kh

h

))
dθ

]2

dt.

The coefficient of this quadratic function can be
computed explicitly via simple integrals.

6. FLEXION BEAM

Fig. 3. a flexible beam rotating around a control
axle

Consider the flexible beam of figure 3 that rotates
around a motorized axis of angle θ and equipped
with a punctual end load of mass M and inertia
moment J . Up to some scaling, it obeys the
following Euler Bernoulli dynamics:

∂ttX = −∂xxxxX

X(0, t) = 0, ∂xX(0, t) = θ(t)
θ̈(t) = u(t) + k∂xxX(0, t)

∂xxX(1, t) = −λ∂ttxX(1, t)
∂xxxX(1, t) = µ∂ttX(1, t)

where the control is the motor torque u, X(x, t)
is the deformation profile, k, λ and µ are physical
parameters (t and x are in reduced scales). Sym-
bolic computations provide, as shown in (Fliess et
al., 1996), the following parameterization:

X(x, t) =
∑
n≥0

(−1)n y(2n)(t)

(4n)!
Pn(x)+

(−1)n y(2n+2)(t)

(4n + 4)!
Qn(x)

(5)

with ı =
√−1,

Pn(x) =
(=− <)(1− x + ı)4n+1

2(4n + 1)
+ µ=(1− x + ı)4n

+
x4n+1

2(4n + 1)

and

Qn(x)

(4n + 4)(4n + 3)
= −λ<(1− x + ı)4n+2

+
λµ(4n + 2)

2

(
(=− <)(1− x + ı)4n+1 − x4n+1

)

(< and = stand for real part and imaginary part).
The values of θ = ∂xX(0, t) and u = ∂xttX(0, t)−



k∂xxX(0, t) result from (5): it suffices to derive
term by term the above series. The series obtained
for u is

u(t) =
+∞∑
n=1

cn
y(2n)(t)
(4n)!

(6)

where cn are real coefficients such that exists
R > 0 with |cn| ≤ Rn for all n.

To ensure converge of such series, the ”flat out-
put” y, a C∞ function, has to satisfy some condi-
tions. Roughly speaking, the growth of its deriva-
tive of order n must be comparable to (2n)!.
More precisely, if the C∞ function y is of Gevrey
order 1 less than 1, the above series are absolutely
convergent and for each t, x 7→ X(x, t) is an entire
function. A C∞ function y is of Gevrey order
α ≥ 0, iff exists K,A > 0 such that for all t and
n > 0

|y(n)| ≤ KAnΓ(1 + n(α + 1)).

The sum and multiplication of two Gevrey func-
tion of order α is still of order α. Gevrey functions
of order 0 are analytic functions. A typical Gevrey
function $α of order α > 0 with the compact
support [−1, 1] is the following

$α(ρ) =





0, for ρ ≤ −1

exp
( −1

(1− ρ2)
1
α

)
, for − 1 ≤ ρ ≤ 1

0, for ρ ≥ 1

See (Guelfand and Chilov, 1964; Ramis, 1978) for
more details on Gevrey functions. For T > 0 and
Θ, let us consider the following problem

min
[0, T ] 3 t 7→ u(t)

X(x, 0) = 0, x ∈ [0, 1]
X(x, T ) = xΘ, x ∈ [0, 1]

∫ T

0

u2(t) dt

where the initial and final state are steady-state
at θ = 0 and Θ. Such constraints impose on y, the
following conditions:

y(0) = 0, y(T ) = Θ, y(k)(0, T ) = 0, for k > 0.

Take ∆ ∈]0, T
2 [ (typically ∆ = T

10 ), and consider,
with the grid notations used for the heavy chain,
the KC2 function z : R 7→ R, depending of N − 1
real parameters (zk)1≤k<N , defined for t ∈ [∆, T−
∆] via

z(t) =
N−1∑

k=1

zkφ

(
t + ∆− kh

h

)
+ΘH

(
t + ∆− T

T − 2∆

)

and z(t < ∆) = 0, z(t > T − ∆) = Θ. By
convolution with the positive Gevrey function χ,

χ(t) =
$ 1

2

(
t
∆

)

∆
∫ +∞
−∞ $ 1

2
(ρ) dρ

,

1 We use here the new convention suggested by B. Mal-
grange for the Gevrey order: it is just the old order minus
one.

one always obtains a C∞ function y = χ ∗ z that
satisfies the constraints on y for t = 0 and t = T .
Moreover since the convolution kernel χ is of order
1
2 , the function χ∗ z is also of Gevrey order 1

2 and
its derivatives of order n is just χ(n) ∗ z. Since $
satisfies the first order differential equation

(1− ρ2)3
d$ 1

2

dρ
(ρ) = 4ρ$(ρ)

it’s easy to compute χ(n)/(2n)! via a well con-
ditioned recurrence obtained from derivations of
this first order differential equation. We can thus
compute numerically without any difficulties the
N − 1 parameters (zk)1≤k<N , that make the fol-
lowing integral

∫ T

0

(
+∞∑
n=1

cn
χ(2n) ∗ z (t)

(4n)!

)2

dt

minimum since it is non-degenerated quadratic
function.

It is known that divergent series could be also
very efficient numerically (see e.g. (Ramis, 1978).
Thus further extensions of these computations
consist in applying the above formula with a
function χ constructed with $α for α > 1 and re-
summation techniques (see (Laroche et al., 2000)
and (Meurer and Zeitz, 2004)).
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Fliess, M., J. Lévine, Ph. Martin and P. Rouchon
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