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Abstract: A two-states quantum system with one control is proved to be flat. This
provides a simple procedure to design smooth open-loop controls that steer in finite
time from one eigen-state to the other one. A three-states quantum system with
one control is not flat in general. Following the Rabi oscillations used by physicists
to control stimulated transition, we associate to this system an averaged control
system where the number of controls is increased and where flatness-based motion
planning techniques can be used. This allows to steer directly from one eigen-state
to any other one without using an additional intermediate eigen-state. In certain
energy configurations our method is a noticeable improvement of the standard
Rabi transitions strategy and leads to ” active tunnelling control”, as illustrated
by simulations. This method can be extended without major difficulties to higher
dimensional cases.
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1. INTRODUCTION

The control of quantum system is an active sub-
ject of fundamental and practical importance in
chemistry (see, e.g., (Levis et al., 2001)). It ap-
pears that the controllability of quantum sys-
tems described by a finite number of states is
quite well understood (see, e.g. (Ramakrishna et
al., 1995; Turinici, 2000b; Turinici, 2000a)). How-
ever there is still a need to have simple con-
trol design method. In (Vettori, 2002; Ferrante et
al., 2002; Mirrahimi and Rouchon, 2004a; Mir-
rahimi and Rouchon, 2004b) Lyapounov based
methods are proposed. This paper proposes flat-
ness based methods (Fliess et al., 1995; Fliess et
al., 1999) for steering from a pure state to another
pure state. The main advantage of such method
is its computational simplicity and its simple in-
terpretation in physical terms.

We consider quantum systems described by the
following Schrödinger equation

ı~ ψ̇ = (H0 + uH1)ψ (1)

where ψ is the complex probability amplitude
vector (belongs to an Hilbert space), H0 is the
free Hamiltonian and H1 is the Hamiltonian as-
sociated to the scalar control u (corresponding to
a classical electric field generated by a laser). We
focus here on the following motion planning prob-
lem: for two pure states, ψa and ψb of free energy
Eb and Eb (H0ψa = Eaψa and H0ψb = Ebψb), find
an open-loop control [0, T ] 3 t 7→ u(t) steering
the state ψ form ψa at t = 0 to the state ψb at
t = T > 0.

We first consider a two-state system (ψ ∈ C2) that
is proved to be flat for almost all Hamiltonians H0

and H1. The flat output admits a clear physical



interpretation when the Bloch sphere model is
used. The second class of systems we consider has
three states ψ ∈ C3 and a special structure of
H0 and H1 as illustrated on figure 1. Such struc-
ture renders one particular transition between two
eigen-states not so easy (two-photons transition).
Such transition requires, when Rabi oscillations
are used, to pass via the remaining third eigen-
state. Our method avoids this intermediate step.
The steering control is then obtained by consid-
ering, under the classical weak field approxima-
tion, the average dynamics that admits then two
control variables. Flatness-based motion planning
techniques provide easily the steering control for
the averaged dynamics (see (Fliess et al., 1995)
where a similar method is used to control the
Kapitsa pendulum). Simulations show that such
approximate steering control remains quite attrac-
tive since the amplitude of the control does not
need to be very small to reach the final state.

Preliminary version of these results can be found
in (Rouchon, 2002).

2. TWO STATES SYSTEMS

Consider now a two states system. Its wave func-
tion ψ belongs to C2. The Schrödinger equation

ı~ψ̇ = (H0 + uH1)ψ

involves the 2×2 Hermitean matrices H0 and H1:

H0 =
(−E/2 0

0 E/2

)
, H1 =

(
h1 b
b∗ h2

)

with E, h1, h2 ∈ R and b ∈ C∗. With ψ =
(a1, a2) ∈ C2, the density matrix is defined by

ρ = |φ〉 〈φ| =
(|a1|2 a∗1a2

a1a
∗
2 |a2|2

)
.

In terms of Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −ı
ı 0

)
, σz =

(
1 0
0 −1

)
,

it reads
ρ = 1 + λσx + µσy + νσz

with S = (λ, µ, ν) ∈ S2. This corresponds to
a classical change of coordinates (Bloch sphere
model, see (Cohen-Tannoudji et al., 1977; Abragam,
1961)) where the meaningless absolute phase is
removed: φ = (a1, a2) ∈ C2/{0} and φ̃(ã1, ã2) ∈
C2/{0} are the probabilities amplitudes of the
same physical state if and only if exists θ ∈ S1

such that a = exp(ıθ)ã. Notice that S ∈ S2 comes
from |a1|2 + |a2|2 = 1. In the Bloch coordinates
the dynamics reads

Ṡ = S ∧ (ω0B0 +
u

~
B1)

where ω0 = E/~ and

B0 =




0
0
1


 , B1 =



−2<(b)
2=(b)

h1 − h2


 .

Set τ = ω0t, ′ = d/dτ and v = ‖B1‖
ω0~ u the new

control. The dynamics becomes

S′ = S ∧ (B0 + vJ)

where J is the unitary vector 1
‖B1‖B1. Denote

by α ∈]0, π[ the angle between B0 and J and
consider the ortho-normal frame (I,J , K) with
K = B0 ∧J/ sin α and I = J ∧K. Set S = xI +
yJ + zK ((x, y, z) ∈ R3 with x2 + y2 + z2 = 1).
Then the dynamics reads

x′ = −z(cos α + u)
y′ = z sinα

z′ = x(cos α + u)− y sinα

since B0 = sin αI+cos αJ . Notice that x2+y2+z2

is invariant. The restriction of the dynamics on S2

is flat with y as flat output:

z = y′/ sin α, x = ±
√

1− y2 − (y′)2/ sin2 α.

Let us now find a smooth control [0, T ] 3 t 7→
u(t), u(0) = 0 and u(T ) = 0, steering from
−E/2 to +E/2. When u = 0, the state of energy
−E/2 corresponds, in the Bloch-coordinates, to
(x, y, z) = (− sin α,− cos α, 0) and the state of
energy +E/2 to (x, y, z) = (sin α, cosα, 0).

Assume to simplify that α = π/2 (a similar
construction exists for over values of α). Set
p(τ) = (1 − τ)τ2(2 − τ)2. Simple computations
show that the function f(τ) = 1−p2(τ)− (p′)2(τ)
is non negative on [0, 2], reaches 0 only for τ = 1
with f ′′(1) > 0. Thus the function g : R 7→ R
defined by

g(τ) =





−1 if τ < 0
−

√
f(τ) if τ ∈ [0, 1]√

f(τ) if τ ∈ [1, 2]
1 if τ > 2.

is C2. The control

v(τ) = −g′(τ)/p′(τ)

is well defined even for τ around 1. It steers the
system from (−1, 0, 0) at τ = 0 to (1, 0, 0) at
τ = 2. The steering trajectory is

x(τ) = g(τ), y(τ) = p(τ), z(τ) = p′(τ).

The interest of the above computations relies
on the fact that the control u is smooth. This
is not the case for standard steering control of
±1/2 spin systems (Abragam, 1961): u is then
piecewise constant and discontinuous; the steering
trajectory is made of Larmor precessions over
finite time interval.

3. THREE STATES SYSTEM

Consider now a three states system with three
energy levels E1 < E2 < E3 associated to the



tunnel transition

via active control
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Fig. 1. A three states system: steering from E1 to
E2 without reaching E3 via active tunnelling
control.

physical case illustrated on figure 1. It corresponds
to the reduced model of a 1D particule in the po-
tential V (q) admitting two minima with bounded
states ψ1 and ψ2 of low energy E1 and E2 sepa-
rated by a potential barrier and a third bounded
state ψ3 of energy E3 passing over the barrier.
The supports of the ψi, i = 1, 2, 3 are roughly
sketched by the dashed horizontal lines. The three
states model is a finite dimensional approximation
of (p = ı/~ ∂

∂q )

ı~ψ̇ = (p2/2m + V (q)− uq)ψ

then entries (1, 2) and (2, 1) in H1 are negligible.
We have the following dynamics

ı~α̇1 = (E1 + u 〈q〉1)α1 + u 〈q〉13 α3

ı~α̇2 = (E2 + u 〈q〉2)α2 + u 〈q〉23 α3

ı~α̇3 = (E3 + u 〈q〉3)α3 + u 〈q〉∗31 α1 + u 〈q〉∗32 α2

where

〈q〉i =
∫
|ψi|2q dq, 〈q〉ij =

∫
ψ∗i ψjq dq

and ψ = α1ψ1+α2ψ2+α3ψ3 with ai ∈ C. Change
the phase as follows for i = 1, 2, 3:

αi = exp
(
−ıE3/~t−

∫ t

0

u(s) 〈q〉3 /~ ds

)
ai.

Then
ıȧ1 = (ω13 + ue1)a1 + ub1a3

ıȧ2 = (ω23 + ue2)a2 + ub2a3

ıȧ3 = ub∗1a1 + ub∗2a2

(2)

where ω13 = (E1 −E3)/~ and ω23 = (E2 −E3)/~
are the Bohr frequencies, ei = (〈q〉i − 〈q〉3)/~,
b1 = 〈q〉13 /~ and b2 = 〈q〉23 /~.

Finding explicit open-loop control [0, T ] 3 t 7→
u(t) steering from the pure state of energy E1,
a = (1, 0, 0), to the pure state E2, a = (0, 1, 0)
without passing via the intermediate state E3 is
not so obvious. We propose here an open-loop
design mixing standard perturbation techniques
(see, e.g., (Messiah, 1962)) and flatness based
steering methods.

Assume that the control u is small, |ubi|, |uej | ¿
ω13, ω23 and varies slowly (time constant much
smaller than T23 = 2π/ω23 and T13 = 2π/ω13

the Bohr periods). Set b1 = r1 exp(ıθ1), b2 =
r2 exp(ıθ2) with ri > 0 and θi real. Set

u =
2v1(t)

r1
cos(ω13t) +

2v2(t)
r2

cos(ω23t)

with v1 and v2 small amplitude. Then classical
averaging techniques show that, when ω13/ω23 is
irrational, the solutions of (2) are close to the
solution of the average system

ẋ1 = v1x3

ẋ2 = v2x3

ẋ3 = −v1x1 − v2x2

(3)

where

a1 = exp(ı(θ1 − ω13t))x1

a2 = exp(ı(θ2 − ω23t))x2

a3 = ıx3.

When one of the vi is constant and the other
one is zero we recover the classical Rabi oscilla-
tions (Messiah, 1962). They can be used to steer,
in a first step, the state from energy E1 to energy
E3 with v1 constant 6= 0 and v2 = 0 and then,
in a second step, to steer the system from E3 to
E2 with v1 = 0 and v2 constant 6= 0. We will see
that we can mix these two steps to steer directly
the system from E1 to E2 without reaching the
energy E3.

Up to phase shifts that are not important from
physical reasons, we have to find v1 and v2 steering
the state x from (1, 0, 0) to (0, 1, 0). Thus we
can suppose that the components of x remain
real during the motion (since u must be real, v1

and v2 are also real). Conservation of probability
means that I = x2

1 + x2
2 + x2

3 is invariant and
equal to 1 and we have (with the positive branch
x3 =

√
1− x2

1 − x2
2):

ẋ1 = v1

√
1− x2

1 − x2
2, ẋ2 = v2

√
1− x2

1 − x2
2

with x1 and x2 as flat output. Take any increasing
smooth bijection s 7→ σ(s) from [0, 1] to [0, 1] with

σ(0) = 0, σ(1) = 1,
diσ

dsi
(0) =

diσ

dsi
(1) = 0

for i = 1, 2, 3. Set x1 = 1 − σ(t/T ) and x2 =
σ(t/T ). Then the control

v1(t) =
−σ′(t/T )

T
√

2σ(t/T )(1− σ(t/T ))

v2(t) =
σ′(t/T )

T
√

2σ(t/T )(1− σ(t/T ))

is well defined for t ∈ [0, T ], is smooth and satisfies
vi(0) = vi(T ) = 0, i = 1, 2. Moreover it steers the
average state x from (1, 0, 0) at t = 0 to (0, 1, 0)
at t = T . Notice that when T À T13, T23, we
automatically satisfy the averaging assumptions.

The simulations here below are based on model (2)
with σ a polynomial of degree 7. We have consid-
ered three different cases:
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Fig. 2. Active tunneling from E1 to E2 without
reaching E3 > E1, E2; the standard case.

• the standard case of figure 2: the bi and ei are
closed to one; the ratio of the Bohr frequency
is irrational.

• the resonant case of figure 3: the ratio of the
Bohr frequency is rational ω23 = 2ω13.

• the ill conditioned case of figure 4: the system
is close to a non controllable one; ω23 ≈ ω13.
This case requires larger transition times T .

4. GENERALIZATION

Such control designs can be extended to quantum
oscillators with more than 3 states. Such an exten-
sion relies on non-resonance assumptions, averag-
ing techniques and the fact that the controllable
part of the averaged system is flat.

Assume that H0/~ in (1) is the diagonal matrix
diag(ωk), with ωk ∈ R for k = 1, ..., n, n being
the dimension of the system. Denote by bk,l ∈ C
the entries of H1/~. The goal is to steer the
system from the first pure state (1, 0, ..., 0) to the
last one (0, ..., 0, 1). Assume that exists a path
(l1, ..., lσ) ∈ {1, ..., n}σ of length σ ≥ 2 such that,
lk 6= lr for k 6= r, l1 = 1, lσ = n and for each
r ∈ {1, ..., σ − 1}, blr,lr+1 6= 0. Set

u =
σ−1∑
r=1

ur

(
eı(ωlr−ωlr+1 )t + e−ı(ωlr−ωlr+1 )t

)

where ur are new controls. With ψ = exp(−ıH0t/~)φ,
(1) becomes
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Fig. 3. Active tunneling from E1 to E2 without
reaching E3 > E1, E2; the resonant case E3−
E2 = 2(E3 − E1).
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Fig. 4. Active tunneling from E1 to E2 without
reaching E3 > E1, E2; the ill conditioned case
E3 − E2 ≈ (E3 − E1.



ıφ̇k =
σ−1∑
r=1

n∑
s=1

urbk,sφse
ı(ωk−ωs)t...

...
(
eı(ωlr−ωlr+1 )t + +e−ı(ωlr−ωlr+1 )t

)
.

Assume that |ωk − ωs| = |ωlr − ωlr+1 |, implies
(k, s) = (lr, lr+1) or (s, k) = (lr, lr+1). For ur

small enough we can use the standard rotating
wave approximation (called also secular approx-
imation) and consider the following approximate
average dynamics where the relative phases (the
coherences) between the state components are
lost:

ıφ̇k = 0 for k 6∈{l1, ..., lσ}
ıφ̇l1 = u1bl1,l2φl2

...

ıφ̇lr = urblr,lr−1φlr−1 + ur+1blr,lr+1φlr+1

...

ıφ̇lσ = uσ−1blσ,lσ−1φlσ−1

The components that do not belong to the
transition path remain constant. Set blr,lr+1 =
cr exp(ıθk) with cr > 0 and θr ∈ R. Set vr =
crur and consider the following relative change of
phases:

φl1 = x1

φl2 = ıe−ıθ1x2

...

φlr = (ı)r−1e−ı(θ1+...+θr−1)xr

...

φlσ = (ı)σ−1e−ı(θ1+...+θσ−1)xσ.

In the variables x = (x1, ..., xσ), the approximate
dynamics reads:

ẋ1 = v1x2

ẋ2 = −v1x1 + v2x3

...
ẋσ−1 = −vσ−2xσ−2 + vσ−1xσ

ẋσ−2 = −vσ−1xσ−1.

We consider now only real values for x (remember
that the coherences are lost due to the rotating
wave approximation). Notice that x2

1 + ... + x2
σ

is an invariant (conservation of probability). The
above system lives thus on the unit sphere of
Rσ. It is obviously controllable since it has σ − 1
independent controls (v1, ..., vσ−1). It is trivially
flat with x as flat output.
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