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Abstract: This paper is concerned with motion planing for distributed collector solar fields.
The problem consists in selecting the time profile of the manipulated variable (oil flow) such
that the state (temperature distribution along the field) is driven from one value to another as
specified. The problem is solved by using the methods of flat systems and a change of the
time variable. Two solutions are provided, one directly for the distributed parameter model
and another for a lumped parameter model resulting from space sampling of the distributed
model.
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1. INTRODUCTION.

The objective of distributed collector solar fields con-
sists in collecting energy from sun radiation and stor-
ing it in the thermal form. They are made of curved
mirrors which concentrate direct incident sun light in
a pipe located at their focus. Inside this pipe flows
an oil able to store thermal energy. In very general
terms, the control objective consists in manipulating
the oil flow such that the temperature of the oil at the
outlet of the pipe has some prescribed value. Although
many different strategies for achieving this objective
have been considered in the rich literature devoted to
the subject (see (Silvaet al., 2003) for an up to date
review as well as a more detailed description of the
plant), this is mainly concerned with the regulation
problem and disturbance rejection. Opposite, in this
paper the problem of motion planning is considered,
using the concept of flatness (Fliesset al., 1995; Mar-
tin et al., 2001).

The field is described by the simple hyperbolic partial
differential equation (PDE):

1 Part of this work has been done under the project AMBIDISC,
contract POSI/SRI/36328/2000.

∂T (z, t)
∂t

+ u(t)
∂T (z, t)

∂z
= αR(t) (1)

whereT (z, t) denotes the oil temperature at position
z and at timet, u is the oil velocity (proportional
to flow), taken as the manipulated variable,R is a
known function of solar radiation andα is a parameter
which is assumed to be constant and known. The
length of the pipe is denoted byL. The state of this
distributed parameter system is described at each time
t by the function{T (z, t), 0 ≤ z ≤ L}. The dynamic
planning problem consists (Lynch and Rudolph, 2002)
of finding a control law (in the form of a time profile
for u) driving the state between two states within the
reachable set of the model.

The real solar collector field considered is obviously
not exactly modelled by (1). This equation is only used
to perform motion planing of the dominant dynamics,
which is the subject of this paper. Tackling the actual
plant requires an adaptive feedback controller which is
able to compensate the model mismatches and incor-
porates the motion planing block (Igrejaet al., 2004).

Although for (1) there is probably not a flat output,
it is possible to introduce a time scaling such that the



system becomes flat (Fliesset al., 1995; Guay, 1999;
Respondek, 1998; Vollmer and Raisch, 2003). Such a
system is said orbitally flat. Thus, the solution to the
problem at hand is obtained by introducing a change
of variableτ(t) such that, in the new coordinate space
(z, τ) a flat output̂y is found

ŷ(τ) = h(T (z, τ), u, u̇, . . .) (2)

Actually, for (1) in the transformed timeτ the model
becomes linear (Silva, 2003). Once the flat output
is defined, it is possible to describe all trajectories
T (z, τ), u(τ) satisfying the transformed PDE as a
function of the flat output and its derivatives, in par-
ticular

T (z, τ) = ϕ(ŷ, ˙̂y, ¨̂y, . . .) (3)

u(τ) = χ(ŷ, ˙̂y, ¨̂y, . . .) (4)

Since all linear controllable systems are flat (Martin,
2001), the fact that the transformed system is lin-
ear ensures the existence of a flat output. It should
also be remarked that the system is of distributed pa-
rameter type. Flatness based control design for dis-
tributed parameter systems is a subject of growing
interest (Rouchon, 2001; Rudolphet al., 2003). In
(Lynch, 2002) the problem is considered for quasi-
linear parabolic systems. A major difference with re-
spect to the problem considered in this paper consists
in the fact that, while most works refer to boundary
control, here the manipulated variable is a flow. The
problem considered finds its interest in the fact that,
due to its simplicity it allows a net application of
the methods, thereby forming a paradigm for more
complicated situations. Furthermore, it concerns an
application of great practical interest.

The paper is organized as follows: After formulating
the problem and highlighting the methods for its solu-
tion (this section), the approach of orbital flatness for
getting a flat output for eq.(1) is presented in section
2. The flat output of the transformed model is used in
section 3 to solve the dynamic planning problem for
the PDE model. Section 4 mentions another approach
based on the approximation of the PDE model by a
lumped parameter model. Section 5 provides a numer-
ical example and section 6 draws conclusions.

2. FLAT OUTPUT FOR THE PDE MODEL.

The strategy for obtaining a flat output for (1) is
detailed hereafter.

2.1 Changing the time scale.

According to the approach of orbital flatness, consider
the change of time scale

τ(t) =
∫ t

0

u(σ)dσ ;
dτ

dt
= u(t) (5)

This change of variable introduces a ”natural” time
scale associated to oil flow which, as shown in (Silva,

2003), linearizes the plant model, forcing the char-
acteristic lines of (1) to become straight lines. As-
sumptions should be made (Vollmer, 2003) that the
mapping betweent and τ is bijective, thatτ is a
monotonically function oft and that it goes to infinity
if and only if t goes to infinity. The validity of these as-
sumptions is ensured by natural physical constraints in
the practical problem at hand. Under these hypothesis,
”real” time t can be recovered from the transformed
time τ from

t(τ) =
∫ τ

0

1
u(σ)

dσ (6)

In the time scaleτ eq. (1 becomes

∂T (z, τ)
∂τ

+
∂T (z, τ)

∂z
= f(τ) (7)

where

f(τ)
4
=

αR(t(τ))
u(t(τ))

(8)

is the manipulated variable.

The general solution of (7) is given by

T (z, τ) = φ(τ − z + C) + F (τ) (9)

in which φ(x) is a function to be found depending on
initial conditions, satisfying the homogeneous equa-
tion ((7) with f = 0), F (τ) is a primitive of the
transformed inputf(τ) andC is a constant.

2.2 Boundary conditions – Flat output

Consider the boundary condition given by the gradient
with respect toz, computed atz = L:

∂T (z, τ)
∂z

|z=L = y(τ) (10)

wherey(τ) is a specified function andL is the total
length of the pipe. The boundary condition forz = L
yieldsφ(x):

dφ

dx
|z=L = −y(τ) (11)

Forz = L, a constant, it follows that

dφ(τ)
dτ

= −y(τ) (12)

Hence, integrating and inserting in (9):

T (z, τ) = F (τ)− Y (τ + L− z) + D (13)

whereY (τ) is a primitive ofy(τ) andD is a constant.

The manipulated variablef(τ) is yielded by the
boundary condition forz = 0:

T0 = F (τ)− Y (τ + L) (14)

whereT0 is the inlet oil temperature, assumed con-
stant. Hence

f(τ) = y(τ + L) (15)

and

T (z, τ) = T0 + Y (τ + L)− Y (τ + L− z) (16)



Developingy(τ + L), Y (τ + L) andY (τ + L− z) in
Taylor series aroundτ , yields:

f(τ) =
∞∑

k=0

Lk

k!

(k)
y (τ) (17)

T (z, τ) = T0 +
∞∑

k=1

Lk

k!

(k−1)
y (τ)−

−
∞∑

k=1

(L− z)k

k!

(k−1)
y (τ) (18)

Takingy (gradient of the temperature at the pipe out-
let) as the flat output, the above expressions provide
the algebraic expressions needed for dynamic motion
planning. The trajectories depend only on the knowl-
edge of the inlet temperature and on the successive
derivatives with respect to time of the flat output.

3. DYNAMIC PLANNING FOR THE PDE
MODEL.

Motion planning connects stationary states, for which

dTss(z)
dz

= fss (19)

and hence
Tss(z) = fssz + T0 (20)

where fss is the gradient of the temperature with
respect to space andTss is the temperature along the
pipe in steady state. Planning is made (fig. 1) such
that the temperatures along the pipe moves from the
stationary state

T (z, 0) = C1z + C01 (21)

with

T0 = C01; T (L, 0) = C1L + C01 (22)

to the new stationary state

T (z, τ∗) = C2z + C01 (23)

with
T (L, τ∗) = C2L + C01 (24)

Hence

C1 =
T (L, 0)− T0

L
(25)

C2 =
T (L, τ∗)− T0

L
(26)

The transfer is performed according to a particular
profile as explained below. If a sequence of way points
is specified, this problem may be solved by concate-
nating a corresponding sequence of transitions per-
formed by using the method described here. Further-
more, onceτ = τ∗ is reached, the system is at rest
because the derivatives ofy(τ) vanish, a fact due to
the properties of the transfer profile selected.

The trajectory connecting two stationary states at
timesτ = 0 andτ = τ∗ is defined by an exponential
type Gevrey function of classα (Rudolph, 2003),Φyσ.

This function (fig. 2) provides a profile for changing
the flat output, given by:

y(τ) = C1 + (C2 − C1)Φyσ

( τ

τ∗

)
(27)

in which
Φyσ(0) = 0 τ ≤ 0 (28)

Φyσ(1) = 1 τ ≥ τ∗ (29)

and all the derivatives computed at0 and τ∗ being
zero. This allows a smooth transition between station-
ary states.

The initial and final values of the manipulated variable
are given by

f(0) = y(L) ∼= C1 f(τ∗) = y(τ∗+L) = C2 (30)

Using the plant continuous time model, the trajectories
are given by

T (z, τ) = T0 + D(z, τ) (31)

f(τ) = y(τ + L) (32)

in which

D(z, τ) =
∫ τ

0

(y(σ + L)− y(σ + L− z)) dσ

(33)
and

D(z, 0) = C1z (34)

D(z, τ∗) = C2z (35)

It is remarked that, by making

y(τ) = C1 + (C2 − C1)Φyσ

(
τ − L

τ∗

)
(36)

and
Φyσ(0) = 0 τ ≤ L (37)

Φyσ(1) = 1 τ ≥ τ∗ + L (38)

the advance disappears:

T (z, τ) = T0 +
∫ τ

0

(f(σ)− f(σ − z))dσ (39)

f(τ) = C1 + (C2 − C1)Φfσ

( τ

τ∗

)
(40)

The issue of the convergence of the series (18) is not
addressed in this paper. In similar problems (Lynch,
2002) convergence is ensured by selecting the profile
of the flat output transfer as a Gevrey function, as per-
formed here. Furthermore, there is strong numerical
evidence on the convergence of (18).

4. DYNAMIC PLANNING WITH THE DISCRETE
MODEL.

A different approach for solving the motion plan-
ning problem consists in approximating eq. (7) by
a lumped parameter state space model obtained by
space sampling. This is the approach followed in
(Bar̃aoet al., 2002) to design an adaptive controller
based on feedback linearization for eq. (1). For that
sake, define a state vector formed byN temperatures



Tk measured at pointskh, whereh = L/N . The ap-
proximation of the space derivative in (7) by backward
finite differences yields the linear state space model

ẋ =
1
h

Ax + Bf(τ) (41)

where it is assumed thatT0 = 0,

x = [T1 . . . TN ]T

and

A =




−1 0 . . . 0

1 −1
.. .

...
...

. ..
.. . 0

0 . . . 1 −1




B =




1
1
1
1


 (42)

Since this is a controllable system, the flat output
and the control law can easily be obtained by using
standard methods (Henson and Seborg, 1997) as:

y = Ĉx (43)

Ĉ = B̄W−1 (44)

with
W = [B̄ AB̄ . . . AN−1B̄] (45)

and
B̄ = [0 . . . 0 β]T (46)

andβ 6= 0 an arbitrary constant. Selecting

β =
1

hN
(47)

yields

Ĉ =
1
h

[0 . . . 0 − 1 1] (48)

and hence

y =
1
h

(xN − xN−1) (49)

This confirms the result obtained in the previous sec-
tion on the basis of the PDE model. The flat output
is a backwards finite difference approximation of the
gradient with respect to space of temperature, at the
pipe outlet.

The change of variable leading to normal form is given
by

ζ = Πx (50)

with

ζ =




y
ẏ
...

(N−1)
y




Π =




Ĉ

ĈA
...

ĈAN−1


 (51)

The manipulated variable sequence which transfers
the state is given by

f(τ) =

(N)
y −ĈANx(τ)

ĈAN−1B
(52)

Or, interms of the flat output

f(τ) =

(N)
y −ĈANΠ−1ζ(τ)

ĈAN−1B
(53)
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Fig. 1. Initial and final desired states.

The inclusion of inlet oil temperature can readily be
made by repeating the previous procedure with

x̄ = x− T 0 (54)

whereT0 is a column vector with the dimension ofx
and all its elements equal toT0. It is then possible to
show that this is consistent with the results obtained
directly with the PDE in the previous section.

Furthermore, it is also possible to show that

lim
N→∞

(k)
y = lim

N→∞
(−1)k−1

hk

k∑

i=0

(
k
i

)
(−1)iTN−i =

= (−1)k−1 ∂kT (z, τ)
∂zk

|z=L (55)

lim
N→∞

f = lim
N→∞

N∑

k=0

(
N
k

)
hk

(k)
y = y(τ + L) (56)

which again is consistent with the PDE version.

5. EXAMPLE.

An example of dynamic motion control for a dis-
tributed collector solar field is presented in figs. 1-8.
Hereafter,z andτ are expressed in[m] and tempera-
ture in [oC]. Initial and final desired states are shown
in fig. 1. These are linear functions of space which, as
is easily shown, correspond to the equilibrium states
of (1). Fig. 2 shows the Gevrey function for the flat
output in the transformed time scaleτ . As explained,
it provides the profile along which the flat output is
changed in time. Fig. 4 shows the manipulated vari-
able in transformed time as yielded by the design
procedure, and fig. 3 the corresponding temperatures
for a few points along the pipe. Having solved the
problem in the time scaleτ , the time transform has
to be inverted. The relation between transformed time
and real time is shown in fig. 5, and figs. 7 and 6 cor-
respond to the desired profiles of manipulated variable
and state, obtained by changing the time scale in figs.
3 and 4. Finally, fig. 8 provides an overall view of state
transfer.
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Fig. 2. Gevrey function for the flat output in the
transformed time scale.
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Fig. 3. Motion planning for temperatures inside the
pipe, in the transformed time scale.
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Fig. 4. Motion planning for the oil velocity (manipu-
lated variable) in the transformed time scale.

6. CONCLUSIONS.

The problem of dynamic motion planning for a dis-
tributed collector solar system has been considered
and solved using the methods of orbital flatness. The
method can be applied to other similar systems involv-
ing transport phenomena, such as moisture control.
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Fig. 5. Relation between the real time and the trans-
formed timeτ .
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Fig. 6. Motion planning for temperatures inside the
pipe, in the real time scale
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Fig. 7. Motion planning for the oil velocity in the real
time scale.

Furthermore, due to its simplicity, the problem consid-
ered allows a net application of the methods, thereby
forming a paradigm for more complicated situations.
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