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Abstract

A Lyapounov-based approach for trajectory tracking of the Schrödinger
equation is proposed. In the finite dimensional case, convergence is an-
alyzed: the connection between the controllability of the linear tangent
approximation around the reference trajectory and asymptotic tracking
is studied. Closed-loop simulations of a physical example illustrate the
interest of such feedback laws for large dimensional systems.

Keywords: nonlinear systems, quantum systems, control Lyapounov func-
tion, trajectory tracking.

1 Introduction

Controllability of a finite dimensional quantum system:

ıΨ̇ = (H0 + u(t)H1)Ψ

where H0 and H1 are n × n Hermitian matrices with coefficients in C, can
be studied via the general accessibility criteria proposed in [10] and based on
Lie-Brackets. More specific results might be found in e.g. [8] and [11]. In
particular, the system is controllable if and only if the Lie algebra generated by
the skew-symmetric matrices H0/ı and H1/ı is su(n). Thus controllability of
such systems is well characterized. However, such a characterization does not
provide in general a simple and efficient way for control design.

Optimal control techniques (see, e.g., [5] and the reference herein) provides
a first set of methods. Another set consists in using feedback: see,e.g., [7] for
decoupling techniques, or [12, 2] for Lyapounov based techniques, ....

In this paper we propose a Lyapounov-based technique that can be rele-
vant for trajectory tracking of a system described by a controlled Schrödinger
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equation. The control Lyapounov function is based on the conservation of prob-
ability and thus can be used whatever the dimension of the system is. In the
finite dimensional case, we show that controllability of the first variation around
the reference trajectory is a necessary condition for the global asymptotic con-
vergence. A sufficient condition for asymptotic convergence is also proposed: it
is based on an asymptotically persistence of the controllability of the first varia-
tion around the reference trajectory. The analysis is based on an adaptation to
bilinear quantum systems of the general method proposed in [4] (see also [3]).
Our design method is close but different from the one proposed in [12]: our
feedback design relies on a control Lyapounov function, deals with tracking of
any system trajectory and yields to a convergence characterization related to
the controllability of the first variation system.

The paper is organized as follows. In the second section, we describe the
control design and give the necessary and sufficient conditions for the asymptotic
convergence. Third section is devoted to a short-cut model of large dimension,
classical in the physics literature [1], of a discrete state coupled to a continuum.

When the reference trajectory corresponds to an eigen-state of H0, more
detailed convergence results can be found in [6]. The authors thank Gabriel
Turinici for many interesting discussions and references and also Laurant Praly
for his expertise in LaSalle’s invariance principle.

2 Lyapounov-based tracking control

2.1 The design

We consider here, the control of the equation which governs the time evolution
of a quantum system. To such a system (supposed to be isolated from the
external world for the moment) corresponds an internal Hamiltonian H0 which
is a time independent self-adjoint operator. The dynamic of this system obeys
a time dependent Schrödinger equation(~ = 1):

ι d
dtΨ = H0Ψ,

Ψ|t=0 = Ψ0, ‖Ψ0‖H = 1

where ‖ . ‖H is the norm ofH, the Hilbert space where Ψ the wave function of the
system is defined. The external interaction will be taken as a classical control
field amplitude u(t) ∈ R coupled to the system through a time independent
self-adjoint operator H1:

ι
d

dt
Ψ = (H0 + u(t)H1)Ψ, (1)

Ψ|t=0 = Ψ0.

Note that the wave function Ψ is evolving on the unit sphere of H (conservation
of the probability):

‖Ψ(t)‖H = ‖Ψ0‖H = 1 ∀t ≥ 0.
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Our purpose here, is to do trajectory tracking. Consider a reference trajectory
t 7→ (Ψr(t), ur(t)) of (1):

ı
d

dt
Ψr = (H0 + ur(t)H1) Ψr.

Set ∆Ψ = Ψ−Ψr and ∆u = u− ur. Then

ı
d

dt
∆Ψ = (H0 + ur(t)H1) ∆Ψ + ∆u H1Ψ. (2)

Take the following time varying function V (∆Ψ):

V (Ψ, t) = 〈∆Ψ | ∆Ψ〉 (3)

where 〈.|.〉 denotes the hermitian product in H. V is positive for all ∆Ψ ∈ H
and vanishes when ∆Ψ = 0. Simple computations show that V is a control
Lyapounov function:

d

dt
V = −2∆u=(〈H1Ψ(t) | Ψr〉) (4)

where = denotes the imaginary part. By choosing ∆u with the same sign as
=(〈H1Ψ(t) | Ψr〉), V will decrease along the trajectories. Any time varying
feedback of the form

u = ur + K (t,=(〈H1Ψ(t) | Ψr〉)) (5)

where K is a smooth function such that for all t > 0 and s ∈ R,

sK(t, s) ≥ 0, K(t, s) = 0 ⇔ s = 0,

ensures dV/dt ≤ 0: with such feedback, the distance between the systems tra-
jectory Ψ(t) and the reference trajectory Ψr(t) decreases.

As a particular case, one may consider the reference trajectory, Ψr = e−ıλtφ
and ur = 0, where φ is an eigen-state of the free Hamiltonian H0 corresponding
to the eigen-value λ ∈ R. Trivially (Ψr = e−ıλtφ, ur = 0) is a trajectory of the
system (1). Using the Lyapounov based method for this case, we can try to
steer the initial state Ψ0 to the pure state corresponding to the eigen-state φ of
H0.

Convergence of the method for this special case and when the system is of
finite dimension, has been studied in [6]. Here, the wave function is an element
of Cn and H0 and H1 are n × n Hermitian matrices. It has been shown when
the eigenvalues of H0 are distinct, that the ω-limit set is the intersection of the
unit sphere of Cn and the vector space spanned by φ and the eigen-vectors ϕ
of H0 such that 〈H1φ | ϕ〉 = 0. It has also been proved that the trajectories of
such a closed-loop system converge to span (φ), if and only if the linear tangent
system around φ on the unit sphere of Cn is controllable. In the next subsection
the same convergence analysis is done for an arbitrary reference trajectory.
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2.2 Convergence analysis

First result of this section may be presented as:

Theorem 1. Take ı d
dtΨ = (H0 + uH1)Ψ with H0 and H1, n × n Hermitian

matrices and u a real control of dimension 1 defined as

u = ur + c =(〈H1Ψ(t)|Ψr〉)
where [0, +∞) 3 t 7→ (Ψr(t), ur(t)) is a reference trajectory of the system which
is analytic with respect to t:

ı
d

dt
Ψr = (H0 + urH1)Ψr, |Ψr(t)| = 1,

and where c is positive real constant. Then A1 implies A2 where:
A1: All the trajectories of the closed-loop system with any initial condition
converge to the reference trajectory (Ψr, ur) as t → +∞.
A2: the linear tangent system around Ψr:

ı
d

dt
δΨ = (H0 + urH1)δΨ + δuH1Ψr

seen as a system defined on the tangent space to the unit sphere of Cn at Ψr(t),
Tn(t) = {v ∈ Cn | <(〈v|Ψr(t)〉) = 0}, is controllable.

A multi-input version can be performed without difficulties.
Proof of theorem 1:
Let’s denote (< and = stand for real part and imaginary part, respectively):

Ψ̃ = (<(Ψ),=(Ψ))T , Ψ̃r = (<(Ψr),=(Ψr))T , ∆̃Ψ = Ψ̃− Ψ̃r

G0 =
( =(H0) <(H0)
−<(H0) =(H0)

)
, G1 =

( =(H1) <(H1)
−<(H1) =(H1)

)
.

G0 and G1 are thus, real anti-Hermitian matrices. Equation (2) reads:

d

dt
∆̃Ψ = (G0 + ur(t)G1)∆̃Ψ + ∆u G1Ψ̃, (6)

where,
∆u = c =(〈H1Ψ(t) | Ψr〉) = c 〈G1∆̃Ψ(t) | Ψ̃r〉R2n ,

with 〈. | .〉R2n the Euclidean product in R2n. So from now on, we are simply
dealing with real systems.
Let’s note A(t) = G0 + ur(t) G1 and b(t) = G1Ψ̃r(t). Then the linear tangent
system around the reference trajectory (Ψ̃r, ur) reads:

d

dt
δ̃Ψ = A(t)δ̃Ψ + δu b(t). (7)

where δ̃Ψ evolves in the tangent space to the unit sphere of R2n and thus, δ̃Ψ(t)
is an element of T̃2n−1(t) = {v ∈ R2n | 〈v | Ψ̃r(t)〉R2n = 0}, ∀t.
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As ur and Ψ̃r are analytic functions of t, so are A(t) and b(t). Thus, using
the generalized Kalman criteria for analytic time-dependent linear systems [9],
controllability of (7) is equivalent to:

span

([
A(t)− d

dt

]i

b(t); i ∈ N
)

= T̃2n−1(t) ∀t ≥ 0, (8)

Now let prove that not(A2) ⇒ not(A1): if the linear tangent system is not
controllable, there exists a vector v ∈ R2n, v 6= 0, and t0 > 0 such that:

〈v | Ψ̃r(t0)〉R2n = 0
〈v | b(t0)〉R2n = 0

〈v | (A(t0)− d

dt
)b(t0)〉R2n = 0

〈v | (A(t0)− d

dt
)2b(t0)〉R2n = 0

...

One can always assume that ‖v‖ = 1. Let us prove that the solution χ of

d

dt
χ = (G0 + urG1)χ χ|t=t0 = v.

corresponds to a closed-loop trajectory. The map

t 7→ 〈G1χ | Ψ̃r〉R2n

is analytic and all its derivatives at t = t0 vanish. Thus it is identically zero
and the closed-loop control u coincides with ur. Since ‖χ‖ = 1 and

χ(t) ⊥ Ψ̃r(t) ∀t ≥ t0,

this closed-loop trajectory does not converge to Ψr. ¤
In general A2 without any assumption regarding the behavior of the con-

trollability when t → +∞, does not imply A1: we can not perform a direct
analysis using the LaSalle’s invariance principle when the reference trajectory
is not stationary nor periodic.

Theorem 2. Take the same system as in theorem 1 with the same reference
trajectory. Assume (with the same notations as in the proof of theorem 1) that:
A3:

∀i ∈ N, sup
t≥0

| u(i)
r (t) |< +∞.

A4: (”asymptotic controllability of the first variation”) There exists a sequence
{tk}∞k=1 with tk →∞ such that:

∀i ∈ N, (A(t)− d

dt
)i b(t)|t=tk

→ v∞i ∈ R2n when k →∞
Ψ̃r(tk) → Ψ̃∞r ∈ R2n when k →∞ (9)
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and that:
span

(
{Ψ̃∞r } ∪ {v∞i }i∈N

)
= R2n. (10)

Then the trajectories of the closed-loop system with any initial condition con-
verge to the reference trajectory (Ψr, ur) as t → +∞.

A3 implies up to extraction of a subsequence (in fact one has to use a
diagonal extraction method) that there exists a sequence {tk}∞k=1 with tk →∞
such that (9) is satisfied. But A3 together with A2 do not imply A4 in general.
Although by assumption A2 we have

span
(
{Ψ̃r(tk)} ∪ {(A(tk)− d

dt
)i b(tk)}i∈N

)
= R2n for k ∈ N (11)

problems appear at infinity. Passing to the limit when k →∞ the vectors may
tend to be co-linear asymptotically and so we eventually will lose the prop-
erty (10) of A4. So we are obliged in general to add hypothesis A4 to avoid this
situation. Now, let’s prove the theorem. This proof is based on an iterative use
of Barbalat’s lemma recalled below:

Lemma 1. Assume f(t) : R→ R to be uniformly continuous and suppose that:
∫ ∞

0

f(s) ds = C < ∞

then f(t) → 0 when t →∞.

Proof of theorem 2:
As V is definite positive and decreasing on the trajectories of the system it

converges toward some constant c1 < ∞ as t →∞. Let’s define:

f1(t) =
dV

dt
= −c 〈∆̃Ψ(t) | b(t)〉2R2n

Thus: ∫ ∞

0

f1(s) ds = lim
t→∞

V (t)− V (0) = c1 − V (0) < ∞

Trivially f1(t) is a regular function of t. Moreover using the fact that the
functions Ψ̃(t) and Ψ̃r(t) evolve on the unit sphere of R2n and that the function
ur(t) is a bounded function of t we have:

| d

dt
f1(t) |< c2

for a constant c2 < ∞, which implies uniform continuousness of f1(t). So
Barbalat’s lemma yields to:

f1(t) → 0 when t →∞
and thus:

〈∆̃Ψ(t) | b(t)〉R2n → 0 when t →∞
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Now let’s define:

f2(t) =
d

dt
〈∆̃Ψ(t) | b(t)〉R2n = 〈∆̃Ψ(t) | (

d

dt
−A(t))b(t)〉R2n

We have: ∫ ∞

0

f2(s) ds = lim
t→∞

f1(t)− f1(0) = −f1(0) < ∞

Similarly as Ψ̃ and Ψ̃r evolve on the unit sphere of R2n and ur(t) and its
derivative are bounded we have:

| d

dt
f2(t) |< c3

and so we can still apply Barbalat’s lemma and so:

f2(t) → 0 when t →∞

Let’s define for all i ∈ N:

fi(t) = 〈∆̃Ψ(t) | (
d

dt
−A(t))i−1b(t)〉R2n

A simple computation shows that:

d

dt
fi(t) = fi+1(t) (12)

As ∆̃Ψ and Ψ̃r are bounded in R2n and as all the derivatives of ur are bounded,
the functions fi(t) for t ∈ N have bounded derivatives and so they are uniformly
continuous. Thus using (12) and Barbalat’s lemma:

fi(t) → 0 implies fi+1(t) → 0

So:

〈∆̃Ψ(t) | (
d

dt
−A(t))i−1b(t)〉R2n → 0 ∀i ∈ N when t →∞. (13)

Let’s suppose that the trajectory of the system does not converge toward the
reference trajectory; i.e. ‖∆̃Ψ‖(t) does not converge to 0. But, as ‖∆̃Ψ‖(t) is
a decreasing function of t this implies that there exists a constant α > 0 such
that ‖∆̃Ψ‖(t) > α for all t > 0. Now, take the sequence {tk} introduced in A4.
∆̃Ψ(t) is bounded in R2n and so we may extract a subsequence of {tk} (which
for simplicity sakes will still numerated as {tk}∞k=1) such that ∆̃Ψ(tk) → ∆̃Ψ∞
when k →∞. Trivially we must have ‖∆̃Ψ∞‖ ≥ α > 0.

Now passing to the limit in (13) when n →∞, we obtain:

〈∆̃Ψ∞ | v∞i 〉R2n = 0 ∀i ∈ N.
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Thus using A4 this is equivalent to ∆̃Ψ∞ = Ψ̃∞ − Ψ̃∞r = βΨ̃∞r , where β ∈ R is
a real constant. As ‖∆̃Ψ∞‖ ≥ 0 and ‖Ψ̃∞r ‖ = 1 we deduce that |β| ≥ α. This
implies that:

‖Ψ̃∞‖ = |(1 + β)|‖Ψ̃∞r ‖ = |1 + β| 6= 1

which contradicts the fact that Ψ̃∞ is the limit of Ψ̃(tk) ∈ S2n−1. ¤

Remark 1. When the reference trajectory (Ψr, ur) is periodic, assumption A2

implies A3 and A4. Thus by theorem 2 we have the asymptotic convergence.

3 A discrete state coupled to a quasi-continuum
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Figure 1: the first plot shows the projection of Ψ(t) on the ”discrete state” with
the feedback (14) and the second one gives the control(laser) field u.

This classical model is a finite order approximation for the coupling of a
discrete state with a continuum described by set of n-tightened discrete states
[1]. In its simplest version, the matrices H0 and H1 read

H0 =




−1 0 . . . 0
0 ε 0

0 2ε 0
...

...
. . . 0

0 . . . 0 nε




, H1 =




0 1 . . . 1
1 0 0

0 0 0
...

...
. . . 0

1 . . . 0 0




where 0 < ε ¿ 1. As a first experience, let’s suppose a particle trapped in
the discrete state of energy −1. Using the Fermi’s golden rule, one does not
have much problem to make the particle leaving this stationary state toward
the continuous part of the spectrum. Indeed, it suffices to use a laser field
having for frequency ω such that ~ω ≥ 1. It is much more difficult to trap our
particle in the first state of energy −1 corresponding to φ0. In coordinates, Ψ
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corresponds to the vector (Ψ1, ..., Ψn+1) and φ0 to (1, 0, ..., 0). Since (? means
complex conjugate)

=(〈H1Ψ|Φ0(t)〉) = =
(

n∑

i=1

Ψ?
i+1 exp(ιt)

)

we choose the following time varying feedback

u = c =
(

n∑

i=1

Ψ?
i+1 exp(ιt)

)
(14)

where c is a positive constant. Simulations of figure 1 correspond to n = 20, ε =
0.1, and c = 0.05. The initial state for Ψ is associated to a Gaussian distributed
population centered around energy nε/2 with arbitrary phases (figure 2).
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Figure 2: This figure shows the distribution of populations for the initial state
Ψ0.

It appears that our Lyapounov based technics is quite efficient for this case
since the linear tangent system around φ on the unit sphere of Cn is controllable.
Furthermore, the same method may be used for any number of states in the
quasi-continuum part and the energy steps ε of very small sizes. This is an
approximative model for a system of one particle in a one dimensional potential
well shown by V (x); here, the depth and the height of the well are chosen such
that the Hamiltonian H0 = − 1

24+ V (x) has just one discrete state. The next
section has for goal to test numerically such Lyapounov feedback on a more
realistic and infinite dimensional model.

4 Conclusion

In section 2.2 we have shown, in the finite dimensional case, that controllabil-
ity of the first variation around the reference trajectory is strongly related to
asymptotic convergence. A natural question is the following: is such conver-
gence characterization via the controllability of the linear tangent system still
true in the infinite dimensional case.
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