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An Intrinsic Observer for a Class of
Lagrangian Systems
Nasradine Aghannan and Pierre Rouchon

Abstract—We propose a new design method of asymptotic
observers for a class of nonlinear mechanical systems: Lagrangian
systems with configuration (position) measurements. Our main
contribution is to introduce a state (position and velocity) observer
that is invariant under any changes of the configuration coordi-
nates. The observer dynamics equations, as the Euler–Lagrange
equations, are intrinsic. The design method uses the Riemannian
structure defined by the kinetic energy on the configuration mani-
fold. The local convergence is proved by showing that the Jacobian
of the observer dynamics is negative definite (contraction) for a
particular metric defined on the state–space, a metric derived
from the kinetic energy and the observer gains. From a practical
point of view, such intrinsic observers can be approximated,
when the estimated configuration is close to the true one, by an
explicit set of differential equations involving the Riemannian
curvature tensor. These equations can be automatically generated
via symbolic differentiations of the metric and potential up to
order two. Numerical simulations for the ball and beam system, an
example where the scalar curvature is always negative, show the
effectiveness of such approximation when the measured positions
are noisy or include high frequency neglected dynamics.

Index Terms—Asymptotic observers, contraction, intrinsic
equations, Lagrangian systems, mechanical systems, Riemannian
metric.

I. INTRODUCTION

OBSERVERS for nonlinear systems were much studied in
the last decade, and real advances were made during this

period (see, e.g., [27] and [16]). For the control of mechanical
systems, symmetries play an important role (see, e.g., [25], [6],
and [21]). In this paper, we show how to exploit “symmetries”
(as in [1], where chemical systems are considered) in the de-
sign of asymptotic observers for a class of nonlinear systems:
Lagrangian mechanical systems with position measurements.
The Euler–Lagrange equations are indeed intrinsic: their ex-
pression does not depend on the choice of a particular set of
configuration coordinates. That represents, roughly speaking,
the “symmetry” we are dealing with. Such an invariance has
been fully used in optimal control (see, e.g., [33]) and in the de-
sign of intrinsic controllers for fully actuated mechanical sys-
tems (see, e.g., [9]). Preserving such invariance is the guideline
of the observer design presented in this paper. As in [9], our
method uses the Riemannian structure and tools (geodesic dis-
tance, covariant derivation, curvature; see [15] and [32]) defined
by the kinetic energy. Some important work concerning control
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theory for mechanical systems already use Riemannian geom-
etry. This includes work on controllability [23], [10], motion
planning [10]–[12], optimal control [28], [22], and underactu-
ated system stabilization [34], [7], [13], [4].

The local convergence is based on two key points.

• Intrinsic computations using covariant derivatives for the
first variation of the observer dynamics. These computa-
tions are closely related to the Jacobi equation where cur-
vature terms appear naturally.

• Contraction behavior [24], [18] for a well chosen metric
on the phase space. This metric is an extension, on the
state–space, of the Riemannian structure defined on the
configuration space only. Such extension depends on the
observer gains. This metric is closely related to the Sasaki
metric [30], [31].

To explain the main idea, let us give a short summary when
the dynamics corresponds to geodesics (i.e., no potential and
no exterior forces).

For an Euclidian configuration space (no curvature) the
geodesic equation reads where are Euclidian coordi-
nates. In general, the equation reads where is the
Riemannian connection. We assume that the configurationis
measured. We want to construct a noiseless estimationand

of the position and velocity . When , this is
very simple. It is sufficient to take the following Luenberger
observer:

with and constant and positive to ensure exponential con-
vergence. For , we replace the error injection term
by an intrinsic error term: the gradient , where
is the half of the square of the geodesic distance betweenand
. So, we are led to guess that a good candidate for

could be the following observer:

It is invariant with respect to a change of coordinates on. The
observer is well-defined for close enough to. Since
belongs to the tangent space atand since the vector is de-
fined along the curve , its covariant derivative
is geometrically well-defined along this curve. Nevertheless,
it does not ensure convergence for anyand positive. It is
known that negative curvature implies exponential instability of
the geodesic flow (see, e.g., Anosov ergodic results on compact
manifold with strictly negative curvature [3]). Thus, one has at
least to compensate via clever injection of error terms for such
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intrinsic instablity. In fact, our convergent observer slightly dif-
fers from the previous one via a curvature term, namely

where is the Riemann curvature tensor. Since
is linear versus and quadratic versus, we have in fact
an automatic gain scheduling with respect to the velocity. Such
gains will compensate the divergence or oscillations due to cur-
vature effect (gyroscopic terms).

We prove here by using contraction techniques [24], [18] that,
for any positive gains and , such an observer is exponentially
convergent locally around any geodesic . Indeed, when

is close to , the first variation of the observer dynamics reads

where . It corresponds exactly to the classical error
dynamics in the Euclidian case ( ):

where and . When , the covariant
derivation coincides with the standard operator in the
Euclidian coordinates. The addition of potential and known ex-
terior forces changes the design slightly and requires the use of
parallel transport [see (2)].

The paper is organized as follows. Section II is devoted to no-
tations and definitions. In Section III, we describe the design of
the intrinsic observer in the general case, and we illustrate the
invariance on a tutorial example with exterior forces. In Sec-
tion IV, we prove the local exponential stability (contraction)
around any trajectory (local convergence). We illustrate, on the
ball and beam system, the effectiveness of the method with a
numerical simulation in Appendix I. Appendix II is devoted to
contraction properties.

II. L AGRANGIAN SYSTEM AND RIEMANNIAN METRIC

We consider a Lagrangian mechanical system with an
-dimensional configuration manifold equipped with a

Riemannian metric; see, e.g., [15]. The local coordinates of
will be denoted by . The Lagrangian is given

by

where the positive–definite symmetric matrix
defines the metric (inertia matrix)

and the scalar function the potential energy. The Euler–
Lagrange equations are, in the local coordinates

where is a known function of
and , that corresponds, in general, to some known inputs. The
Riemannian formulation of the Euler–Lagrange equations is

where , and are, respectively, the Levi–Civita
connection, the gradient operator associated to the Riemannian
structure and the inverse of the metric matrix . As the po-
sition is measured, the source term is a known time-
varying vector-field on . In local coordinates, this formula-
tion reads:

(1)

where the connection terms (Christoffel symbols) are given
by

with the entries of . We use here the summation con-
vention: when an index appears both as a subscript and a super-
script, the summation according to this index is to be taken.

Recall that is the covariant derivative of the vector field
along . In local coordinates, it reads

where means coordinate.

III. I NTRINSIC OBSERVER

In this section, we define an intrinsic observer for the
Lagrangian systems described in the previous section. As the
Euler–Lagrange equations are coordinate-free (or intrinsic), our
guideline for the state observer design consists in preserving
this property. After defining the observer dynamics, we will
check that its expression is intrinsic and illustrate it with a
simple example. The observer convergence will be considered
in the next section.

A. Design

Assume that we measure the position (i.e., thes) and that
we do not measure the velocity (i.e., the ). Denote by
and the estimations of the positionand the velocity . They
are defined by the following coordinate-free dynamics:

that also reads

(2)

where the following holds true.

• and are positive design parameters.
• is half of the square of the geodesic distance be-

tween and . This function is well defined and regular
when and are close enough.
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Fig. 1. Parallel transport of the source termS(q; t) from the tangent space at
q to the tangent space atq̂, along the geodesic
.

• is the parallel transport from to along the
geodesic betweenand . It is a linear isometry from the
tangent space atto the tangent space at. As for , this
operator is well defined for and close enough.

• is the curvature tensor.
In local coordinates , the observer dynamics reads

This observer does not depend on the choice of a particular set of
coordinates for : the connection , the function , the operator

and the tensor are intrinsic objects attached to the
Riemannian structure on .

Fig. 1 illustrates the observer dynamics (2). As the configu-
ration space has a Riemannian structure, we cannot compare
vectors living in tangent spaces at different points on, as it is
usually done in Euclidian spaces. Indeed, we have to take into
account the curvature introduced by the metric: the output in-
jection term belongs to the tangent space ,
whereas belongs to and cannot be combined to

. We also replace the often used error term
by to deal with the curvature since it gives the di-
rection by which can be “joined” from by taking the shortest
path. The term can be interpreted as a spring
term if we consider its counterpart in the Euclidian case as
described in the introduction. The term
is also a spring term, with a stiffness quadratic in the velocity,
that represents the minimum compensation term needed to
eliminate the possible curvature instability effect (see [3]). In
Fig. 1, we represent the operation of parallel transport along
the geodesic that joins the system positionand the estimate
position on the manifold . We can see for instance that the
angle between and is the same as that
between their parallel transported counterparts
and .

B. Invariance on a Tutorial Example

This is just to show that once the gainsand are chosen,
(2) defines a unique observer independent of the choice of a
particular set of coordinates on the configuration manifold.

1) Dynamics in -Coordinate: We consider the one degree
of freedom mechanical system whose Lagrangian is given by

which represents the dynamics of the standard oscillator with
: . For this system, as the configuration space is

Euclidian, the intrinsic observer equation (2) reads

(3)

If the gains and are chosen positive, we have convergence
of and to and .

2) Dynamics in -Coordinate: Consider now a change of
coordinate . The Lagrangian becomes

and the system dynamics then writes

for

We are now going to compute the observer (2)

(4)

The metric is given by with . The
Christoffel symbol is . The equation for the
geodesic joining and is

We have then and . So, the geodesic
distance between and is

where stands for . The term is then given by

and its gradient by

The parallel transport equation along the geodesic
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joining at and at reads

for which the solution is given by

Then, we have

So, (2) in the coordinates gives

Notice that curvature is zero here. This vanishing is independent
of the choice of configuration coordinates, whereas it is false for
the Christoffel symbols.

In this set of coordinates, we see that this observer expression
is not so intuitive: the error term is nonlinear and is
different from the often used error term . The convergence
is clear since it can be checked that it is just the expression of (3)
in coordinates. When the metriccomponent is ,
we have indeed

So, the observer dynamics (3) and (4) are two expressions of
the same observer, written in different configuration coordinate
sets.

C. First-Order Approximation

In general, we have no explicit formula for and
once the metric is given. Nevertheless, the curvature terms are
explicit

where are the components of the curvature tensor

However, for close to , and admits the following
approximations:

for any belonging to the tangent space atto . The first
equality comes from the definition of the geodesic distance. The
second one is derived from the definition of the gradient for a
scalar function. And the last one is derived from the expression

of the parallel transport (see [32], [3] for more precisions). Re-
mark that the “ -terms” will retain their forms when coordi-
nates are changed in a differentiable manner.

Thus, we can construct an explicit approximation of (2) up
to order 2. In local coordinates, this gives the following second-
order approximate observer that can be integrated numerically:

(5)

In the term , it is important to consider
instead of since it is one of the terms of the covariant
derivative of with respect to . Nevertheless in the terms

and , we could
have used and , since this represents a second
order perturbation. The value of (5) relies on two facts

• the gains are explicit and can be computed via the inertia
matrix and its derivatives up to order 2;

• we will prove in the sequel the local convergence of (5) as
soon as and are strictly positive.

IV. OBSERVERCONVERGENCE

The observer dynamics (2) is locally ( ) contracting in
the sense of [24], [18]: some insight on this property is given
in Appendix II. As the system dynamics (1) is a solution of (2),
this will give the local convergence.

More precisely, we are going to demonstrate the following
result.

Theorem 1: Take (1) defining a dynamical system on the tan-
gent bundle . Consider a compact subsetof and two
positive parameters and (the observer gains).

Then, there exist (depending only on , and ),
and a Riemannian metric on (depending only on

and ) such that, for any solution of (1) remaining in

with , the solution of (2),
with satisfying , is defined for all

and, moreover,

Here is the geodesic distance associated to the metricon
.

The metric is, in fact, a modified version of the Sasaki
metric [30], i.e., the lift of the kinetic energy metric on .
The observer gains and are involved in the definition of

in order to get the convergence estimation and the fact that,
locally, the geodesic distance is a decreasing
function of .

Proof: The demonstration follows in two steps.

• For each , we compute intrinsically (as for the second
variation of geodesic) the first variation with respect to
and of (2). If we denote by a point
defined in a neighborhood of , we are looking for
the intrinsic formulation of the -dynamics.
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• We will deduce from this intrinsic formulation, a metric
on the tangent bundle for which the observer dy-

namics (2) is a contraction forclose to .

A. First Step: First Variation of the Observer Dynamics

We will just mimic here the method that has been used to
derive the Jacobi equation [15], that is to say the first variation of
the geodesic equation . All the calculations presented
here are done in a particular set of coordinates, but the final
results are given in an intrinsic formulation. As the first variation

is not an intrinsic term, we are going first to define its intrinsic
equivalent that belongs to the tangent space atto . Then,
we are going to determine the dynamics of the intrinsic vectors

associated to .
1) Intrinsic Vectors and : We introduce another set of

coordinates (an “intrinsic” one)

(6)

One can check that the and also the correspond to the
coordinates of two vectorsand belonging to the same linear
space, the tangent space atto . Indeed, we have up to
second-order terms

• , for some small real with a geodesic
that joins the points and ;

• .
The tangent vectorand are defined along the curve .
Thus, we can consider their covariant derivatives and
still belonging to the tangent space atto .

Notice that the first variation of (2) gives

(7)

2) Computation of : In local coordinates we have, for

Then, we get

with

3) Computation of : The covariant derivative of is
given by

(8)

According to (7) and (6), we have

So, when we consider only the terms of first order inand

Then, we put together the two previous equations

So, we get for

which gives the following “semi-intrinsic” expression
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where

and

For the curvature term, we use “ ” instead of since this
is not a true covariant derivation with respect to: the vector

is only defined along the curve .
Thus, we cannot define properly its covariant derivative in a
direction that is not colinear to.

Let us express now the “ ” term in an intrinsic way. Since

standard computations provide the following intrinsic expres-
sion:

where is the covariant derivative of the curvature tensor
along .

Finally, we have the following intrinsic formula for the first
variation of (2) with respect to and :

(9)
where corresponds to the variation of. When ,
and when we set to zero the curvature terms in (2), we recover
the classical Jacobi equation:

where .
4) First Variation When Is Close to : Assume that is

close to (we do not assume here thatis close to ). Then, the
aforementioned first variation becomes much simpler since up
to order 1 in

Furthermore

As

for close to , we then have

up to terms of order 1 in . So

Thus, for , (9) becomes

(10)

In a certain sense, we recover the Euclidian case with the clas-
sical Luenberger observer described in the introduction. This is
due to the cancellation of the curvature terms.

B. Second Step: Contraction Analysis

Let us prove first that (10) implies that the dynamics is strictly
contracting when . Elementary continuity arguments show
that contraction remains forclose to . This explains the con-
straint on the initial condition for the observer dynamics. To
speak of contraction, we first need to define a metric on the ob-
server state space, i.e., on the tangent bundle.

1) Riemannian Structure on the Tangent Bundle : Since
the observer gains and are positive, the matrix

is Hurwitz and there exists a symmetric positive–definite matrix
such that

Set

and consider the quantity

(11)

where is the scalar product associated to the metricde-
duced from the kinetic energy. This quantity endows with a
metric, since is positive definite: in local coordinates ,
the length of the small vector tangent to at
is

In the local coordinates , the metric is a matrix
with entries function of and . Using notation , we



942 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 6, JUNE 2003

Fig. 2. Contraction tube.

denote by the matrix defining this metric on . This
is just a slightly modified version of the Sasaki metric on
(see [30] and [31]); we get the Sasaki metric when

.
2) Convergence Analysis:When and satisfy (10), simple

computations give

Thus, there exists such that

This means that the observer dynamics (2) is a strict contraction
with respect to the metric when whatever is.

Otherwise stated, denote by the observer (2).
By construction corresponds to the true dy-
namics (1). The inequality just means that we
have the following matrix inequality:

(12)

for and , , and arbitrary. is
positive definite and the dependence of (12) versusand is
smooth. Thus, for any , there exists such that,
for any in the compact and any satisfying
, we have

Fig. 3. Ball and beam system.

Assume that is close enough to , i.e.,
. According to Appendix II, we

have for small

Thus, as displayed in Fig. 2, for any time ,
, and remains in a region of con-

traction. Moreover, we have an exponential convergence with
. The proof of Theorem 1 is completed.

V. CONCLUSION

Simulations tests (see, e.g., the ball and beam example treated
in Appendix I) tend to indicate that the region of convergence
of our intrinsic observer (2) is quite large. This could be related
to the fact that we have contraction when the estimated position

is close to the actual position, even if the velocity estima-
tion error is large. In our convergence analysis, we do not have
fully exploited such nonlocal property. It appears that, com-
bined with some additional structure, say, e.g.,is a Lie-group
equipped with a right-invariant metric, one can prove stronger
convergence results. Observer (2) is expressed without coordi-
nates and thus could be extended, at least formally, to infinite
dimensional mechanical systems such as a perfect incompress-
ible fluid where the curvature tensor defined in [3] and [2] is
explicitly given in [29].

APPENDIX I
BALL AND BEAM SYSTEM

We have chosen the well-known ball and beam system [19] as
an illustration since the scalar curvature of the metric given by
its inertia matrix is strictly negative. The simulation results show
then the interest of the invariant asymptotic observer: we can
indeed choose small gains that reject noise while still cancelling
the effects of the negative curvature.

A. System Dynamics

We consider a reduced ball and beam system, as shown in
Fig. 3, with the distance of the ball to the center of the beam,
and the angle of the beam with the horizontal. A torqueis
applied to control the system.

The kinetic energy is given by

and the potential of the gravitation force by
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We get then the following normalized dynamics:

(13)

B. Invariant Observer

1) Metric Elements:The matrix of components of the
metric defined by the kinetic energy in these coordinates is

The nonzero Christoffel symbols are

The nonzero components of the Riemannian curvature tensor
are

The scalar curvature is then

The ball and beam system has a strictly negative scalar curva-
ture.

2) Observer Expression:We consider the approximate in-
trinsic observer (5)

(14)

C. Numerical Simulation

We have chosen for the simulation presented in the Fig. 4, a
control that maintains the ball in oscillation near the unstable
equilibrium point :

. As remains small, the scalar curvature keeps a
value close to 2. Furthermore, we have added high-frequency
signals and , respectively, to the measurementsand
to simulate sensors imperfections and neglected high-frequency
dynamics.

To show the importance of the parallel transport and the cur-
vature compensation, we have compared the invariant observer
(14), to the following one:

(15)

This observer is a standard one with nonlinear input injection
for and . It is proved to be convergent for large enough gain
assuming bounded velocities. This observer is very efficient for
low velocities where gyroscopic terms are not too big.

The initial conditions for the simulation are

Real System Observers (14) and (15)

If the gains and are chosen large enough, the observers
(14) and (15) are both convergent. Nevertheless, the high fre-
quencies and are not filtered.

For the simulation presented in Fig. 4, we have taken the fol-
lowing values for the gains:

since in absolute value, the scalar curvature maximum is 2.
In Fig. 4, the pictures c) and d) are copies of the pictures a)

and b), where the real system positionand are presented
without the high frequency signals and introduced by the
sensors. We can see that the observer (15) does not converge:
the parameter is not large enough to compensate the effects
of the negative curvature. However, the invariant observer (14)
is convergent. It shows the importance of the curvature term,
quadratic in velocities, in the observer expression.

APPENDIX II
CONTRACTION INTERPRETATION

The contraction [24], [18] for a system, with the dynamics
, can be understood as the exponential decay, with

time, of the length of any segment of initial conditions trans-
ported by the flow.

Definition 1 (Strict Contraction):Let be a reg-
ular ( for instance) dynamical system defined on some smooth
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Fig. 4. Ball and beam observer simulation: Real= real system (13), int obs=
intrinsic observer (14), simple= observer (15). a)r. b)�. c)r. d)�. e)d(r)=dt.
f) d(�)=dt.

manifold . Let be a metric on . Let be a set in
. The dynamics is said to be a strict contraction in with

respect to the metric, if the symmetric part of its Jacobian is
negative definite, that is to say, if there exists some such
that, in local coordinates on , we have for any

We have the following result that justifies such definition and
terminology.

Theorem 2: Let be a smooth dynamical system
defined on a smooth manifold . Let be a metric on .
Let be the flow associated to

with

Consider two points and in and a geodesic joining
and . If

• is a strict contraction on some subset , with
the constant defined in the definition 1;

• belongs to for all ; and for all

then

where is the geodesic distance associated to the metric.

Proof: The proof is inspired by computations of L. Praly.
Let be the length of the curve with
respect to the metric

We have

As

we get

with

and

Since is a contraction on , there exists such that

We can then write the following inequality for the derivative
:

which leads to

Since and
(indeed is a geodesic that joins the two pointsand ), the
result is proved.
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