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An Intrinsic Observer for a Class of
Lagrangian Systems

Nasradine Aghannan and Pierre Rouchon

Abstract—We propose a new design method of asymptotic theory for mechanical systems already use Riemannian geom-
observers for a class of nonlinear mechanical systems: Lagrangian etry. This includes work on controllability [23], [10], motion

syste_ms_wn_h co_nflguratlon (posmon)_r_neasurement_s. Our main planning [10]-[12], optimal control [28], [22], and underactu-
contribution is to introduce a state (position and velocity) observer o

that is invariant under any changes of the configuration coordi- ated system stabilization [34]' (71, [13], [4]. .

nates. The observer dynamics equations, as the Euler-Lagrange T he local convergence is based on two key points.
equations, are intrinsic. The design method uses the Riemannian  « |ntrinsic computations using covariant derivatives for the
structure defined by the kinetic energy on the configuration mani- first variation of the observer dynamics. These computa-

fold. The local convergence is proved by showing that the Jacobian fi | | lated to the J bi fi h
of the observer dynamics is negative definite (contraction) for a IONS are CIOSEly Telaled 10 e Jacobl equation Where cur=

particular metric defined on the state—space, a metric derived vature terms appear naturally. .
from the kinetic energy and the observer gains. From a practical » Contraction behavior [24], [18] for a well chosen metric
point of view, such intrinsic observers can be approximated, on the phase space. This metric is an extension, on the

when the estimated configuration is close to the true one, by an state—space, of the Riemannian structure defined on the
explicit set of differential equations involving the Riemannian

curvature tensor. These equations can be automatically generated conf|gurat|0n spacg only. _Sl_"Ch extension depends on th?

via symbolic differentiations of the metric and potential up to observer gains. This metric is closely related to the Sasaki

order two. Numerical simulations for the ball and beam system, an metric [30], [31].

example where the scalar curvature is always negative, show the 1, aypiain the main idea, let us give a short summary when

effectiveness of such approximation when the measured positions . . . .

are noisy or include high frequency neglected dynamics. the dyna_lmlcs corresponds to geodesics (i.e., no potential and
. . . ... no exterior forces).

Indgx Terms—Asymptotic observers,. contraction, _intrinsic For an Euclidian configuration space (no curvature) the
equations, Lagrangian systems, mechanical systems, Riemannian ’ ; e )
metric. geodesic equation reags= 0 whereq are Euclidian coordi-
nates. In general, the equation reddg; = 0 whereV is the
Riemannian connection. We assume that the configuratisn
measured. We want to construct a noiseless estimgtiand

BSERVERS for nonlinear systems were much studied inof the positiong and velocityg = v. Wheng = 0, this is

the last decade, and real advances were made during ttigy simple. It is sufficient to take the following Luenberger
period (see, e.g., [27] and [16]). For the control of mechanicabserver:
systems, symmetries play an important role (see, e.g., [25], [6], _
and [21]). In this paper, we show how to exploit “symmetries” j=v—al(d—q) 0=-B(4—9q)
(as in [1], where chemical systems are considered) in the de-
sign of asymptotic observers for a class of nonlinear systemgth « and constant and positive to ensure exponential con-
Lagrangian mechanical systems with position measurememngigence. FoV ;¢ = 0, we replace the error injection teijn- ¢
The Euler-Lagrange equations are indeed intrinsic: their dxy an intrinsic error term: the gradiegitad, F', whereF (¢, q)
pression does not depend on the choice of a particular seisthe half of the square of the geodesic distance bet\yeen
configuration coordinates. That represents, roughly speakingSo, we are led to guess that a good candidaté/fpr = 0
the “symmetry” we are dealing with. Such an invariance hasuld be the following observer:
been fully used in optimal control (see, e.g., [33]) and in the de-
sign of intrinsic controllers for fully actuated mechanical sys- j=b—a grad, ' V0 = —pBgrad, F.
tems (see, e.g., [9]). Preserving such invariance is the guideline
of the observer design presented in this paper. As in [9], oliis invariant with respect to a change of coordinateg.ofhe
method uses the Riemannian structure and tools (geodesic disserver is well-defined fof close enough tq. Sincegrad, I’
tance, covariant derivation, curvature; see [15] and [32]) definbélongs to the tangent spacegaand since the vectar is de-
by the kinetic energy. Some important work concerning contrfthed along the curve — ¢(t), its covariant derivativevéf;

is geometrically well-defined along this curve. Nevertheless,
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intrinsic instablity. In fact, our convergent observer slightly difwhereV, grad, andg(q)~! are, respectively, the Levi—Civita
fers from the previous one via a curvature term, namely connection, the gradient operator associated to the Riemannian
] structure and the inverse of the metric matix). As the po-
q§=1—agrad,F' V0= —fgrad, I+ R(d, grad;F)0  sition q is measured, the source teifg, t) is a known time-
varying vector-field onM. In local coordinates, this formula-
whereR is the Riemann curvature tensor. Side@), grad, F)o  tion reads:
is linear versugrad, F' and quadratic versus we have in fact

an automatic gain scheduling with respect to the velocity. Such it = —ij(q)(jj(jk + Si(q, t) Q)
gains will compensate the divergence or oscillations due to cur- .
vature effect (gyroscopic terms). where the connection ternhy, (Christoffel symbols) are given

We prove here by using contraction techniques [24], [18] thdty
for any positive gains andg, such an observer is exponentially
convergent locally around any geodessier ¢(¢). Indeed, when 3k =39
q is close tay, the first variation of the observer dynamics reads

with ¢° the entries ofy~!. We use here the summation con-
Vil =C-ag V(=8 vention: when an index appears both as a subscript and a super-
cript, the summation according to this index is to be taken.
Recall thatV ;v is the covariant derivative of the vector field
v alongyq. In local coordinates, it reads

¢ " g8 O

_ 1 il(aglk dg;1 agjk)

where¢ = ¢ — ¢. It corresponds exactly to the classical error
dynamics in the Euclidian casé & 0):

1mran v [Vin}' = if 4+ Dia()'d*

whereq = § — ¢ andv = v — v. WhenR = 0, the covariant
derivationV; coincides with the standard operatbfdt in the
Euclidian coordinates. The addition of potential and known ex-
terior forces changes the design slightly and requires the use of
parallel transport [see (2)]. In this section, we define an intrinsic observer for the
The paper is organized as follows. Section Il is devoted to nbagrangian systems described in the previous section. As the
tations and definitions. In Section Ill, we describe the design Buler—Lagrange equations are coordinate-free (or intrinsic), our
the intrinsic observer in the general case, and we illustrate tiéideline for the state observer design consists in preserving
invariance on a tutorial example with exterior forces. In Seéhis property. After defining the observer dynamics, we will
tion IV, we prove the local exponential stability (ContractionyheCk that its EXpI'ESSiOH is intrinsic and illustrate it with a
around any trajectory (local convergence). We illustrate, on tRénple example. The observer convergence will be considered
ball and beam system, the effectiveness of the method wittingthe next section.
numerical simulation in Appendix I. Appendix Il is devoted to

where{ }* means coordinaté

I1l. INTRINSIC OBSERVER

contraction properties. A. Design
Assume that we measure the position (i.e.,¢t® and that
Il. LAGRANGIAN SYSTEM AND RIEMANNIAN METRIC we do not measure the velocity (i.e., tife= v"). Denote byj

and? the estimations of the positianand the velocityw. They

We consider a Lagrangian mechanical system with are defined by the following coordinate-free dynamics:

n-dimensional configuration manifold/ equipped with a
Riemannian metric; see, e.g., [15]. The local coordinates of e o (A
q € M will be denoted by(¢*);—1,..,. The Lagrangian is given Vi (q+a grad, F'(q, q))

+R ((@4_ agrad, F'(q, Q)) ; grad, F(q, q))

(i+ sy PG )

Q)
>

L(q, q) = 39i;(9)i'd’ — U(q)

where the positive—definite symmetric matrix(q) =

and the scalar functioty(¢) the potential energy. The Euler—

Lagrange equations are, in the local coordinates G=1— agrad, F'(q, q)
a(wi)—éaﬁ+“W”7 i=1..,m + R(d, grad, F(4, q))b @

whereu(q, t) = (ui(q, t))i—1....n is @ known function of: where the following holds true.
andg, that corresponds, in general, to some known inputs. The * a andf are positive design parameters.
Riemannian formulation of the Euler—Lagrange equationsis  * F(4, ¢) is half of the square of the geodesic distance be-
tweeng andg. This function is well defined and regular
Vyq = —grad, U(q) + g(q) " u(q, t) = S(q, t) wheng andq are close enough.
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B. Invariance on a Tutorial Example

This is just to show that once the gaimsand g are chosen,
(2) defines a unique observer independent of the choice of a
particular set of coordinates on the configuration manifald

1) Dynamics ing-Coordinate: We consider the one degree
of freedom mechanical system whose Lagrangian is given by

L(q, q) =3d*— %q

which represents the dynamics of the standard oscillator with
q € R: ¢ = —q. For this system, as the configuration space is
Euclidian, the intrinsic observer equation (2) reads

Gg=9—a(i—q)

bv=—q—BG—q). 3)
Fig. 1. Parallel transport of the source tefify, t) from the tangent space at ) -
¢ to the tangent space @t along the geodesig. If the gainsa. and g are chosen positive, we have convergence

of ¢ and®v to ¢ andgq.
2) Dynamics inr-Coordinate: Consider now a change of

* 7T,,. is the parallel transport from to ¢ along the . )
/la>1 P P m "0 d g coordinater = exp(q). The Lagrangian becomes

geodesic betweejpandg. It is a linear isometry from the

tangent space atto the tangent space @tAs for F, this 172 1

operator is well defined fog andg close enough. L(r, ) = 3.2 5(111 r)?
* R is the curvature tensor.

In local coordinate$q’), the observer dynamics reads and the system dynamics then writes

o ~d ~ % 7":1;}]2
q =v — a{graqu(q-/ (I)} w=— —rlnr forr €]0, 400l
r

0" =T () ¢" + {T)/g—qS(q, t)

. ) . i We are now going to compute the observer (2)
— Berad, F(q, q) + R(0, grad, F(q, )b} . .
7 =1 — agrad, F(r, 7

This observer does not depend on the choice of a particular setof ~ ; — “”

— +T)/r—i(=rInr) — Bgrad, F(r, 7)
coordinates fog: the connectioiv, the functionF', the operator ro A A
7, /4—q and the tensoR are intrinsic objects attached to the + R(w, grad; F(7, ). )

Riemannian structure oi/. T .
, : , __The metric is given byy = g11 with g11(r) = 1/r%. The
Fig. 1 illustrates the observer dynamics (2). As the Conf'g‘('fhristoffel symbol is'}, () = —(1/r). The equation for the
ration space// has a Riemannian structure, we cannot Compaﬁ%odesic joining-; andrs is

vectors living in tangent spaces at different points\énas it is
usually done in Euclidian spaces. Indeed, we have to take into . )

account the curvature introduced by the metric: the output in- V() = exp <ln <_> s+l Tl) '
jection term7,,,_.,S(q, t) belongs to the tangent spafgh,
whereasS(gq, t) belongs tol;; M and cannot be combined to
V0 € T M. We also replace the often used error tégm- )
by grad, F'(¢, q) to deal with the curvature since it gives the di- 1

rection by whichy can be “joined” fromyj by taking the shortest (71, 72) = / V9(v(s))(7'(s))? ds = |Inry — Inr|
path. The term-f3 grad, F'(q, q) can be interpreted as a spring 70

term if we consider its counterpart in the Euclidian case &gere’ stands forl/ds. The termF'(7, r) is then given by
described in the introduction. The terf(4, grad, F'(q, q))9

is also a spring term, with a stiffness quadratic in the velocity,
that represents the minimum compensation term neededaH)OI
eliminate the possible curvature instability effect (see [3]). In

Fig. 1, we represent the operation of parallel transport along . o(In?—1Inr)y

the geodesie that joins the system positianand the estimate grad; F(r, 7) = 7 2 =7(In7 —Inr).

positiong on the manifoldM. We can see for instance that thel.he parallel transport equation along the geodesic
angle betweerf(q, t) andgrad, F(q, q) is the same as that

between their parallel transported counterpdits,_,;S(q, t) (5) = e (1 (1") Ll )
Iy S S = S)=explin| —1Js nr
and7; /,.q grad, F(§, q) = —grad, F (¢, q). K !

T1

We have theny(0) = r; andvy(1) = r,. So, the geodesic
distance between; andrs is

F(r,#)=1(Inr — In7)?

its gradient by
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joining r ats = 0 andr ats = 1 reads of the parallel transport (see [32], [3] for more precisions). Re-
1 mark that the O-terms” will retain their forms when coordi-
u— ——~'(s)u=0 nates are changed in a differentiable manner.
(s) Thus, we can construct an explicit approximation of (2) up
w(0) = —rlur to order 2. In local coordinates, this gives the following second-

for which the solution is given by order approximate observer that can be integrated numerically:

u(s) = —rlnrexp((In7 — lnr)s). ? v _ aqu _Akq ) ) . ) r .
0" =—T5(9)0'q" + S'(q, t) = T5(0)S7 (¢, £)(d" — ¢')
Then, we have = B0 = ') + Rju(@)9"(& = )" (5)
T)jr—i(=rInr) =u(l) = —FlInr. P T, o
In the termI', (¢)9?¢", it is important to considel™; (¢)
So, (2) in ther coordinates gives instead ofij(q) since it is one of the terms of the covariant
) derivative of v with respect tog. Nevertheless in the terms
7 =11 —af(In? —Inr) I (q)87 (g, )(¢" — ¢') and Riy, (q)0* (¢ — ¢7)o', we could
L o have used”, (4) and R, (g), since this represents a second
W=7 Flur — fr(ln —Inr). order perturbation. The value of (5) relies on two facts

« the gains are explicit and can be computed via the inertia
matrix (g;;) and itsq derivatives up to order 2;

< we will prove in the sequel the local convergence of (5) as
soon asy and3 are strictly positive.

Notice that curvature is zero here. This vanishing is independent
of the choice of configuration coordinates, whereas it is false for
the Christoffel symbols.

In this set of coordinates, we see that this observer expression
is not so intuitive: the error teri(In # —In r) is nonlinear and is
different from the often used error terin- . The convergence
is clear since it can be checked that it is just the expression of (3)The observer dynamics (2) is locally & ¢) contracting in
in r coordinates. When the metrgccomponent igji1(¢) = 1, the sense of [24], [18]: some insight on this property is given

IV. OBSERVERCONVERGENCE

we have indeed in Appendix Il. As the system dynamics (1) is a solution of (2),
this will give the local convergence.
grad, F(q, 4) =4 — ¢ More precisely, we are going to demonstrate the following
T//qHQS(q, t) = 7///(14;(}(_(]) =—q result.
R(d, grad, F(g, q))o =0. Theorem 1: Take (1) defining a dynamical system on the tan-

gent bundlél’ M . Consider a compact subg€tof 7'M and two
So, the observer dynamics (3) and (4) are two expressionspokitive parameters and (the observer gains).
the same observer, written in different configuration coordinate Then, there exist > 0 (depending only oK, a and f3),
sets. 1 > 0 and a Riemannian metr& on’I'M (depending only on
a andf) such that, for any solution of (1) remaining i
C. First-Order Approximation
In general, we have no explicit formula fé* and7,,, ., [0, T[>t X(1) = (q(t), 4(1) € K
once the metric is given. Nevertheless, the curvature terms @fig, ' < 4, the solution of @)t — X(t) = (4(t), 9(t))

explicit with X (0) satisfyingdq (X (0), X(0)) < e, is defined for all
{R(b, grad, F(d, q))ﬁ}i = Riyi*{grad, F(4, q)}79" t € [0, T[ and, moreovely ¢ € [0, T|
whereRjk, are the components of the curvature tensor da (X(t)’ X(t)) < dg (X(0)7 X(O)) exp(—pt).
. o, 81“3 z Heredg is the geodesic distance associated to the méton

= S~ L T~ T ST o _
q q The metric@ is, in fact, a modified version of the Sasaki
However, forg close tog, F and7,,,_.; admits the following metric [30], i.e., the lift of the kinetic energy metric ah\/.

approximations: The observer gaina and g are involved in the definition of
) o ) ‘ G in order to get the convergence estimation and the fact that,
2F = gi;(9)(§" — ¢')(@ — &) + Ollg — qll*) locally, the geodesic distanek;(X (), X(t)) is a decreasing
{grad,F} =" — ¢’ + O([l§ — q|> function oft. | |
(T jqqw} = — F;l(q)wj(dz Y+ 0(ld - ql?) Proof: The demonstratlor.] fo!lovys in two steps.
« For eachgq, we compute intrinsically (as for the second
for any w belonging to the tangent spacegato M. The first variation of geodesic) the first variation with respectjto

equality comes from the definition of the geodesic distance. The and® of (2). If we denote by(§ + 64, © + 69) a point
second one is derived from the definition of the gradient fora  defined in a neighborhood dfj, ©), we are looking for
scalar function. And the last one is derived from the expression the intrinsic formulation of thésg, 60)-dynamics.
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* We will deduce from this intrinsic formulation, a metric 3) Computation ofV;(: The covariant derivative of is
G on the tangent bundIl&M for which the observer dy- given by
namics (2) is a contraction f@rclose toq.

V. z:"i+Fi» ) G* j. 8
A. First Step: First Variation of the Observer Dynamics { qC} ¢ DT ®)

We will just mimic here the method that has been used #ccording to (7) and (6), we have
derive the Jacobi equation [15], that is to say the first variation of
the geodesic equatiovigg = 0. All the calculations presented éi - i (5@1) d ( ;k( )sz )
here are done in a particular set of coordin&tés, but the final dt . dt
results are given in an intrinsic formulation. As the first variation = —6(F§k(q)v q ) +{6(T)/q—45(q,t) — Berad,F(q, q)

60 is notan intrinsic term, we are going first to define its intrinsic Cod i
. ~ -~ ~ ~ 4 1) NaT ek
equivalent that belongs to the tangent space & M. Then, + R(9,grad, F(q,q))0) } + E( (Q7Er) .
we are going to determine the dynamics of the intrinsic vectors
(¢ = 64, ) associated t@5q, 69). So, when we consider only the terms of first ordefjrand 6
1) Intrinsic Vectors¢ and ¢: We introduce another set of
. Wt i (a\nd Ak
coordinates (an “intrinsic” one) ) (ij(q)v q )
Yy oT%, (§ . . . , .
<=t . = ﬂ 074" + T ()97 4" + T (@)o'¢"
=80T +TE(9)6" 7,  i=1,..., n (6) dq°
‘ ‘ OT5(Q) oot | i oo iik i avrd avapecs
One can check that th¢ and also thec correspond to the = (.;k EDGE 4+ T ()¢ 4" — T (@I ()0 ecr
coordinates of two vectogand( belonging to the same linear i aad
space, the tangent spacedato M. Indeed, we have up to + Ui (@)7¢"
second-order terms d (T (§)09 ")
. . . dt Jk
» ¢ = ¢4(0), for some small read > 0 with v a geodesic ar (4)
that joins the pOJnts/(E)) =4 andy(e) = ¢ + 64; _ Tk q goek ol + F;k(d)fkéj n ij(d)ék@j
* ¢ = T)ja48q—q(0 + 60) — 0. oq°
The tangent vectayand( are defined along the curve— (). (@) - i ok
. . . . . = J ch J_ 1 (q)FJ (q)f
Thus, we can consider their covariant derlvatlve;g andVéC dge ik pe
still belonging to the tangent spacegeto M. +Fi. §)e" {T//q_,qS(q t) — Bgrad, F(4, q)

Notice that the first variation of (2) gives j .
+ R(d, grad, F(4, )i} + i (q)i' "

d , . ;
— (6¢") = 60" — 1) d. F A7
(flt( 1ot o)) Then, we put together the two previous equations
E(‘S ):—5( ( )vjqk> d ( i L (4) ]g ) ( i (A)A]';k>
~ (% L 0] 4
+ {6 (T//(H(}S(q, t)) - ﬂﬁ(grad@F(q,q)) dt ‘Jk q k q
7 — 1,' ~ jA 71' A
+ 6(R(0,grad, (4, 9))0) } - 7) T ()6 + T (€ {T) s S (g, ) j
— Begrad; F(q, ¢) + B d,F (g, q))o
2) Computation of;¢: In local coordinates we have, for Perady (ql )A (0, ;éraA (4, )0}
i=1,...,n 4 ki i) OT.(9) R
8qAC ank Jje pk

[vie) =&+ Th@ite o
=6 — {s (grad F(q, ))}Z - F;k((j)rix(d)) '
+ F w(4) (v — afgrad, F'(q, )}k) &
=60 + F}k(q)vkﬁj -« ({6 (grad, F(q, q))}i
+ (@) {erad, F(d, q)}¢')

Then, we get

So, we get for’?

¢ =T @)¢ 0" + {8 (T)1q-aS(a, 1) |
— Begrad, F(4, q) + R(9, grad, F (¢, ¢))?) }'
+ D5 (D)E* {T)10-45(q, 1) — ﬂgrad F(d. q)

(

V£ =(—aVegrad, F(q, q) + R(9, grad, F(q, q }J kqeor Riep(d)
with which gives the following “semi-intrinsic” expression
{Vegrad,F(q, q)}' Vi(=-R (q 5) o+ Ve (T)/4-45(a, 1))

= {6 (erad, F (4, 0))}' + Ty (d){grad, F(d. q)} ¢ — BVe grad, F(g, q) + “Ve (R(9, grad, F (g, 9))0)
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where As

{VE (T//q—n} (q, t))}Z {T//q—>f1 q, 1 } = S(q, ) Pj‘k(Q)(@j - qj)S(Q» t)k
=1{6(7)/q—aS(a, t )} + T () {T))4—qS(a, t)}'  for ¢ close tog, we then have
{6(T)/4~48(a, 1)} = ~Tji(@)€ S(q, )"
{T//q—>q q, 1 } gj )SJS(q, )
up to terms of order 1 if§ — ¢). So
. . T ro—s . =0.
For the curvature term, we us&;” instead of V¢ since this Ve (T)/0-a5(a, ) = 0

is not a true covariant derlvatlon with respectétathe vector  Thus, forq = ¢, (9) becomes
R(9, grad, F(q, q))0 is only defined along the curve— ¢(t).

and
{“Ve" (R0, grad; F(d, 0))9)}
= {5 (R(d, grad, F (4, 9))9)}'
+F fk {R (0, grad, F'(q, q }]

Thus, we cannot define properly its covariant derivative in a Vil =(C—ag
direction¢ that is not colinear tg. V:( = —p¢.
Let us express now th&g’ term in an intrinsic way. Since 1 (10)
ot = - i L (Q)6G" 07 In a certain sense, we recover the Euclidian case with the clas-
sical Luenberger observer described in the introduction. This is
{6 (grad; F (4, q )} = {Vfgrad F(g. q)}' due to the cancellation of the curvature terms.

- T5(@)6d" {grad, F (4, 9)}
B. Second Step: Contraction Analysis
standard computations provide the following intrinsic expres-

sion: Let us prove first that (10) implies that the dynamics is strictly
contracting whei = ¢. Elementary continuity arguments show
“Ve” (R(0, grad, F(q, q))0) that contraction remains fgrclose tog. This explains the con-

= (VeR)(9, grad, F(4, q))0 + R(C, grad, F(q, q)) straint on the init_ial cond_ition for the ob_server dynamics. To
+ R(, grad, F(d, ¢))C + R(8, Vegrad, F(d, q))0 speak of contractlon_, we first need to define a metric on the ob-
’ ’ ’ = A server state space, i.e., on the tangent bufidI&
whereVR is the covariant derivative of the curvature tensor 1) Riemannian Structure on the Tangent Burileg: Since

alongé. the observer gains and are positive, the matrix
Finally, we have the following intrinsic formula for the first 1
variation of (2) with respect t¢ and: A= <:g 0)
Vil =(—aVe grad, F'(q, q) is Hurwitz and there exists a symmetric positive—definite matrix
; . such that
Vit = ~R (6, €) 0+ Ve (T14—S(a, 1)) N
t —
BV grad, F(d, ) + (VeR) (0, grad; F (4. 4))d Aerea=-r
+R(<7 graqu<d7 (]))’ﬁ + R</0/ grad(}F((j7 q))( Set
+ R(d, Ve grad, F(q, q))0 Q= <a c)
) c b

where¢ corresponds to the variation ¢fWhenS = 0, F' =0  and consider the quantity
and when we set to zero the curvature terms in (2), we recover

the classical Jacobi equation: V( Q)= g (€, 6 +cl€, )+ g «, ¢) (11)
2 . .
D_f =-R (@ f) q where(, ) is the scalar product associated to the mejrite-
Dt duced from the kinetic energy. This quantity end@ with a
whereD /Dt = V. metric, since? is positive definite: in local coordinatég’, v*),

4) First Variation Whery Is Close tog: Assume thatj is  the length of the small vectdq’, §v*) tangenttdq, v) atTM
close tog (we do not assume here thais close tov). Then, the g

aforementioned first variation becomes much simpler since up

to order 1 ing — ¢ V (6q, (80" + Ty (q)v*6q")iz1..n)

grad, F'(§, ) =0, Vegrad, (¢, q) =¢ G=1. = ggij‘sqi‘sqj + cgij (60" + Tiy(q)0*6q') 8¢
Furthermore | + ggij(w + T4, (q)v*6¢") (607 + T, (q)v*8q").
{Ve (Ty/a—aS(a, ) ' In the local coordinateg;’, v*), the metric is &n x 2n matrix

={6(7)/q—qS(q, t )} +T%5(4) {77 /4—45(a; t)}kfj. with entries function of andv. Using notationX = (¢, v), we
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Fig. 3. Ball and beam system.

Assume that X(0) is close enough toX(0), i.e.,
de(X(0), X(0)) < e. According to Appendix I, we
have fort > 0 small

d ()A((t)./ X(t)) < dg (X(O), X(O)) exp(—gt) .

Thus, as displayed in Fig. 2, for any time € [0, 17,
da(X(t), X(t)) < &, and X(t) remains in a region of con-

denote byG(X) the matrix defining this metric oft’M. This traction. Moreover, we have an exponential convergence with

Fig. 2. Contraction tube.

is just a slightly modified version of the Sasaki metricBM |, = p/2. The proof of Theorem 1 is completed. [ |
(see [30] and [31]); we get the Sasaki metric wiienb, c) =
(2, 2,0). V. CONCLUSION

2) Convergence AnalysisWhen¢ and( satisfy (10), simple

computations give Simulations tests (see, e.g., the ball and beam example treated

in Appendix 1) tend to indicate that the region of convergence

v of our intrinsic observer (2) is quite large. This could be related
o =WV O+ (Vi€ O+ (V0§ +6(Vi(, () tothe fact that we have contraction when the estimated position
= (£, 6) — (¢, 0. q is close to the actual positian even if the velocity estima-

tion error is large. In our convergence analysis, we do not have
fully exploited such nonlocal property. It appears that, com-
bined with some additional structure, say, eM.is a Lie-group
v equipped with a right-invariant metric, one can prove stronger
i < =AVL convergence results. Observer (2) is expressed without coordi-
nates and thus could be extended, at least formally, to infinite
This means that the observer dynamics (2) is a strict contractid@mensional mechanical systems such as a perfect incompress-
with respect to the metri(X) wheng = ¢ whatever is. ible fluid where the curvature tensor defined in [3] and [2] is
Otherwise stated, denote By = T(X, X) the observer (2). €XPlicitly given in [29].
By constructionX = Y(X, X) corresponds to the true dy-
namics (1). The inequalityV/dt < —\V just means that we
have the following matrix inequality:

Thus, there exists > 0 such that

APPENDIX |
BALL AND BEAM SYSTEM

We have chosen the well-known ball and beam system [19] as
R an illustration since the scalar curvature of the metric given by
R ) G (X) its inertia matrix is strictly negative. The simulation results show
(X, X) then the interest of the invariant asymptotic observer: we can
va(X) ( or
0X

) <G (X) (12) indeed choose small gains that reject noise while still cancelling
for X = (¢, v) and X = (¢, ©), g, v and o arbitrary. G is

the effects of the negative curvature.
positive definite and the dependence of (12) verkuwsnd X is
smooth. Thus, for ang < p < A, there existg > 0 such that,
forany X in the compack and anyX satisfyingdg (X, X) <
e, we have

%XT(X,X)—F (2;

gxr(xvxp(mf

(X, %)
A. System Dynamics

We consider a reduced ball and beam system, as shown in
Fig. 3, withr the distance of the ball to the center of the beam,
andé the angle of the beam with the horizontal. A torques
applied to control the system.

The kinetic energy is given by

)tG(X) T=4 (7% + (1+0)6?)

(X, X)

+G(x)<g§

and the potential of the gravitation force by
< —pG(X).
(X,x)> = ( ) U =rsiné.
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We get then the following normalized dynamics: C. Numerical Simulation
. We have chosen for the simulation presented in the Fig. 4, a
r="uvr control that maintains the ball in oscillation near the unstable
0 =ve equilibrium point(r = 0,6 = 0,v, = 0,vp = 0): u =
Oy =70g2 — sin 6 —200 + 101r. Asr remains small, the scalar curvature keeps a
. —2r u — 1 cosf value close to-2. Furthermore, we have added high-frequency
Ve T e T e (13) signalsb, andby, respectively, to the measurementsind ¢
to simulate sensors imperfections and neglected high-frequency
dynamics.
B. Invariant Observer To show the importance of the parallel transport and the cur-

1) Metric Elements:The matrix of components of thevature compensation, we have compared the invariant observer
metric g defined by the kinetic energy in these coordinates is(14), to the following one:

=0, —a(f —1)

10 .
(0 1+r2>' b =i —a(-0)

<.

The nonzero Christoffel symbols are by =702 —sinf — B(F — 1)
: -2r rcosf —u .
1—1%2 - _r Vg = m VyrVg — W — ,[3(0 — 9) . (15)
2 2 r

This observer is a standard one with nonlinear input injection
for » andé. It is proved to be convergent for large enough gain
The nonzero components of the Riemannian curvature tendgpuming bounded velocities. This observer is very efficient for
are low velocities where gyroscopic terms are not too big.

The initial conditions for the simulation are

R,y = —ﬁ Real System Observers (14) and (15)
e ] o e
Ry = + Uy .05 .525
L 9 0 0.2
R%Ql = + m Vo 0 2.
) 1 If the gainsa and 3 are chosen large enough, the observers
Ry = _m- (14) and (15) are both convergent. Nevertheless, the high fre-
quencied,. andby are not filtered.
The scalar curvature is then For the simulation presented in Fig. 4, we have taken the fol-
lowing values for the gains:
Rs = ¢"RP . = =2 .
: pli (1—|—r2)2 w, :%\/5
The ball and beam system has a strictly negative scalar curva- “= 2°;°
ture. B =uw,

2) Observer ExpressionWe consider the approximate in-gjnce in absolute value, the scalar curvature maximum is 2.
trinsic observer (5) In Fig. 4, the pictures c) and d) are copies of the pictures a)
P R and b), where the real system positiprand § are presented
r=t = o =) without the high frequency signals andby introduced by the
=y — a(é —0) sensors. We can see that the observer (15) does not converge:

. : . w— 7cosf the parametef is not large enough to compensate the effects
b =700 + <_ sinf + 7%(9 - 9) W) —B(F =) of the negative curvature. However, the invariant observer (14)

. . 1 is convergent. It shows the importance of the curvature term,
+ ( Uy (0 — 6) +—— 02(F — r)) guadratic in velocities, in the observer expression.

1472 1472
. —p . A U — rcosf 7
bo = — (Fig +0,0)+ < - APPENDIX I
L+ 72 ( ) L+r? 1+ 72 CONTRACTION INTERPRETATION
R .1 +(6-6)(—sind The contraction [24], [18] for a system, with the dynamics
2
L+r & = f(=x, t), can be understood as the exponential decay, with
-8 (g _ 9) + ( 1 52 (g _ 9) time, of the length of any segment of initial conditions trans-
(1+72)2 7" ported by the flow.

-1 Definition 1 (Strict Contraction):Letz = f(«z, t) be a reg-

+ 1+ 72)2 br0g (7 — T)> : A9 ylar (! for instance) dynamical system defined on some smooth
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b) theta

Proof: The proof is inspired by computations of L. Praly.
Let!(t) be the length of the curveX (v(s), t), s € [0, 1]) with
respect to the metrig

= real
= = int.obs.
0 simple

ds
15, - - 5 We have
. ) theta p L ii {dX('(yl(s)J)Tg(X(’y(s) ) dX('(yl(s),t)}
n dt s ’ s
Qo l( ) = ds.
1 e s T s),
: Y 2/ BEE0T g(x(5(s), ) LG
05 » X ; E\ As
y \ y
HaVaroc d dX(’}/(S)7 t) d
’ XD _ Y px (309, 1), 1)
- 5 10 15 0 d
o O FX(3(5), 0, 1) X(3(8). )
15— 4 we get
3
i 2 d [dX(y(s), )" dX(7(s), t)
oﬂj\/f\/\,/\/\\ ) X0, 0" b, X ((5), 1)
[TOA -2 - ds ’ ds
-0.5 -3
[o] 5 10 15 0 5 10 15 Wlth
Fig. 4. Ball and beam observer simulation: Realeal system (13), int obs af(X) T of(X)  0g9(X)
intrinsic observer (14), simple observer (15). a). b)6.c)r. d) 6. e)d(r)/dt. P(s, t) = oX 9(X) + g(X) 0X + oX f(X, 1)

f) d(6)/dt.

manifold M. Let g be a metric onV/. LetU C M be a setin X = X(y(s), t).
M. The dynamics is said to be a strict contraction A with _ _ _
respect to the metrig, if the symmetric part of its Jacobian isSincef is a contraction o/, there exists\ > 0 such that

negafuve definite, that is to say, if there exists soxre 0 such P(s, t) < —Ag(X(1(s), 1))
that, in local coordinates on U, we have for any
We can then write the following inequality for the derivative
aft of d/db)l(t):
O @)+ 9a) 2+ 29 o, 1) < —rg(a). i
! il(t) < —él(t)
We have the following result that justifies such definition and dt - 2
terminology. which leads to
Theorem 2:Leti = f(z, ¢) be a smooth dynamical system oy
defined on a smooth manifolti/. Let g(x) be a metric on\/. I(t) < 1(0)e vte[o, T
Let X (z, t) be the flow associated tf Sinced, (X (zo, t), X (z1, t)) < I(t) andl(0) = d,(z0, 1)
d (indeedy is a geodesic that joins the two pointg andzx), the
EX(@; t)=f(X(z, t), t) Vit e [0, T[ with T < +oo  resultis proved. [ |
X(x,0) =
(z,0) == ACKNOWLEDGMENT
Consider two points, andz; in M and a geodesig(s) joining This work has benefited from the useful comments of L. Praly
xo = v(0) andz; = ~(1). If on stability issues and observer concepts. The authors would
* fis a strict contraction on some sub&etc M, with A  like to thank J. J. Slotine for interesting discussions on contrac-
the constant defined in the definition 1; tion theory. They are indebted to the fruitful suggestions and
* X(v(s), t) belongs toU for all s € [0, 1]; and for all comments of N. Petit.
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