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We consider, as in [3], a quantum system described by the following Schrödinger
equation

ı�ψ̇ = (H0 + uH1)ψ

where ψ is the complex probability amplitude vector (belongs to an Hilbet
space of finite or infinite dimension), H0 is the free Hamiltonian and H1 is
the Hamiltonian associated to the scalar control u (corresponding to a classical
electro-magnetic field). We discuss here the controllability and/or the following
motion planning problem: for two pure states, ψa and ψb of free energy Eb and
Eb (H0ψa = Eaψa and H0ψb = Ebψb), find an open-loop control [0, T ] � t �→
u(t) steering the state ψ form ψa at t = 0 to the state ψb at t = T > 0. It seems
that according to [10], such motion planning problem is meaning full. In this
report, we consider several Hamiltonian H0 and H1:

• The 1D harmonic oscillator where ψ(q, t) is an L2 complex function of
q ∈ R the space position, H0 = p2/2 + q2/2 and H1 = −q. p corresponds
to the operator ı/�

∂
∂q and q to the multiplication by q.

• A 1D particle with H0 = p2/2 + V (q) and H1 = −q in the quasi-classic
approximation (� ≈ 0).

• A two states system ψ ∈ C
2 where we exploit the fictitious spin descrip-

tion.

• A three state systems where the control u is designed under weak field
approximation and averaging argument.

For each system we show how to exploit flatness based ideas to solved explicitly
the motion planing problem.
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1 The harmonic oscillator

Consider the 1D wave packet of an harmonic oscillator ψ(q, t) of configuration
q ∈ R. It satisfies

ı�ψ̇ = (H0+uH1)ψ =
(

1
2m

p2 +
mω2

2
q2 − u(t)q

)
ψ = − �

2

2m

∂2ψ

∂q2
+

mω2

2
q2ψ−uqψ

(m, and ω are parameters). Roughly speaking, when the Lie algebra spanned by
the operator H0/ı and H1/ı (see [8] for a precise formulation in finite dimension)
corresponds to the set of all anti-Hermitean operators (excepted ıI), the system
is controllable.

Up to suitable time, space and control scaling we can suppose that H0 =
p2/2+ q2/2 and H1 = −q and [q, p] = ı. Since [q, F (p)] = ıF ′(p) and [F (q), p] =
ıF ′(q) for any function F , we have

[H0,H1] = ıp, [H0, p] = −ıq, [H1, p] = −ı.

Thus this Lie algebra is of finite dimension. Such system is far from being
controllable.

The controllable part just coincides with the dynamics of the average position
〈q〉 =

∫ +∞
−∞ q|ψ(t, q)|2dq. Its dynamics given by the classical Ehrenfest theorem

(see, e.g,[7]) corresponds then to the classical oscillator

˙〈q〉 = 〈p〉 , ˙〈p〉 = −〈q〉 + u

which is trivially controllable.
The uncontrollable part corresponds in fact to a Schrödinger dynamics with-

out control. Consider the following change of independent variables (t, x) �→
(t, z = q−〈q〉). Then the Schrödinger equation reads with ψ(t, q) = exp(ı 〈p〉 z) φ(t, z)

ıφ̇ = (P 2/2 + Z2/2)φ + (〈q〉2 /2 − 〈p〉2 /2 − u 〈q〉)φ

where P = ı ∂
∂z and Z ≡ z. The following phase change

φ(t, z) = exp
(
−ı

∫ t

0

(〈q〉2 /2 − 〈p〉2 /2 − u 〈q〉)
)

ϕ(t, z)

(gauge transformation since φ and ϕ represent the same physical system) yields
to

ıϕ̇ = (P 2/2 + Z2/2)ϕ.

This corresponds to the noncontrollable part. This means that the dynamics of
φ(t, q) can be decomposed into two part, a controllable one of dimension 2, an
uncontrollable one of infinite dimension.

The above computations are classical (see, e.g.,[2]). Less classical is the
interpretation in terms of decompositions into controllable and uncontrollable
parts. It is the infinite dimensional analogue of decomposition for the nonlinear
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system of finite dimension ξ̇ = f(ξ, u) via a nonlinear change of coordinates
ξ �→ χ (see, e.g., [6]) where

χ = (χ1, χ2), χ̇1 = g1(χ1), χ̇2 = g2(χ1, χ2, u).

The uncontrollable part corresponds then to the autonomous dynamics on χ1.
The following question becomes then natural. Take the controlled Schrödinger
equation (infinite dimension case)

ıψ̇ = (H0 +
n∑
1

uiHi)ψ

and assume that the Lie algebra spanned by the anti-Hermitean operators H0/ı
and H1/ı is of finite dimension. Does there exists a decomposition into a finite
dimensional controllable part and an infinite dimensional uncontrollable part.

2 The classical limit

Let us begin with an analogy: assume that the classical dynamics of a particle
corresponds to the rigid dynamics of a mechanical system. In robotics, a stan-
dard approximation to include the small amplitude by high frequency flexible
dynamics consists in adding some flexible modes and in controlling them by
perturbation methods once the control of the rigid part is solved. Can we do
the same thing for a quantum particle in the classical limit � ≈ 0.

We will consider in a first step a 1D wave packet ψ(q, t) with Hamiltonian
H = p2/2+V (q)−uq where p = �

ı
∂
∂q and the mass m is set to one. The motion

of ψ satisfies
ı�ψ̇ = Hψ.

Since � is close to zero, the support of ψ is concentrated around the average
position 〈q〉 whose motion is given by Erhenfest equation:

˙〈q〉 = 〈p〉 , ˙〈p〉 = −〈V ′(q)〉 + u

where 〈 〉 corresponds to the average operator. Following [7, Chap VI], we
perform the following Taylor development

V ′(q) = V ′(〈q〉) + (q − 〈q〉)V ′′(〈q〉) + (q − 〈q〉)2V ′′′(〈q〉) + ...

that is valid when the potential V is smooth and admits small variations on the
support of ψ. Since the support of the wave packet ψ is essentially around 〈q〉
we have

〈V ′〉 ≈ V ′(〈q〉) +
χ

2
V ′′′(〈q〉)

where χ =
〈
(q − 〈q〉)2〉 is the square of the standard deviation of q. For small

�, an approximation of the mean motion of the wave-packet is thus

˙〈q〉 = 〈p〉 , ˙〈p〉 = −V ′(〈q〉) −−χ

2
V ′′′(〈q〉) + u.
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Now we have to compute an approximation of the χ dynamics. Classical compu-
tations using Heisenberg relation [q, p] = ı� and the general formula that gives
the time derivation of 〈A〉 for any observable A,

ı�
d 〈A〉

dt
= 〈[A,H]〉 + ı�

〈
∂A

∂t

〉

yields to the following approximated dynamics for χ,

χ̇ = η

η̇ = 2(	 − χV ′′(〈q〉))
	̇ = −ηV ′′(〈q〉)

where 	 =
〈
(p − 〈p〉)2〉 and

η = 〈(p − 〈p〉)(q − 〈q〉) + (q − 〈q〉)(p − 〈p〉)〉 .

Thus the quantum analogue of a rigid dynamics perturbed by the first flexible
mode reads now

˙〈q〉 = 〈p〉
˙〈p〉 = −V ′(〈q〉) − χ

2 V ′′′(〈q〉) + u
χ̇ = η
η̇ = 2(	 − χV ′′(〈q〉))
	̇ = −ηV ′′(〈q〉)

(1)

It seems that such an approximated model has never been used for control
design. First of all, the quantity I = χ	 − η2/4 is an invariant: İ = 0. It
is strongly related to the Heisenberg principle. Assume I > �

2. Since χ	 =
I + η2/4, we have ∆q · ∆p =

√
χ	 ≥ �. The above model is valid for χ, 	 and

η small such that I ≥ �
2.

Notice also that, for any I > 0, the restriction of the dynamics on the
manifold χ	 − η2/4 = I is flat with χ as flat output [5]. This results from
the following computations. Assume that instead of knowing the control t �→
u(t) (direct problem), we know t �→ χ(t) (inverse problem). Then η = χ̇ and
	 = (I + η2/4)/χ. Since V ′′(〈q〉) = (	 − η̇/2)/χ, 〈q〉 is an implicit function
of (χ, χ̇, χ̈). It is then easy to seen that 〈p〉 and u are implicit functions of
(χ, χ̇, χ̈, χ(3)), and (χ, χ̇, χ̈, χ(3), χ(4)), respectively. The inverse problem admits
no dynamics and thus χ is the flat output.

Let us now sketch a possible use of the flat output χ to design an open-loop
steering control from a local minimum of V to another one. It is easy to see that,
in regions where V ′′(q) > 0, the dynamics of (χ, η,	) is stable (neutrally) and
that in regions where V ′′(q) < 0 it is unstable (hyperbolically). If the goal is to
steer from a stable steady-state to another one we have to cross such unstable
region where the support of wave packet tends to grow exponentially in time.
More precisely, assume that we start with the steady-state

(〈q〉 , 〈p〉 , χ, η,	) = (q1, 0, χ1, 0, V ′′(q1)χ1)
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and finish with another stable steady-state

(〈q〉 , 〈p〉 , χ, η,	) = (q2, 0, χ2, 0, V ′′(q2)χ2)

with q1 �= q2, V ′(q1) = V ′(q2) = 0, V ′′(q1) > 0, V ′′(q2) > 0 and V ′′(q1)(χ1)2 =
V ′′(q2)(χ2)2. Then exists a region between q1 and q2 where V ′′ < 0. This
unstable zone where the potential V is concave avoids a quasi-static (adiabatic)
strategy. Bounds on the control u avoids also an impulse strategy where a large
u on a short time can steer 〈q〉 from q1 to q2 in a time much smaller than√

1/|V ′′(q)|. Using flatness based method it is possible to design a steering
control u(t) that is not too large with a steering time of the same order of the
natural time-constant

√
1/|V ′′(q)|. However, such design method has to pass

through singularities corresponding to potential inflexion V ′′′(q) = 0.
Such quasi-classic approximations can be easily extended to any quantum

system with configuration variables qi, impulsion variable pi, free Hamiltonian
H0(p, q) and controlled Hamiltonian Hi(q) associated to the scalar control ui.
This is not the case of the WKB method [7] that becomes quite nasty when
the number of qi exceeds 1. We just gives here the approximated model for
a single particle, with n degree of freedom (q1, ..., qn) and with the following
Hamiltonian

H0 =
n∑

i=1

p2
i /2 + V (q), Hi(q) = qi

The approximated dynamics reads for i = 1, ..., n:

˙〈qi〉 = 〈pi〉
˙〈pi〉 = −V,i(〈q〉) − χjkV,ijk(〈q〉) + ui

where we have used Einstein summation convention,

χjk = 〈(qj − 〈qj〉)(qk − 〈qk〉)〉 ,

V,i stands for ∂V
∂qi

and V,ijk stand for ∂3V
∂qi∂qj∂qk

. The dynamics of the χjk are
then

˙χjk = ηjk

˙ηjk = 2	jk − χjlV,kl(〈q〉) − χklV,jl(〈q〉)
˙	jk = −1

2
(
ηjlV,kl(〈q〉) + ηklV,jl(〈q〉)

)

where

ηjk = 〈(qj − 〈qj〉)(pk − 〈pk〉) + (pj − 〈pj〉)(qk − 〈qk〉)〉
	j,k = 〈(pj − 〈pj〉)(pk − 〈pk〉)〉 .

5



3 Two states systems

Consider now a two states system. Its wave function ψ belongs to C
2. The

Schrödinger equation
ı�ψ̇ = (H0 + uH1)ψ

involves now the 2 × 2 Hermitean matrices H0 and H1:

H0 =
(−E/2 0

0 E/2

)
, H1 =

(
h1 b
b∗ h2

)

with E, h1, h2 ∈ R and b ∈ C
∗. With ψ = (a1, a2) ∈ C

2, the density matrix is
defined by

ρ = |φ〉 〈φ| =
(|a1|2 a∗

1a2

a1a
∗
2 |a2|2

)
.

In terms of Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −ı
ı 0

)
, σz =

(
1 0
0 −1

)
,

it reads
ρ = 1 + λσx + µσy + νσz

with �S = (λ, µ, ν) ∈ S
2. This corresponds to a classical change of coordinates

(spin coordinates, see [4]) where the meaningless absolute phase is removed: :
φ = (a1, a2) ∈ C

2/{0} and φ̃(ã1, ã2) ∈ C
2/{0} are the probabilities amplitudes

of the same physical state if and only if exists θ ∈ S
1 such that a = exp(ıθ)ã.

Notice that �S ∈ S
2 comes from |a1|2 + |a2|2 = 1. In the spin coordinates the

dynamics reads
�̇S = �S ∧ (ω0

�B0 +
u

�

�B1)

where ω0 = E/� and

�B0 =


0

0
1


 , �B1 =


−2
(b)

2�(b)
h1 − h2


 .

Set τ = ω0t, ′ = d/dτ and v = ‖ �B1‖
ω0�

u the new control. The dynamics becomes

�S′ = �S ∧ ( �B0 + v �J)

where �J is the unitary vector 1

‖ �B1‖
�B1. Denote by α ∈]0, π[ the angle between

�B0 and �J and consider the ortho-normal frame (�I, �J, �K) with �K = �B0∧ �J/ sin α

and �I = �J ∧ �K. Set �S = x�I + y �J + z �K ((x, y, z) ∈ R
3 with x2 + y2 + z2 = 1).

Then the dynamics reads

x′ = −z(cos α + u), y′ = z sin α, z′ = x(cos α + u) − y sinα,
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since �B0 = sin α�I +cos α �J . Notice that x2 +y2 +z2 is invariant. The restriction
of the dynamics on S

2 is flat with y as flat output:

z = y′/ sin α, x = ±
√

1 − y2 − (y′)2/ sin2 α.

Let us now find a smooth control [0, T ] � t �→ u(t), u(0) = 0 and u(T ) =
0, steering from −E/2 to +E/2. When u = 0, the state of energy −E/2
corresponds, in the spin-coordinates, to (x, y, z) = (− sin α,− cos α, 0) and the
state of energy +E/2 to (x, y, z) = (sin α, cos α, 0).

Assume to simplify that α = π/2 (a similar construction exists for over
values of α). Set p(τ) = (1 − τ)τ2(2 − τ)2. Simple computations show that the
function f(τ) = 1− p2(τ)− (p′)2(τ) is non negative on [0, 2], reaches 0 only for
τ = 1 with f ′′(1) > 0. Thus the function g : R �→ R defined by

g(τ) =




−1 if τ < 0
−√

f(τ) if τ ∈ [0, 1]√
f(τ) if τ ∈ [1, 2]

1 if τ > 2.

is C2. The control
v(τ) = −g′(τ)/p′(τ)

is well defined even for τ around 1. It steers the system from (−1, 0, 0) at τ = 0
to (1, 0, 0) at τ = 2. The steering trajectory is

x(τ) = g(τ), y(τ) = p(τ), z(τ) = p′(τ).

The interest of the above computations relies on the fact that the control u is
smooth. This is not the case for standard steering control of ±1/2 spin systems
[1]: u is then piecewise constant and discontinuous; the steering trajectory is a
collection of Lamor precessions over finite time interval.

4 Three states system

Consider now a three states system with three energy levels E1 < E2 < E3

corresponding to the physical case illustrated on figure 1. It corresponds to the
reduced model of a 1D particule in the potential V (q) admitting two minima
with bounded state ψ1 and ψ2 of low energy E1 and E2 separated by a potential
barrier and a third bounded state ψ3 of energy E3 passing over the barrier. The
supports of the ψi, i = 1, 2, 3 are roughly sketched by the dashed horizontal
lines. The three states model is a finite dimensional approximation of ı�ψ̇ =
(p2/2m + V (q) − uq)ψ then entries (1, 2) and (2, 1) in H1 are negligible. We
have the following dynamics

ı�α̇1 = (E1 + u 〈q〉1)α1 + u 〈q〉13 α3

ı�α̇2 = (E2 + u 〈q〉2)α2 + u 〈q〉23 α3

ı�α̇3 = (E3 + u 〈q〉3)α3 + u 〈q〉∗31 α1 + u 〈q〉∗32 α2
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tunnel transition
via active control
classical Rabi 
transition

Figure 1: A three states system: steering from E1 to E2 without reaching E3

via active tunnelling control.

where
〈q〉i =

∫
|ψi|2q dq, 〈q〉ij =

∫
ψ∗

i ψjq dq

and ψ = α1ψ1 + α2ψ2 + α3ψ3 with ai ∈ C. Change the phase as follows

αi = exp
(
−ıE3t −

∫ t

0

u(s) 〈q〉3 /� ds

)
ai, i = 1, 2, 3.

Then
ıȧ1 = (ω13 + ue1)a1 + ub1a3

ıȧ2 = (ω23 + ue2)a2 + ub2a3

ıȧ3 = ub∗1a1 + ub∗2a2

(2)

where ω13 = (E1 − E3)/� and ω23 = (E2 − E3)/� are the Bohr frequencies,
ei = (〈q〉i − 〈q〉3)/�, b1 = 〈q〉13 /� and b2 = 〈q〉23 /�.

Finding explicit open-loop control [0, T ] � t �→ u(t) steering from the pure
state of energy E1, a = (1, 0, 0), to the pure state E2, a = (0, 1, 0) without
passing via the intermediate state E3 is not so obvious. We propose here an
open-loop design mixing standard perturbation techniques (see, e.g., [7]) and
flatness based steering methods.

Assume that the control u is small, |ubi|, |uej | � ω13, ω23 and varies slowly
(time constant much smaller than T23 = 2π/ω23 and T13 = 2π/ω13 the Bohr
periods). Set b1 = r1 exp(ıθ1), b2 = r2 exp(ıθ2) with ri and θi real. Set

u =
2v1(t)

r1
cos(ω13t) +

2v2(t)
r2

cos(ω23t)

with v1 and v2 small amplitude. Then classical averaging techniques show that
the solutions of (2) are close to the solution of the average system

ẋ1 = v1x3

ẋ2 = v2x3

ẋ3 = −v1x1 − v2x2

(3)

8



where

a1 = exp(ı(θ1 − ω13t))x1, a2 = exp(ı(θ2 − ω23t))x2, a3 = ıx3.

Notice that when one of the vi is constant and the other one is zero we recover
the classical Rabi oscillations [7]. They can be used to steer, in a first step, the
state from energy E1 to energy E3 with v1 constant �= 0 and v2 = 0 and then,
in a second step, to steer the system from E3 to E2 with v1 = 0 and v2 constant
�= 0. We will see that we can mix these two steps to steer directly the system
from E1 to E2 without reaching the energy E3.

Up to phase shifts that are not important from physical reasons, we have
to find v1 and v2 steering the state x from (1, 0, 0) to (0, 1, 0). Thus we can
suppose that the components of x remain real during the motion (notice that u
must be real thus, v1 and v2 are also real). Conservation of probability means
that I = x2

1 +x2
2 +x2

3 is invariant and equal to 1 and we have (with the positive
branch x3 =

√
1 − x2

1 − x2
2):

ẋ1 = v1

√
1 − x2

1 − x2
2, ẋ2 = v2

√
1 − x2

1 − x2
2

with x1 and x2 as flat output. Take any increasing smooth bijection s �→ σ(s)
from [0, 1] to [0, 1] with

σ(0) = 0, σ(1) = 1,
diσ

dsi
(0) =

diσ

dsi
(1) = 0, i = 1, 2, 3.

Set x1 = 1 − σ(t/T ) and x2 = σ(t/T ). Then the control

v1(t) =
−σ′(t/T )

T
√

2σ(t/T )(1 − σ(t/T ))

v2(t) =
σ′(t/T )

T
√

2σ(t/T )(1 − σ(t/T ))

is well defined for t ∈ [0, T ], is smooth and satisfies vi(0) = vi(T ) = 0, i = 1, 2.
Moreover it steers the average state x from (1, 0, 0) at t = 0 to (0, 1, 0) at
t = T . Notice that when T � T13, T23, we automatically satisfy the averaging
assumptions.

The simulations here are based on model (2) with σ a polynomial of degree
7. We have considered three different cases:

• the standard case of figure 2: the bi and ei are closed to one; the ratio of
the Bohr frequency is irrational.

• the resonant case of figure 3: the ratio of the Bohr frequency is rational
ω23 = 2ω13.

• the ill conditioned case of figure 4: the system is close to a non controllable
one; ω23 ≈ ω13. This case requires larger transition times T .

Such control designs can be extended to quantum oscillators with more than 3
states. It seems that this design method produces steering trajectories similar
to [9].
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Figure 2: Active tunneling from E1 to E2 without reaching E3 > E1, E2; the
standard case.
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Figure 3: Active tunneling from E1 to E2 without reaching E3 > E1, E2; the
resonant case E3 − E2 = 2(E3 − E1).

11



0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

Parameters: b
1
=1, b

2
=1, e

1
=−1, e

2
=1, ω

13
=1, ω

23
=1.1, T/T

23
=20

v
1

v
2

0 2 4 6 8 10 12 14 16 18 20
−0.1

0

0.1

0.2

0.3

Control u= v
1
(t) cos(ω

13
 t) + v

2
(t) cos(ω

23
 t)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1
Probabilities

|a
1
|2

|a
2
|2

|a
3
|2

Figure 4: Active tunneling from E1 to E2 without reaching E3 > E1, E2; the ill
conditioned case E3 − E2 ≈ (E3 − E1.
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