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Abstract

Suitable radial profiles of refractive index are designed in order to
reduce signal dispersion and increase fiber capacity. It is shown that for
any radial index profile independent of the frequency, the phase velocity
cannot be constant, even locally around any frequency. On the contrary,
it is proved, that the phase velocity can be maintained constant when
the refractive index is a function of space and frequency. Some simple
and explicit computations show how to design such an index profile (as
a function of space and frequency) in order to ensure a constant phase
velocity.

1 The direct problem

The modal analysis (propagation modes, see [1]) of an optic fiber with cylindric
symmetry (cylindric coordinates (r,0,z)) leads to the following problem: for
each frequency w, finding a propagation constant S > 0 and non zero electric
and magnetic fields of the form

E = exp(i(wt — 2))E(r,0)
H = exp(i(wt — B2))Ho(r,0)

satisfying the Maxwell equations

VXEZ—@%—?
VXH:W
V- D=0
V-B=0

where D and B obey
D = g6, &
B = ,LL()H.
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The relative permittivity €, is equal to square of the refractive index n. It
is real (no absorption, conservative case) and depends on r and w (radial and
material dispersion). € and B must tend to zero when r tends to +oo (boundary
conditions). Since V x & = —iwH, we can eliminate H and concentrates on
finding 3 such that (c is the light velocity in vaccum)

AE +V[(2/n)Vn - E] = —(w*n?)/c*E, V- (n*€)=0.

admits non zero solution of form & = &y(r,6).e?“*=5%) vanishing at infinity.
Throughout the paper, we say that a spatial field tends to 0 at infinity when
the module of any derivatives of order less or equal to 2 decreases enough rapidly.

&y admits 3 components (E,, Eyg, E.) in the cylindric frame (e,,eq,e,). Let
us denote by A = E,e, + Egeg, C = E. /(i) and v = ¢3/w. Then we have the
following system

[ V)

(1 —n?)A = AA+ V(Viog(n?) - A)

‘ENQM‘E

(o)
[~}

(1? —n?)C = AC + Vlog(n?) - A
W22

C=V- A+ Vlogn?)-A

where the two components of V correspond to derivation with respect to z =
rcosf and y = rsinf. Simple computations show that if A is solution of the
first equation, and C'is given by the last equation, then C' automatically satisfies
the second equation. Thus we can just consider the first equation:

2

“6’2 (V% —n%)A = AA + V(Vlog(n?) - A) (1)

Classically, the term Vlog(n?) - A is neglected when g—’;‘ is much smaller than

the inverse characteristic wave length ¢/w. So we will consider the following ap-
proximate direct problem: for a given profile (r,w) — n(r,w), for any frequency
w such that |w|/c < 1/]%2|, find v such that

w2

= (1 —n?)A=AA (2)
admits a non zeros solution A = (A,, A,) that tends to O at co. For a given
w, we can have several v. This corresponds to different propagation modes
associated to the same pulsation w.

Let us prove (at least formally) that for a given branch, says v = ¢(w), we
have always ¢'(w) > 0 when n is independent of w. This means that for any
profile n(r) independent of w, the phase velocity cannot remain constant. This
fact comes from the following analysis that can be made rigorous if necessary.
The first variation of (2), yields

w2

Adv = AJA

2
C;)—2(1/ —-n )6A+—(u -n )A6w+—|—



where 0 A and A are fields tending to 0 at infinity. We then take the dot-product
with A, integrate over the plane (x,y), use the fact that £ (V —-n?)A = AA
and integrate by part, to obtain

(0 ([ 20

Similarly, [ f (v? —n? =—[[(VA;)? + (VA,)?. Thus we have
@7 o A [ [(VA;)? + (VAy)?
do  dw W ffA2 '

We do not know if such obstruction to constant phase velocity (v = cte
independent of w), is still valid if we do not neglect the term Vlog(n?) - A in
the original equation (1).

2 The inverse problem

Take (2) and set w — v(w). Find r — n(r,w) such that for any w, exists a
non zero solution of (2) that tends to 0 at infinity. Notice that n depends on
w. We will see that this problem always admits a solution. In fact they are
many solutions. We will propose here below a simple and explicit one by taking
A = W(r)e, independent of w. Then (2) reduces to the following classical
equation ( stands for d/dr):

2
W'+ W' [r —W/r? + ucj—z(n2 VW =0.

This second order differential equation is regular singular at r = 0 (see, e.g.,[2,
page 197]) and a = 1 is a root of the indicial equation. Thus we set W(r) =
rexp(h(r)) where h(r) will be chosen later. Then h satisfies

2
w
rh” +r(h')? + 30 + 07(712 —v%) =0.

Set, e.g., h(r) = —r /o where o is a positive length. We have the explicit formula

2 2
n? =12 %(m" ()2 +3h) = 12 + 5(3 —r/o)

that can be used to design physical profile n. In particular we recover the fact
that for » = 0, n > v and for r large n < v. Moreover we know explicitly the
propagation mode:

c
E = h(re, —i—(rh’ + 2)e.
o = exp h(re zwy(r +2)e,)

For a typical wavelength of A\ = £ = 1um, figure 1 illustrates the obtained
profile for 0 = 10\ with a constant phase velocity associated to v = 1.5. We
have checked that the approximation |dn/dr| < 1/ is valid.

Notice that similar computations can be made for the complete system (1)

where g—ﬁ is not neglected.
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Figure 1: the refractive index n(r,w) that ensures a constant phase velocity

= 1.5: with such profile, the fiber is dispersion free and the corresponding

propagation mode is almost independent of w.
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