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Computing the Flat Outputs of Engel Di�erential Systems

The Case Study of the Bi-steerable Car
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Abstract

Flatness is an interesting structural property of

many engineering systems. Typically, the knowledge

of the Flat Outputs of a system allows the design of

open loop control and helps the design of control loops.

When the literature includes many works on �nding

families of 
at systems or proposing tools to check the


atness of a system, there has been very few works on

the actual computation of the Flat Outputs which re-

mains an open practical problem. In this paper, we

present a necessary condition for the 
at coordinates

change of any system represented by two di�erential 1-

forms in a state space of dimension 4. This condition

is expressed by a partial di�erential equation and im-

plies an approach to help the computation of the 
at

outputs. Then, we apply our approach to a speci�c

system, namely the Bi-steerable car for which we ex-

plicitely compute the 
at outputs. Hence, we solve the

problem of the open loop control design for bi-steerable

cars which was our initial and main motivation.

1 Introduction

This work has been originally motivated by the

problem of path planning for a Bi-steerable car. In-

deed among people working on mobile robots and

Intelligent Transportation Systems, there has been

lately an increasing interest for Bi-steerable plateforms

which o�er a better maneuvrability. Examples of such

vehicles are the \Cycab" platform commercialized by

Robosoft1 company or the \�Car" prototype of IEF2.
A bi-steerable car is a car such that the steering of

its front wheels by an angle � induces a steering of its

rear wheels by an angle f(�). This feature not only

1See e.g. www.robosoft.fr.
2\Institut d'Electronique Fondamentale" of Paris-Sud

University.

increases the upper bound of the rotational velocity of

the vehicle but also it reduces the sweeping volume of

the vehicle in motion and therefore enhances its ma-

neuvrability in cluttered environments. However to

our knowledge there is no existing motion planning

method for such systems. One way of designing an

open loop control for this system is to use its 
atness

property.

A system _X = f(X;u) is said di�erentially 
at

[1] if there exist 
at (or linearizing) outputs Y =

(y1; :::; ym) di�erentially independent such that:

� any system variable (state, controls,. . . ) can be

expressed only from the linearizing outputs and

their successive derivatives.

� the 
at outputs can be expressed as a function of

the system variables and their successive deriva-

tives,

which roughly means that there is a one-to-one corre-

spondance between arbitrary maps Y (t) and the solu-

tions (X(t); u(t)) for the system.

The interesting point here is that, unlike the state

coordinates, (y1; :::; ym) are di�erentially independent.
Therefore unlike the state space, any smooth curve in

(y1; :::; ym) space corresponds to an admissible path

for the system. Hence, path planning becomes eas-

ier in the linearizing space since we do not have

to take into account any kinematic constraint along

the path. The only constraints that have to be

considered are those on the successive time deriva-

tives of the curve at its both ends (Yinit, Ygoal).
These constraints are imposed by the starting and

goal con�gurations and their successive derivatives

(Xinit; Xgoal; _Xinit; _Xgoal; � � �).
There is therefore an evident advantage in exploit-

ing the di�erential 
atness of a nonholonomic system

(such as the bi-steerable car) for trajectory planning

purposes: arbitrary curves (e.g. polynomials) in the




at output space (having only initial and �nal con-

straints on their time derivatives) could be employed

in order to connect Yinit and Ygoal.
however, in order to use the 
atness property of

the system for path planning a main problem remains:

the computation of the 
at outputs. indeed, even if

determining the 
atness of a system remains an open

practical problem in general, the problem has been al-

ready solved for some family of systems such as the

driftless 2-inputs systems [2] or Pfa�an systems of di-

mension 2 [3]. however, the literature includes very

few works on the actual computation of the 
at out-

puts. In this paper, we aim at bringing a contribution

in this direction.

Concerning the bi-steerable car, the system proved

to be 
at [4] and we present in this paper its actual


at outputs and the way to compute them (section 4).

Our approach has been inspired from the study of En-

gel form systems [5] for which we obtain a necessary

condition on the 
at coordinates change. Therefore

to some extends, our approach can be applied to any

di�erential system of dimension 2 on a Manifold of di-

mension 4 (section 3). but let us start with a quick

recall of some exterior calculus notions (section 2) that

will be used later.

2 Few concepts of the Exterior Di�er-

ential Systems

3 Flat outputs of an Engel system

Consider a manifold M of dimension 4 and an ex-

terior di�erential system on M de�ned by :

!1 = 0 !2 = 0 (1)

where !1; !2 2 
1(M) are independant 1-forms. It

has been shown [2] that such a system is 
at if and

only if its derived 
ag satis�es :

I = f!1; !2g

dimI(1) = 1

dimI(2) = 0

(2)

Notice that other possibilities for the derived 
ag

(dimI(1) = 2 or dimI(1) = 1; dimI(2) = 1) corre-

spond to a non controllable system (e.g. from the Lie

Algebra Rank Condition [?]) and each instance of the

problem is actually equivalent to a system of lower di-

mension. Now if we come back to the 
at case, the

Engel theorem states ([5]):

Theorem 1 - Engel : For a system (1) verifying

the condition (2) on its derived 
ag, there exists co-

ordinates y1; y2; y3; y4 such that the system can be put

in Engel form :

I = fdy4 � y3dy1; dy3 � y2dy1g

If we consider the Engel form of the system (1), (y1; y4)
are clearly the 
at outputs of the system. Indeed

in fy1; y2; y3; y4g coordinates, the system (1) can be

equivalently written in the chained form :8>><>>:
_y1 = u1
_y2 = u2
_y3 = y2u1
_y4 = y3u1

where obviously all variables of the system can be ob-

tained from (y1; y4) and their derivatives. Now gener-

ally, !1 and !2 are not expressed in the fyig coordi-

nates. Therefore, in order to take a practical bene�t

of the 
atness we have to compute the coordinates

change which put the system into Engel form and ex-

plicitly obtain the 
at outputs expressions. What fol-

lows is a scheme to help the computation of this coor-

dinates change which is obviously function of fw1; !2g
and the original coordinates in which they are ex-

pressed.

The main point to compute the coordinates change

fxig �! fyig is to notice that the Engel form of the

system is adapted to the derived 
ag (see the proof of

the Engel theorem [5]). Therefore:

I(1) = fdy4 � y3dy1g

Let us compute a 1-form of I(1) in the original coordi-

nates system (x1; x2; x3; x4) of M , in which f!1; !2g
are expressed. Given fdx1; dx2; dx3; dx4g the associ-

ated basis of 
1(M), there are scalar functions �i
j
on

M such that:

!i =

4X
j=1

�i
j
dxj i = 1; 2 (3)

For � 2 
1:

� 2 I(1) =) � 2 I and d� = 0 mod I

Therefore there are scalar functions �i on M such

that:

� = �1!1 + �2!2



which implies

d� = d�1 ^ !1 + �1d!1 + d�2 ^ !2 + �2d!2
= �1d!1 + �2d!2 mod I

(4)

Now from (3):

d!i =

4X
j=1

d�i
j
^ dxj i = 1; 2

and expressing d�i
j
in fdxig basis using their partial

derivatives one gets:

d!i =
X

1�j<k�4

(
@�i

j

@xk
�
@�i

k

@xj
)dxj ^ dxk i = 1; 2 (5)

Since !1 and !2 are independant, from (3) one can ex-

press two of the 
1(M) basis vectors in function of !1,
!2 and the other vectors. Without loss of generality,

assume those vectors are dx1; dx2, (3) leads to:

dx1 = �13dx3 + �14dx4 mod f!1; !2g

dx2 = �23dx3 + �24dx4 mod f!1; !2g

where �j
i
's are scalar functions: M �! R involving

only �k
j
's. Injecting these expressions in (5), the exte-

rior product properties give:

d!1 = 
1dx3 ^ dx4 mod f!1; !2g

d!2 = 
2dx3 ^ dx4 mod f!1; !2g

where 
1; 
2 are computable functions of �j
i
's and their

partial derivatives. Therefore (4) becomes:

d� = (�1
1 + �2
2)dx3 ^ dx4 mod I

Therefore a su�siant condition for � to belong to I(1)

is:

�1
1 + �2
2 = 0

Hence:

� = 
2!1 � 
1!2 =

4X
j=1

(
2�
1
j
� 
1�

2
j
)dxj (6)

is a 1-form of I(1) and therefore colinear to dy4�y3dy1.
Now suppose:

y1 = P 1(x) y4 = P 4(x)

Then:

dyi =

4X
j=1

@P i

@xj
dxj i = 1; 4

Again since dy1 and dy4 are independant, expressing

two of the dxi's (e.g. dx1; dx2) in function of the others
and dy1; dy4 and injecting the result in (6), one gets:

� = g1dy1 + g4dy4 + f3dx3 + f4dx4

where f3; f4 are expressions of known functions

(�i
j
(x)'s and their partial derivatives) and unknown

functions that we are looking for (P 1(x); P 4(x)) and
their partial derivatives. Therefore we have the fol-

lowing lemma:

Lemma 1 The coordinates change giving the 
at out-

puts:

y1 = P 1(x) y4 = P 4(x)

is solution of the partial di�erential equation:

f3(x; P
1; P 4; @P 1; @P 4) = 0

f4(x; P
1; P 4; @P 1; @P 4) = 0

In the next section we study the speci�c case of the

bi-steerable car and show how this approach allows us

the explicite computation of the 
at outputs.

4 The 
at outputs of the Bi-steerable

Car

A bi-steerable car is a car with both front and rear

orientable wheels such that the rear wheels steering

angle �r is a function f(�f ) of the front steering angle
�f . We represent a con�guration of the system by a

point (x; y; �; �) of the manifold M = R2
� (S1)2 (of

dimension 4) where x; y are the Cartesian coordinates

of the middle point of the rear axle, � is the orientation
of the car in the reference frame and � is the angle of

the front wheels with respect to the car (see �gure (2).

The kinematic constraints imposed on the system are

due to the rolling without slippage of the wheels which

means that the instantaneous velocity of each wheel is

parallel to its orientation:�
_y cos(� + �)� _x sin(� + �) = 0

_yrear cos(� + f(�))� _xrear sin(� + f(�)) = 0

4.1 The systematic approach

The equivalent exterior di�erential system on M is

I = fw1; !2g with:

!1 = cos(� + �)dy � sin(� + �)dx

!2 = cos(�+f(�))dy�sin(�+f(�))dx�L cos(f(�))d�
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Figure 1: Model of the Bi-steerable car.

where L is the distance between the front and rear

axle. Following the scheme of Section (3) the di�eren-

tiation leads to:

d!1 = � sin(� + �)(d� + d�) ^ dy
� cos(� + �)(d� + d�) ^ dx

d!2 = � sin(� + f(�))(d� + f 0(�)d�) ^ dy
� cos(� + f(�))(d� + f 0(�)d�) ^ dx
+Lsin(f(�))f 0(�)d� ^ d�

And later on:

d!1 = 
1(�)d� ^ d� mod I

d!2 = 
2(�)d� ^ d� mod I

with


1(�) =
�L cos(f(�))

sin(�� f(�))


2(�) =
�L cos(�)f 0(�)

sin(�� f(�))

Here and from now on, for any h, the notation h0(�)
implies that h is a scalar function of the unique vari-

able � and h0(�) is its derivative with respect to �; as

it is the case of f 0(�) above. Notice also that unlike

the general case, here 
i's are functions of only the co-
ordinate �. Always following the scheme of Section (3)

we get a vector of I(1):

� = [
2 sin(� + �)� 
1 sin(� + f(�))]dx
�[
2 cos(� + �)� 
1 cos(� + f(�))]dy
�L
1 cos(f(�))d�

and we know that if we �nd variables y1 and y2 such

that at each point p = fx; y; �; �g:

� = k1(p)dy1 + k2(p)dy2

for some scalar functions k1; k2 then y1; y2 are the 
at
outputs. One can prove that for our system the 
at

outputs are only function of the state variables [3].

Considering our speci�c system and the invariances of

the problem (with respect to the translations and ro-

tations of the car) it is sound to consider (y1; y2) as the
Cartesian coordinates of a point whose relative posi-

tion with respect to the robot does not depend on the

position and the orientation of the vehicle. Therefore

the coordinates of such a general point in the vehicle

frame can be expressed as follows:

�
y1
y2

�
=

�
x
y

�
+P (�)

�
cos(�)
sin(�)

�
+Q(�)

�
� sin(�)
cos(�)

�
(7)

with P and Q the unknow functions that we have

to determine. By computing dx; dy in function of

dy1; dy2; d�; d� and subtituting them in the expression

of � above we get the PDE of the Lemma (1). After

some computations and simpli�cations all coordinates

but � disappear in the PDE and we get:

P (�)[cos2(�)f 0(�)� cos2(f(�))]+
Q(�)[cos(�) sin(�)f 0(�)� cos(f(�)) sin(f(�))]�
L cos 2(f(�)) = 0

(8)

P 0(�)[cos(�) sin(�)f 0(�) � cos(f(�)) sin(f(�))]+
Q0(�)[cos2(�)f 0(�) � cos2(f(�))] = 0

(9)

Now from (8) we can express P 0 in function of Q and

Q0 and subtitute it in (9) in order to obtain a �rst

order ODE which we can theoretically solve using the

method of the variation of the constant to obtain Q.
Thence we get P and y1; y2.

However, from a practical point of view, such a so-

lution is not yet quite satisfactory. Indeed, Q will

be computed through a double (enclosed) numerical

integration which gives no hint on how to compute

the inverse transformation (i.e. the expressions of the

original coordinates in function of the 
at outputs and

their derivatives).



4.2 Further computations
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Figure 2: Frames and coordinates.

Let us work out the equations to obtain more

tractable expressions for P and Q. For an arbitrary

angle � let us denote by ~u� the unitary vector of di-

rection �. Let us de�ne the vector:

~t = cos(�)f 0(�)~u�+� � cos(f(�))~u�+f(�)

Which is a linear combination of a vector parallel to

the front wheel and a second one parallel to the rear

wheel. Let us call F (resp. H) the point of the Carte-

sian coordiante (x; y) the middle point of the rear axle

(resp. (y1; y2) the 
at outputs), see Fig. (??). Ex-

pressing ~t and ~FH in the robot frame we get:

~FH = P (�)~u� +Q(�)~u�+�

2

~t = A(�)~u� +B(�)~u�+�

2

With

A(�) = cos2(�)f 0(�)� cos2(f(�))
B(�) = cos(�) sin(�)f 0(�)� cos(f(�)) sin(f(�))

Then (8) and (9) imply:

~FH:~t = L cos2(f(�)) (10)"
d ~FH

d�

#
R
�

== ~t (11)

Which show the interest of the vector ~t. Indeed, ~t
varies in function of � and � however the projection

of H(y1; y2) on ~t is known (see (10)). Moreover, as we

have seen H position with respect to the car is only

function of � and its in�nitessimal variation in the car

frame R� is parallel to ~t for any � (see (11)).

Therefore it seems more interesting to express H in

the frame attached to ~t. With the follwing notations:

�(�) = d(~u�;~t ) = tan�1
B(�)

A(�)

~FH =M~u� +N~u�+�

2

One can prove using (10) and (11):

M(�) =
L cos2(f(�))

(A2(�) +B2(�))
3

2

N(�) = �

Z
�

0

L cos2(f(u))(B0(u)A(u)�A0(u)B(u))

(A2(u) +B2(u))
3

2

Thus the projection of the problem in the turning

frame attached to ~t allows us to have tractable expres-
sions of the H coordinates. Typically M is expressed

analytically and N is the primitive of a simple expres-

sion. Hence:

P (�) =M(�) cos(�(�)) �N(�) sin(�(�))

Q(�) =M(�) sin(�(�)) +N(�) cos(�(�))

4.3 The inverse expressions

The formulation of the problem in the new frame

also allows the computation of the original coordinates

(x; y; �; �) in function of the 
at outputs and their

derivatives.

Considering the invariances of the problem, one can

prove that the curvature �(t) of the curve H(t) during
the motion is only function of �. Then we can compute

the relation �(�) by considering the case where the car
does not move and only turns its wheels at a speed _� =

1 (i.e � = t) inducing a motion of H . In this speci�c

case the absolute velocity of H is equal to its relative

velocity with respect to the car. This velocity has an



angle � relatively to the car (see 11). Eventually one

gets:

�(�) =
�0(�)

(M 0(�)� �0(�)N(�))

Also by �nding the right trigonometric simpli�cations

one can prove that:

dy2
dy1

= tan(� + �)

In other words, knowing the curve y1(t); y2(t) of the

at outputs during the motion we can compute �(t)
through �(t) (by inversing the expression �(�)). Then
from �(�), and the orientation of the velocity of H(t)
we get �. Finally, we compute x; y using (7).

Fig. (??) and Fig. (??) are examples of paths fol-

lowed by the car when the 
at outputs follow the path

y2 = y21 . In Fig. (??), f(�) = �0:6� whereas in

Fig. (??), f(�) = sin(�).

5 Conclusions

In this paper we aimed at stressing the di�culty of

the practical computation of the linearizing outputs of

a 
at system. We suggested a strategy for this com-

putation for a family of systems (namely the Engel

Systems) based on the fact that the 
at outputs are

necessary solutions of a certain PDE. Then we study in

details the case of the bi-steerable car which illustrate

our strategy and also allows to present some typical

obstacles in the computation of the 
at outputs and

some hints to overcome them. Obtaining the 
at out-

puts for the bi-steerable car solves the problem of open

loop control for this system (e.g. using the curves sug-

gested in [6]) and leads to the �rst path planner for

this system.
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