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1 Introduction

Motion planning, i.e., the construction of an open-loop control connecting an initial state to a final state, is a
fundamental problem of control theory both from a practical and theoretical point of view. For systems governed
by ordinary differential equations the notion of flatness [5, 11] provides a constructive solution to this problem. As
noticed in [11], the idea underlying equivalence and flatness —the existence of a one-to-one correspondence between
trajectories of systems— can be adapted to partial differential equations [6, 1, 7] with boundary control.

In this paper, which develops ideas introduced in [11, 10], we study in this spirit the heat equation with one
space dimension and control on the boundary. We give an explicit parametrization of the trajectories as a power
series in the space variable with coefficients involving time derivatives of the “flat” output. This series is convergent
when the flat output is restricted to be a Gevrey function (i.e., a smooth function with a “not too divergent” Taylor
expansion). This parameterization ezplicitely provides regular (i.e., C%, smooth, Gevrey,...) open-loop controls
achieving the approximate motion planning. We then extend some of these results to the general 1-D linear diffusion
equation.

Approximate controllability of the linear and semilinear heat equation has already been extensively studied,
using for instance duality coupled with BU results in the Hilbertian case (see for instance [3] or [13]), or semigroup
theory [4]. Our approach, which focuses more on finding explicit solutions rather than on mathematical generality,
is somewhat different and is more related to older works by Holmgren and Gevrey [18, 8] (see also [9] for a more
modern presentation).

2 Gevrey functions

The Taylor expansion of a smooth function is not convergent, unless the function is analytic. The notion of Gevrey
order is a way of estimating this divergence.

Definition 1. A smooth function ¢ € [0,T] — y(t) is Gevrey of order a if

m!)«
Rm™

dM,R > 0,Ym € N, sup ‘y(m)(t)‘SM(
te[0,T]

By definition, a Gevrey function of order « is also of order 8 for any f > a. A classical result (the Cauchy
estimates) asserts that Gevrey functions of order 1 are analytic (entire functions if a < 1). Gevrey functions of order
a > 1 have a divergent Taylor expansion; the larger a, the “more divergent” the Taylor expansion.

Important properties of analytic functions generalize to Gevrey functions of order o > 1: the scaling, integration,
addition, multiplication and composition of Gevrey functions of order @ > 1 is of order « [8]. But contrary to analytic
functions, functions of order & > 1 may be constant on an open set without being constant everywhere. For example
the “bump function”

0 if t ¢]0,1],

¢'y(t) = -1 .
exp <m> if t €]0,1[.
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is of order 1 + 1/y whatever v > 0 [14]. Similarly,

0 ift<0
5.0 1 ift>1
vy = t
7@ a1 elo, 1[,
fo ‘bv(T)dT

that will be used for motion planning, has order 1+ 1/+.
In the same way, we can define Gevrey functions of two variables.

Definition 2. A smooth function (z,t) € [0,1] x [0,T] — y(z,t) is Gevrey of order o in t and § in x if

nt+m N (p)B
IM,R,S > 0,¥m,n € N, sup u(m)‘SMM
(z,£)€[0,1]x[0,T] | OTOt™ RmSn
3 The heat equation is “flat”
0,8(0,t) = 0 346(1, 1) = A (U(t)-8(L, 1))
o(x, 1)
| l
0 X 1

Figure 1: The heated rod

Consider the one-dimensional rod shown in figure 1 [16, example 4.2.2]. Heat is added from a steam chest at
x = 1, while the end at x = 0 is perfectly insulated. This system is modeled by

0 (z,t) = Opaf(2x,t), x €1]0,1]
(1) 8,0(0,¢) =0
9:0(1,t) = Mu(t) — 6(1,1)),

where 6(x,t) is the temperature along the rod and u(t), the temperature of the steam chest is the control input ; A
is a positive constant.
We claim this system is “flat” [5, 11] with

y(t) = 0(0,1)

as a “flat” output. In other words, we will show there is (in a certain sense) a 1 —1 correspondence between arbitrary
functions ¢ + y(¢) and solutions of (1) (other boundary conditions could be treated with minor adaptations).
Noticing the “inverse” system

Opeb(x,t) = 0:0(x, 1)

(2) 0,0(0,t) =
0(0,t) = y(1),
is in Cauchy-Kovalevskaya form, we first seek a formal solution 6(z,t) = ;og ai(t)zT;, where the a; are smooth

functions. Using (2), we find
() =yt
WZO’{ axt) =51

aziy1(t) =0,
so that

too 22
(3) Oz, t) = Z; y (ﬂ@-



The formal control is then

O 152 40
(4) ult) = 6(1,8) + 80175 Zy ! %ZQZ_l

We now give a meaning to this formal solution by restricting ¢ — y(t) to be Gevrey of a suitable order a.

Theorem 1. When y(t) is Gevrey of order a < 2, the formal solution (3) is Gevrey of order o in t and order 1
in x (and in particular the formal control (4) is Gevrey of order a).
When a = 2, the same result holds provided R > 4 (R is the "radius” of y(t) in definition 1).

Proof. We formally differentiate (3),
an+m9 2i—n

H—m £
5) 83:”675’” Z v 2z (2i —n)

2i>n

and bound the general term of this power series to find Gevrey estimates:

y(z+m) (t) p2i—n
mlen! (20 —n)!

M (Gi+m)* 1
— RHm™ (2{ — n)! mlon!
M (i +m)!>“ 12102

~ Ritm ilm! n!(2i — n)!
M ((i+m)\* Vi (26)l1*?
Rit+m ilm! 22 nl(2i —n)!
M i~ 2\/_
= fm Em R
where we have set R := £ and used (I + k)! < 2/t*1!k! and Stirling’s formula k! ~ (%)k V2rk.
Consider now the number )
. Jor— -
M=MY i
2i>n R
Since the general term of this series satisfies
(i+1)!aj2 m(i+1) o
lim — B o i L
i—+o00 z!ﬁ—f@ i+t R
Rl

M is finite when a < 2; when a = 2, M is finite provided R > 1, i.e., R > 4. Hence

. 2i—n " 1, |

(2i —n)!| = Rmin’

gmtng
‘W(%t)‘ < Z Yy

2i>n

which means 6(z,t) is Gevrey of order 1 in z and « in ¢. This implies in particular that the control u(t) defined
by (4) is Gevrey of order «, since the power series defining 6 and 0.6 have a radius of convergence > 1.

Notice this result could be improved: it is quite easy to prove that 6(z,t) is in fact of order a/2 in z, i.e., is
entire in x when o < 2. Since we won’t make use of this extra regularity in the sequel, we have restricted to a
simpler statement. Besides, when a = 2, series (5) is uniformly convergent on [0, 1] x [0,T] as soon as R > 1/4 for
all m,n € N. O

We have therefore established that the heat equation (1) is flat in the following sense: any Gevrey function y(t)
of order a < 2 uniquely defines a trajectory (6(w,t),u(t)) of (1) which is Gevrey of order a in ¢ and order 1 in z.
Conversely any trajectory of (1) which is Gevrey of order 1 in z and order « in ¢ obviously defines a unique Gevrey
function y(t) := 6(0,t) of order a.

For @ = 2, this 1-1 correspondence holds between Gevrey functions y(t) of order 2 with R > 4 and trajectories
which are Gevrey of order 2 in ¢ order 1 in .

In other words, we have obtained an explicit parametrization of the solutions of the heat equation by curves.



4 Motion planning

The previous developments provide a simple and explicit solution to the problem of (approximate) motion planning.
Assuming the initial temperature profile is

vz €[0,1], 6(z,0) = Op(z), O € L*(0,1),

we want to find an open-loop control [0,T] 3 t — wu(t) such that at time 7" the final temperature profile is “arbitrary
close” to
vz €[0,1], 0(z,T)=0Or(z), Or¢c L*0,1).

Of course Og as well as ©7 do not in general have a convergent Taylor expansion on even powers of z. Nevertheless,
as a direct consequence of the Stone-Weierstrass theorem, the set of polynomials of even degree is dense in C'(0,1)
(see [17, chap. 7]), hence in L?(0,1). This means that for all £ > 0 there exists polynomials

no g2
HO(x):ZpiW7 pi €R

i=0

n 2
HT(ﬁf):Zin, ¢ eR

i=0

such that ||©g — IIp]| < € and ||©7 — II7|| < & (here and in the sequel ||.|| means the usual norm on L2(0,1)). On

the other hand the function
o t (t—T)! t
Y(t) = szﬁ (1 -, <T>> +QiTq)v (T)
i=0

is Gevrey of order < 2 when v > 1 (see section 2) and satisfies

YD) =p;, YOT) =g, i=0,....n
v@) =0, YO(T)=o, i>n.

Guided by (4), we then define the open-loop control

Xy 1R v
U(t) = g—(%)(!) + X;T’ _(1))!, t €[0,1].

Consider also an approximate control U € C2(0,T') such that

sup |[T(t)—U(t)] <e and  sup ‘f](t) —U(t)‘ <e.
te[0,T] te[0,T7]

An exemple of such an approximate control is

N . .

_ Y@@ 1 Y@ (¢)

Ul(t) := — —

®) ;WUZ 1)1

obtained by truncating U to some large enough order N (a suitable N does exist, since the series defining U, as well
as all its derivatives, is uniformly convergent on [0, 7] by theorem 1).

Theorem 2. The control [0,T] > t — U(t) exactly steers system (1) from the initial state Iy at time O to the final
state Il at time T'.

The approzimate control [0,T] > t — U(t) approzimately steers system (1) from the initial state ©q at time 0 to
the final state O at time T. More precisely, there exists K > 0 independent of T such that

16(.,T) — O[] < Ke.

Proof. The proof is a direct consequence of standard results from the theory of strongly continuous semigroups, see
for instance [2], [19] or [4].



Setting A(x,t) = 0(x,t) — u(t), we first transform the boundary control problem (1) into

D0(x,t) = 0pef(x,t) + u(t), x €[0,1]
(6) 9,0(0,t) =
9.0(1,t) = —=\0(1,1).
Consider now the differential operator 4 on L?(0,1) defined by
d%g
Alg) = ——
(9) L
with domain
dg d*g dg dg
_ 2 ag 2 a’g 2 —0 Y9\ _ _
D(A) = {g € 12(0,1)] 22 € 12(0,1), S5 € 12(0,1), L0) =0, (1) = ~Ag(1)).

A is maximal, accretive and symmetric, hence is closed, densely defined and self-adjoint. Hence, as a consequence of
the Hille-Yosida theorem [2, theorems VIL.4,VIL.7 and VIL.10], given an initial condition 6y € L*(0,1) and a control
u € C*(0,T), problem (6) has a unique solution

t 0(-,t) € C([0,T]; L*(0,1)) nC*(]0,T); L*(0,1)) N C(]0, T); D(A)),
such that
t
(1) B(-1) = Sa(t)fo - / St — r)i(r)dr,
0
where S4 denotes the stongly continuous semigroup with infinitesimal generator —A. Moreover for all ¢ > 0,

S4Bl < e,

where —w is the (strictly negative) growth bound of the semigroup.
Clearly, the smooth function
+0o0
= Z Y@ (¢)
i=0

is a solution of (6) with control u = U such that 6(.,0) = Iy — U(0) and 8(.,T) = Il — U(T). Therefore, it is the
unique solution of (6) with initial condition 8y = IIg — U(0). This proves the first claim. Moreover by (7),

o5~V

T
®) Iy — U(T) = Sa(T)(Iy — U(0)) — /0 Sa(T —7)U(r)dr.

We next estimate the final error when applying the approximate control u = U to equation (6) starting from the
initial condition 8y = O — U(0). Setting AU := U — U and using (7) then (8), we find

6(.,T) = Sa(T)(Iy — U(0) + O — Ty — AU(0) /SA _ ) dT—/ SA(T — 7)) AU (r)dr

=TIy — U(T) + Sa(T) (00 — Ty — AU(0) / Sa4(T — 7)AU (1)dr

Therefore,

10(.,T) — Ol < [0 — 7| + [|6(., T') — 7|

<07 ~Thrl| + 4(T) 100 ~ Ty + AU + sup |i() |/ 1S4(T — 7)) dr

<|lOr —Ip|| + e “T (|0 — || + ||AU(0)]]) + s[up]|Au(t)|/ e T=")qr
te[o0,T 0

1— —wT
< <1+26“T+ L) €

w
1

< <3+—>6
w

which proves the second claim. O



In other words we have proved with elementary and constructive arguments that (1) is approzimately controllable
for every time T, using a regular (smooth, C?,...) control. Notice we really need to use Gevrey functions of order
1 < a <2 in the control U: when a > 2 the formal control is not a convergent series, while when o < 1 we cannot
build a non-constant function Y(¢) with infinitely many zero derivatives (since Y (¢) is in this case at least analytic).

Temperature profile (y Gevrey 2)

temperature

time t

length x

Figure 2: Motion planning using a Gevrey function of order 2.

Figure 2 displays the evolution of the temperature with the control generated by Y (¢) = ®,(¢), made to steer
the system from the uniform profile § = 0 at ¢ = 0 to the uniform profile § = 1 at ¢ = 1 (the approximate control is
U truncated to order 10).

5 The linear diffusion equation

We can generalize some of the previous results to the linear diffusion equation

08 = f(2)0200 + g(x)0,0 + h(x)0, z €][0,1]
0:0(0,t) =0
0(1,1) = u(t)

where f > 0, g and h are analytic functions.
5.1 The diffusion equation is flat

We first show that y(t) := 0(0,¢) is again a “flat” output. As before, the “inverse” system
1

0228 = —— (010 — g(2)0,0 — h(z)8)
f(@)
) 0,6(0,) = 0
0(0,t) = y(1),

is in Cauchy-Kovalevskaya form, and we seek a formal solution 6(z,t) = E::g ai(t)wi—!i, where the a; are smooth
functions.

Theorem 3. The formal solution of (9) is convergent when y(t) is Gevrey of order 1 < a < 2.

Proof. We can assume f =1 and g = 0 thanks to the change of variables

(10)

oo S (] )



(this is the so-called gauge equivalence of any second order operator to a Schrodinger operator, see [12]). Denoting
again by z, 6 and h the space variable, the state and the new coefficient, system (9) becomes:

Bpal = 040 — h(z)0
(11) 9.0(0,1) = v6(0,¢)
6(0,t) = y(t),

where v is a constant coefficient. Writing then h(z) = )", <, hlf—, and using (11), we easily find the ay, are recursively
defined by B

R
2 (t) = ax(t) =) mhm a;(t)

(12) =
ao(t) = y(1)

ay(t) = yao(t),
and we have to show that |ag| < ,%kk:! for some A, u > 0.

The proof is adapted from the classical method of majorants: we first replace the sequence ay by a “majorizing”
sequence Ay (in the sense of lemma 1) such that

lar| < (44(0))".

This sequence is initialized with A9 = A; = A, where

Vte[0,r, A(t) ::171"‘ ,

Sl

with m,r > 0. A obviously satisfies
m k!

’I"k (1 _ %)k+1

Ak) —

and enjoys a nice differential property (lemma 2).
We then estimate the growth of the Ay in terms of the derivatives of A (lemma 3),

(2k)1= A®)
A, A1 <
2k A2k+1 S T ok

We finally conclude |asg|,|azp+1]| < (F’/‘%k (2k)!, which proves the claim. Here and in the sequel we denote

m*,r%, ... by m,7,.... O

Lemma 1. Va > 1,

k 1
. M k=
Ak+2:Ak+Z<Wﬂ> A;
=0
Ag=A
A=A

is a magjorant problem of (12) in the sense that
Vkn >0, o] < (4 )"

Proof. The claim is true at steps 0 and 1 since y is by assumption Gevrey of order a. Assuming it is true till step




k + 1, we prove it is true at step k + 2; indeed, since h is analytic,

-

k
a(n) + Z ki!a(»n)hk,i
ik -

RE—i 1
< (A;cnﬂ)(o) + i R]I‘f_ (’:_"> ) (0)>a
 (42,0)"

Notice -, |Lg|* < (32, [Lg])® when o > 1.

Lemma 2. Yn >0,k > 7 >0,

AU+ < % k=i g(ktn)

Proof. As D(t) :== —+ <1 on [0,r],

t
-z =

m (j +n)!
pitn Dj+n+1
m (j +n)!
— Tj+nDk+n+1
(] + n)!rkfjA(kJrn)
(k+n)!

Alt+n) —

3 k= (k+n)
SET’ JA nooOd

Lemma 3. Va <2,k >0,n >0,

)

1 -
where — = maX(L, 1+rM,rMR).
p R?

Proof. The claim is obvious at step 0 since Ag = A; = A. Assume then it is true till step k. By definition,

2k ~ L
(n)  _ i) M ((2K)N\" ()
AQ(I«:—‘,—I) - AQk +Z RQk*i ( il Al
i=0 _

~~

T;

k k—1
= AR+ 3 AN + Y Doy AN

=0 =0
Using successively the induction assumption, lemma 2 and p < R? /r, we find

M (2k)ls AG+n)

Ty AYY) <

— R2k—2j j! pI

& o k= (Qk)!% Alk+14n)
- \R? (k+1)!
= pk (k+1)!



Similarly,

MRr (2k)!= N
T2j+1Ag?)+1 = pk (k—l— 1)!A(k+1+ )'

On the other hand the induction assumption implies

. 15 pA(k+1+n)
Ag]z) < (2/4:)' rA i -
k! p
Hence,
2k)!m Ak+1+n) -
AR, < ( k)' — (i IR
(2]{;)& Ak+1+n)
s k! phtl
(2k + 2)!a Alk+14n)
- (E+1)! phtl
1
Notice k — % is increasing when a < 2.
The proof is the same for the odd terms AgZ)H. O

It is possible though rather tedious to extend theorem 1 to the present case.

5.2 Rest-to-rest motion

We briefly sketch here how to use the previous result to steer the diffusion equation from a rest profile to another
rest profile. A rest profile 8 is characterized by

0(x) = No(z),

where A € R and 6y is the solution of

This is equivalent to all the ay(t) in (12) being constant or alternatively to all the derivatives of y(t) being 0.

Hence the open-loop control U(t) := > ., a’;';!” built from the Gevrey function

V() =X+ (p=A)-2,(t/T), ~v2>1,
will steer the system from the rest profile Afy at time 0 to the rest profile ufy at time T, and an approximate control

will steer the system to a neighbourhood of ufy(x).

5.3 Further generalization

The previous results could also be extended to linear evolution equations with analytic coefficients of the form

n

or0(x,t) = Z)\j(m) 20(x,t), x€][0,1]
7=0

oke(1,t) =u(t), ke{0,...,n—1}

d76(0,t) = 0, j=1,....n—1,j #k.

provided n > m (i.e., the order of differentiation in space is strictly greater than the order of differentiation in time),
using Gevrey functions of order not greater than n/m. Of course the computations and estimations of the growth



of the coefficients are more tedious, but the key point is that all the boundary conditions except the control input
are on the same side, so that the inverse problem

8:0(z, +Z>\ ) 826(z,t)

oka(0,t) = y(t), k €{0,...,n—1}
916(0,t) = 0, j=1,....n—1,j #k.
is in Cauchy-Kovalevskaya form and
y(t) == 9;6(0,1)

is a flat output (see [11] for an example of an elastic nonlinear control system).

6 Computations with divergent series

When a > 2, the series:
+00 e
t) = Z ai(t)
i=0

is in general divergent (with order a/2) and has a priori no meaning, though it still defines a formal 1-1 correspon-
dence between arbitrary curves y(t) and solution of system (1).

Guided by the Ramis-Sibuya theorem for ordinary differential equations [15], we wonder whether there exists a
smooth solution  which is Gevrey asymptotic of order  to 6, i.e., whether there exists C, A > 0 such that for all
n>1,

(z,t) Z

=0

(13) || ™" sup < C(nh)P A"

In general, such divergent series first converges very fast, and then diverges very fast. Using only the convergent
part, i.e.,, a “smallest term summation”, is numerically very effective and leads to exponentially small error [15].
Indeed for z small of order €, simple estimations via the Stirling formula show that, when the number of terms is
chosen to n &~ 1/(A€)'/? | we have

< C(2n)Y/8 exp(—pn)

~ C2m)"? exp (ﬁ) .

This correspond to a ”smallest term summation”: the a; begin to grow for i > n.

We thus performed (without any theoretical justification) some numerical experiments on the heat equation: as
in section 4 we tried to steer the temperature from the uniform profile # = 0 at ¢ = 0 to the uniform profile § = 1 at
t =1, but using this time y = ®,/3, i.e., a Gevrey function of order & = 5/2 > 2. The open-loop control is obtained
by performing for every ¢ a kind of “smallest term summation”,

sup
t

O(z,t) — ’ ai(t) =

nt (I>() nt @éz) )
~ o /3
=3 B0 130 2,
with n; defined by '
o) e
(2n)! i | (20)!

As can be seen on figure 3, the results look numerically correct while the steering control is much “softer”: the
maximum is around 1.4, to be compared with 2.0 in the case of Gevrey order 2 (see the figure in section 4). Moreover,
we have observed that when y is Gevrey 1 < a < 2, i.e., when the formal solution is convergent, the smaller « is,
the more “bumpy” the control. These numerical experiments seem to indicate that divergent series provide more
natural and smooth transition profiles than convergent ones.

10



Temperature profile (y Gevrey 2.5)

temperature

time t 0 o

length x

Figure 3: Motion planning using a Gevrey function of order 2.5.
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