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The origin of this report lies in the very interesting discussions with Chal-
lamel of the CGES at Ecole des Mines de Paris and with Hugues Mounier of
Ecole des Mines de Nantes.

1 Introduction

We consider here the flexible system (torsion dynamics) displayed on figure 1.
After some scaling the system 1s described by

020 = 0%, =x¢cl0,1]
9,0(0,1) = —u(t) (1)
0.0(11) = F(8:0(1,1))

where

e [0,1] 3 & — f(x,1) is the torsion profile at time ¢,
e u is the control (the torque at the top),

e v F(v) is the friction law at the bottom.

To each angular velocity w, corresponds a uniform rotation at constant
speed,
O(z,t) = a+wet + Flwp )z, u=—F(w),

solution of (1).
Challamel has noticed that, when dF/dv(w,) > 0, this stationary motion is
unstable. Such an unstable rotation coincides, as displayed on figure 1, with
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y(t) = 9(1) t)

Figure 1: The drilling system with torsion stick-slip instabilities

the increasing part of the bottom friction law. This is related to the well-known
stick-slip instabilities.

We propose here a method for controlling and stabilizing (1) by using only
the top velocity measure:

w(t) := 8:0(0,1).

The following simple control law (a nonlinear PI control with distributed de-
lays) stabilizes the rotation w,:

u(t) = —w(t) +o(t) - F(u(t)) (2)

with

o(t) = wy (1) — M(1) —



In (3), wy(t) is the velocity set-point that can be time-varying. The design pa-
rameter A must be positive and ensures a closed-loop dynamics for the bottom
angle y(t) = 0(1,1), the flat output of the system, as follows:

S 1) = el 1)) = At 1) (e +1)
where the reference trajectory ¢ — y,(t) is such that g, (t + 1) = w,(1).

The method used to construct this nonlinear controller is based on the fact
that the trajectories of (1) can be explicitly parameterized via the bottom angle
y(t) = 0(1,t). As already noticed for a very similar system (see, e.g., [4]), we
have the following explicit parameterization:

t+1—x

200z, ) =ylt+z—-1)4+ylt—2+1)— /t—1-|- F(y(r)) dr. (4)

This means in particular that stabilizing the entire profile © — 0(x,t) is
equivalent to stabilize the bottom position y(¢), that can be seen as the flat
output by analogy with [2, 3].

Notice that (3) involves distributed delay on the auxiliary control v. This is
a nonlinear natural extension of the stabilization method proposed by Brethé
and Loiseau for delay systems [1].

In the sequel, we first prove (4), i.e., the flatness of the system. Then we
design the stabilizing controller (2,3) using only the top measure w.

Simulations for F'(v) = v/2 around v = 0 show the robustness of the ap-
proach versus modeling and measure errors. The Matlab simulation code can
be obtained upon request at the Email rouchon@cas.ensmp.fr.

2 Flatness

The general solution of 970 = 920 is given by the d’Alembert formulae:
Oz, t) = ¢t + o) + Yt — )

where 0 — ¢(o) and o — ¢(o) are arbitrary functions corresponding to waves
of velocity —1 and 1, respectively. Plugging this into the boundary conditions,
we have

—u(t) = ¢'() = ¢'(t), Fy(t)) =¢'(t+1)—¢'(t-1)

with y(¢) := 0(1,t) = ¢(t+ 1) + ¥(t — 1) and where ' denotes derivation with
respect to o. Assume now that ¢ — y(¢) is known. The three above equations



becomes now a square system that can be solved as follows:

u(t) = HCHD=PGEH) = 1ERe-1)
§(o=D)+P(I(o-1))

¢/(U) = 7 " % _—
_ o — o
1/)/(0_) — Yy 5 Yy .
Thus
(/)(0') = a4+ y(0_1)+f00_1F(y(7)) dr
- 2
(o41)— 00+1 F(y(r)) dr
1/)(0') = b+ - 2 -

with a and b constants such that ¢ +b = 0 since y(t) = ¢(t + 1) + ¥ (¢ + 1).
Coming back to the deformation profile 8, we have the following parame-
terization:

t+1—x

200z, ) =ylt+z—-1)4+ylt—2+1)— /t—1-|- F(y(r)) dr.

This parameterization is explicit with respect to any arbitrary function ¢ — y(¢)
corresponding to the bottom angle trajectory. In the sequel, we will call the
bottom angle y the flat output: to any control ¢ — u(t) and initial condition
(6(x,0), 0-0(x,0))o<e<1 correspond ¢ — y(t) by integration of (1). To any flat-
output ¢ — y(¢) corresponds via the above explicit formulae a control ¢ — u(?)
and a torsion profile ¢ — 6(x,t) satisfying (1). Thus, there is a one-to-one
correspondence between the solutions of (1) and ¢t — y(t).

3 Motion planning and tracking

Let us consider a reference trajectory ¢t — y,(t) for the flat output y. Then the
reference control ¢ — u,(t) is just given by

w4+ ) - F(+1)  get—1)+ Fy(—1))
ur(t) = 5 — 5 .

In practice the precise position of the angle is not important. Only velocities

are to be considered: we are interested in velocity tracking. We denote by

t — wy(t) the reference velocity relative to g,.

For w, where the derivative of F is positive, the system is unstable (see
figure 1). Thus, the previous open-loop control strategy cannot be used. Sta-
bilizing feedback is necessary. We will construct now a global stabilizing con-
troller around any reference ¢ — w, (). The feedback depends only on the top
velocity measure w(t) = 9:(6(0,%) commonly available. Stabilizing the system
means stabilizing the flat output.



Since

_ ) =P+ 1) it = 1) + P = 1)
2 2

we have
w(t) +u(t) =yt +1)— Fy(t+1)).

Thus setting
u(t) = —w(t) +o(t) - F(u(t))

where v(t) is the new control yields
e+ 1) = ot

when the slope of F' at v(t) is not equal to 1, i.e. when v — v — F(v) is
locally a bijection. Notice that when dF/dv is close to 1, the system is strongly
unstable: for F(v) = (1 + €)v with € small and positive, the spectrum of the
Cauchy problem (1),

{O}U{—%log (2#“) +nm/—1, ne Z},

admits eigenvalues with very large positive real parts.
Consider y, (¢t + 1) such that g, (t + 1) = w,(¢). Set

v(t) = wr(t) = Ayt +1) —ye(t+ 1)) (5)
with A > 0. Then the closed-loop error dynamics are stable:
y - yr = _/\(y - yr)~

The problem is now to predict the future value y(t + 1) with respect to the
measure w and control w at times < ¢. From §(¢) = v(t — 1) we obtain

¢
yt+ ) =yt -1+ / v(r) dr.
t—2
Since 6(0,t) = (y(t + 1) — y(t — 1)) /2, we can eliminate y(t — 1) to have
1 t
y(t+1) =6(0,7) + —/ v(r) dr.
2 Jios
Thus (5) reads

v(t) = we(t) = A000,8) —y (t+ 1)) — %/t—Z v(r) dr.



Since g, (t+ 1) = wy(t) and 8:0(0,t) = w(t), we can compute 6(0,¢) — y,(t + 1)
as an error integral:

[:=60(0,t) —y (t+1), [=uw(t)—wl(t)

Finally we have obtained the nonlinear PI controller with distributed delays
corresponding to (2,3).

Notice that standard Lyapounov technic (passivity arguments based of the
mechanical energy) cannot be used directly here: the time derivative of mechan-
ical based Lyapounov functions is the sum of two terms; the control appears
only in one term; no obvious factorization can be performed.

4 Simulations

The simulations of figures 2, 3 and 4 correspond to the stabilization of (1)
around w, = 0 and with F'(v) = v/2., These simulations illustrate the ro-
bustness of the control. The typical open-loop instability time-constant is
around 4 time unit. For the simulation we consider an approximation with
20 mass/spring small systems.

For the control computation, we use a sampling time of 0.05 time unit.
Thus the integral in (3) is computed with 2/0.05 = 40 values of v. We also
introduce an error in the friction law in (2) by using F(v) = 0.55 v instead
of F(v) = v/2. We also add measure errors: the control is computed with a
wrong top velocity, 0.9 w + 0.2, instead of w.
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Simulation figures
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Figure 2: open-loop u = 0 (dashed line) and closed-loop velocities.
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Figure 3: closed-loop velocities.
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Figure 4: the stabilizing control u.
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