
Flatness and stick-slip stabilizationPierre Rouchon�Technical Report (Chrono number 492),May, 4 1998The origin of this report lies in the very interesting discussions with Chal-lamel of the CGES at Ecole des Mines de Paris and with Hugues Mounier ofEcole des Mines de Nantes.1 IntroductionWe consider here the 
exible system (torsion dynamics) displayed on �gure 1.After some scaling the system is described by@2t � = @2x�; x 2 [0; 1]@x�(0; t) = �u(t)@x�(1; t) = F (@t�(1; t)) (1)where� [0; 1] 3 x 7! �(x; t) is the torsion pro�le at time t,� u is the control (the torque at the top),� v 7! F (v) is the friction law at the bottom.To each angular velocity !r corresponds a uniform rotation at constantspeed, �(x; t) = a+ !rt+ F (!r)x; u = �F (!r);solution of (1).Challamel has noticed that, when dF=dv(!r) > 0, this stationary motion isunstable. Such an unstable rotation coincides, as displayed on �gure 1, with��Ecole Nationale Sup�erieure des Mines de Paris, Centre Automatique et Syst�emes, 60,Bd. Saint-Michel, 75272 Paris Cedex 06, France. Email: rouchon@cas.ensmp.fr1



Figure 1: The drilling system with torsion stick-slip instabilitiesthe increasing part of the bottom friction law. This is related to the well-knownstick-slip instabilities.We propose here a method for controlling and stabilizing (1) by using onlythe top velocity measure: !(t) := @t�(0; t):The following simple control law (a nonlinear PI control with distributed de-lays) stabilizes the rotation !r:u(t) = �!(t) + v(t) � F (v(t)) (2)with v(t) = !r(t)� �I(t) � �2 �Z tt�2 v(� ) d�� ; _I(t) = !(t)� !r(t): (3)2



In (3), !r(t) is the velocity set-point that can be time-varying. The design pa-rameter � must be positive and ensures a closed-loop dynamics for the bottomangle y(t) = �(1; t), the 
at output of the system, as follows:ddt (y(t + 1)� yr(t + 1)) = �� (y(t + 1)� yr(t + 1))where the reference trajectory t 7! yr(t) is such that _yr(t+ 1) = !r(t).The method used to construct this nonlinear controller is based on the factthat the trajectories of (1) can be explicitly parameterized via the bottom angley(t) = �(1; t). As already noticed for a very similar system (see, e.g., [4]), wehave the following explicit parameterization:2�(x; t) = y(t + x� 1) + y(t � x+ 1)� Z t+1�xt�1+x F ( _y(� )) d�: (4)This means in particular that stabilizing the entire pro�le x 7! �(x; t) isequivalent to stabilize the bottom position y(t), that can be seen as the 
atoutput by analogy with [2, 3].Notice that (3) involves distributed delay on the auxiliary control v. This isa nonlinear natural extension of the stabilization method proposed by Breth�eand Loiseau for delay systems [1].In the sequel, we �rst prove (4), i.e., the 
atness of the system. Then wedesign the stabilizing controller (2,3) using only the top measure !.Simulations for F (v) = v=2 around v = 0 show the robustness of the ap-proach versus modeling and measure errors. The Matlab simulation code canbe obtained upon request at the Email rouchon@cas.ensmp.fr.2 FlatnessThe general solution of @2t � = @2x� is given by the d'Alembert formulae:�(x; t) = �(t+ x) +  (t � x)where � 7! �(�) and � 7!  (�) are arbitrary functions corresponding to wavesof velocity �1 and 1, respectively. Plugging this into the boundary conditions,we have �u(t) = �0(t)�  0(t); F ( _y(t)) = �0(t+ 1)�  0(t� 1)with y(t) := �(1; t) = �(t+ 1) +  (t � 1) and where 0 denotes derivation withrespect to �. Assume now that t 7! y(t) is known. The three above equations3



becomes now a square system that can be solved as follows:u(t) = _y(t+1)�F ( _y(t+1))2 � _y(t�1)+F ( _y(t�1))2�0(�) = _y(��1)+F ( _y(��1))2 0(�) = _y(�+1)�F ( _y(�+1))2 :Thus �(�) = a+ y(��1)+R ��10 F ( _y(�)) d�2 (�) = b+ y(�+1)�R �+10 F ( _y(�)) d�2with a and b constants such that a + b = 0 since y(t) = �(t+ 1) +  (t + 1).Coming back to the deformation pro�le �, we have the following parame-terization:2�(x; t) = y(t + x� 1) + y(t � x+ 1)� Z t+1�xt�1+x F ( _y(� )) d�:This parameterization is explicit with respect to any arbitrary function t 7! y(t)corresponding to the bottom angle trajectory. In the sequel, we will call thebottom angle y the 
at output: to any control t 7! u(t) and initial condition(�(x; 0); @x�(x; 0))0�x�1 correspond t 7! y(t) by integration of (1). To any 
at-output t 7! y(t) corresponds via the above explicit formulae a control t 7! u(t)and a torsion pro�le t 7! �(x; t) satisfying (1). Thus, there is a one-to-onecorrespondence between the solutions of (1) and t 7! y(t).3 Motion planning and trackingLet us consider a reference trajectory t 7! yr(t) for the 
at output y. Then thereference control t 7! ur(t) is just given byur(t) = _yr(t+ 1) � F ( _yr(t + 1))2 � _yr(t� 1) + F ( _yr(t� 1))2 :In practice the precise position of the angle is not important. Only velocitiesare to be considered: we are interested in velocity tracking. We denote byt 7! !r(t) the reference velocity relative to _yr .For !r where the derivative of F is positive, the system is unstable (see�gure 1). Thus, the previous open-loop control strategy cannot be used. Sta-bilizing feedback is necessary. We will construct now a global stabilizing con-troller around any reference t 7! !r(t). The feedback depends only on the topvelocity measure !(t) = @t(�(0; t) commonly available. Stabilizing the systemmeans stabilizing the 
at output. 4



Since !(t) = _y(t+ 1)� F ( _y(t+ 1))2 + _y(t � 1) + F ( _y(t � 1))2we have !(t) + u(t) = _y(t+ 1) � F ( _y(t+ 1)):Thus setting u(t) = �!(t) + v(t) � F (v(t))where v(t) is the new control yields_y(t + 1) = v(t)when the slope of F at v(t) is not equal to 1, i.e. when v 7! v � F (v) islocally a bijection. Notice that when dF=dv is close to 1, the system is stronglyunstable: for F (v) = (1 + �)v with � small and positive, the spectrum of theCauchy problem (1),f0g[��12 log� �2 + ��+ n�p�1; n 2Z� ;admits eigenvalues with very large positive real parts.Consider yr(t+ 1) such that _yr(t+ 1) = !r(t). Setv(t) = !r(t)� �(y(t + 1)� yr(t+ 1)) (5)with � > 0. Then the closed-loop error dynamics are stable:_y � _yr = ��(y � yr):The problem is now to predict the future value y(t + 1) with respect to themeasure ! and control u at times � t. From _y(t) = v(t � 1) we obtainy(t + 1) = y(t � 1) + Z tt�2 v(� ) d�:Since �(0; t) = (y(t + 1)� y(t � 1))=2, we can eliminate y(t � 1) to havey(t + 1) = �(0; t) + 12 Z tt�2 v(� ) d�:Thus (5) readsv(t) = !r(t)� �(�(0; t)� yr(t+ 1))� �2 Z tt�2 v(� ) d�:5



Since _yr(t+ 1) = !r(t) and @t�(0; t) = !(t), we can compute �(0; t)� yr(t+ 1)as an error integral:I := �(0; t)� yr(t+ 1); _I = !(t) � !r(t):Finally we have obtained the nonlinear PI controller with distributed delayscorresponding to (2,3).Notice that standard Lyapounov technic (passivity arguments based of themechanical energy) cannot be used directly here: the time derivative of mechan-ical based Lyapounov functions is the sum of two terms; the control appearsonly in one term; no obvious factorization can be performed.4 SimulationsThe simulations of �gures 2, 3 and 4 correspond to the stabilization of (1)around !r = 0 and with F (v) = v=2:, These simulations illustrate the ro-bustness of the control. The typical open-loop instability time-constant isaround 4 time unit. For the simulation we consider an approximation with20 mass/spring small systems.For the control computation, we use a sampling time of 0:05 time unit.Thus the integral in (3) is computed with 2=0:05 = 40 values of v. We alsointroduce an error in the friction law in (2) by using F (v) = 0:55 v insteadof F (v) = v=2. We also add measure errors: the control is computed with awrong top velocity, 0:9 ! + 0:2, instead of !.References[1] David Breth�e. Contribution �a l'�etude de la stabilisation des syst�emeslin�eaires �a retards. PhD thesis, Ecole Centrale de Nantes, France, 1997.[2] M. Fliess, J. L�evine, Ph. Martin, and P. Rouchon. Flatness and defectof nonlinear systems: introductory theory and examples. Int. J. Control,61(6):1327{1361, 1995.[3] Ph Martin, R. Murray, and P. Rouchon. Flat systems. In Proc. of the 4thEuropean Control Conf., pages 211{264, Brussels, 1997. Plenary lecturesand Mini-courses.[4] H. Mounier. Propri�et�es structurelles des syst�emes lin�eaires �a retards: as-pects th�eoriques et pratiques. PhD thesis, Universit�e Paris Sud, Orsay, 1995.Simulation �gures 6
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Figure 2: open-loop u = 0 (dashed line) and closed-loop velocities.
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Figure 3: closed-loop velocities.
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Figure 4: the stabilizing control u.
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