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Abstract: A smooth observable system, & = f(x), y = h(z), that can be put,
after a change of state coordinates z — X, into X = Ay X + b(y) with an
implicit observation equation C'(y)X = d(y), is said to be transformable into an
implicit affine form. Characterization of such systems is an open problem. For single
output systems, a necessary constructive condition on the structure of the differential
equation satisfied by the output is given. When dim(z) = 2, this necessary condition,
i = foly) + L(W)y + f2(v)¥° + f3(y)§?, is shown to be sufficient. Copyright © 1998
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1. INTRODUCTION

Observers for nonlinear systems were much stud-
ied in the last decade, and real advances were
done during this period. One way of building
observers is to find new coordinates in which
the system is in a special form. Two important
classes of systems were successively studied with
such techniques, systems linearizable by output
injection (Krener and Respondek, 1985), and sys-
tems which are affine regarding to the unmeasured
states (Besancon and Bornard, 1997; Hammouri
and Gauthier, 1992). In both classes, a part of
the states can be considered as measured, e.g, the
observation equation admits an explicit structure.

In this paper, a larger class of systems is consid-
ered: systems transformable into an implicit affine
form. This new class of systems, for which affine
asymptotic observers can be designed, are systems
t = f(x), y = h(x), that can be put, after a
change of state coordinates z — X, into X =

A(y) X + b(y) with an implicit observation equa-
tion of the form C'(y)X = d(y). For single output
systems, a necessary condition for arbitrary state
dimension is derived here. This necessary condi-
tion (see lemma 4) is shown to be sufficient when
dim(z) = 2 (see theorem 1). This indicates, even
for single output planar systems, that exist sys-
tems transformable into implicit affine forms that
are not affine regarding to the unmeasured states
in the sense of (Krener and Respondek, 1985; Be-
sancon and Bornard, 1997; Hammouri and Gau-
thier, 1992): taking implicit observation equations
enlarges the class of systems for which asymptotic
observers derived from linear and least squares
techniques can be designed.

This study of single output systems is local and
around ”generic” states x: open subsets where
x can be expressed as a smooth function of
(hyLih, ..., Ly7'h) = (y,9,...,4"7 1) (n =
dim(z)), are only considered here (i.e. open sub-
sets where the tangent manifold is observable).



More precisely, we consider here single output
observable systems of the form

&= f(x), y=h(z) (1)

where f and h are smooth and where x lies
an open subset of IR™ such that exists a local
diffeomorphism between x and (y,9,...,y"~b).
Such systems are called observable, in the sequel.

They are said to be transformable into an implicit
affine form, if, and only if, exists a local state dif-
feomorphism # = ¢(X) such that the observation
equation y = h(¢(X)) defines locally an affine
subspace in the X-space and the restriction of the
dynamics in the X-space, X = F(X), to the affine
subspace y = h(¢(X)) is affine (the restriction of
F to y = h(¢(X)) is affine). In other words, this
means that in the X coordinates (1) reads

X=AWX +by), CX=dy (2

where the matrices A, b, C' and d are smooth
functions of y.

Such systems admit an affine observer of the form:

X= A(y) X + b(y) (3)
—P7IC(y)(C(y) X — d(y))

P=—0P — A'(y)P — PA(y)
+CH(y)O(y) (4)

which converges exponentially when y is per-
sistent (in the sense of (Guillaume and Rou-
chon, 1997), i.e. P > ply for some p > 0).

The paper is organized as follows. In section 2,
single output planar observable systems trans-
formable into implicit affine forms are character-
ized. Section 3 deals with the necessary condition
for single output systems with an arbitrary state
dimension.

2. SINGLE INPUT PLANAR SYSTEMS
2.1 Necessary condition

Assume that the observable system (1) is trans-
formable into an implicit affine form. Set

After derivation, (' stands for derivation with
respect to y):

Cx=d
(C'5+ CA)X +Cb=d'y
d((;j() —PX+Q=R

with P = (C"y* + C'§ + 2C"gA + CA'y + C A?),
Q = 20"by + CAb+ Cb'y and R = d"y* + d'y.
Since ( . ¢
C'y+CA
be eliminated from the last equation. This yields a
second order differential equation for y. Examine
the structure of this equation. Up to renumbering
the component of #, assume that ¢1(y) # 0. Thus
X1 = d(y)/e1(y) — ca(y)/c1(y)X2. Without lost
of generality, assume also that the first column of
A is zero (substitute X; into the state equation)
and ¢; = 1. This leads to the following simplified

1s assumed invertible, X can

structure:
_ (0 a(y)
A(y) B (0 a2(Z)) (5)
b(y) = (b1(v) ba(v))'
Cly) = (1el)).
Denote

61 = b1 —|— Cbz. (6)

a1 = ay + cas,

Elimination of X leads to

g = g90(y) + 91() 9+ 92(v) ¥ + 93(y) &

with

B+ day)

—fraras + Oé%bz)

=B (o) + das) + d'aras + 2"y by + oy )
—d"ay — "By + (o] + dan)d + (3] + 'ba)c’)
gs=(d'd" = d").
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Observability of (1), means here that exists a
local diffeomorphism between X and (y,y). This
implies that, locally, ¢ cannot vanish. Thus the
following lemma is proved:

Lemma 1. (Necessary condition). If the observ-
able planar system (1) is transformable into an
implicit affine system (3) then, its output y sat-
isfies a second order differential equation of the
form

i=fo(y) + [i(y) 9+ fo(y) 9° + faly) &°
with fo, f1, f2, f3 smooth functions.

2.2 Sufficient condition

Assume that the output y of planar observable
system (1) satisfies a second order differential
equation of the form

i=foy)+ ) v+ L) &+ ) 7



with the fy, fi, fo and f3 smooth function of y.
A diffeomorphism « = ¢(X) that put the system

into an implicit affine form 3 can explicitely be
built.

From previous computation,it appears that the
problem to solve is equivalent to find smooth y-
function ¢, d, oy, B1, bs and as such that

fo(dBr + d'ar) = (—Praras + afbs)
JildBi+dan) = (=pi(a) + as) + daras

+2¢' a1bs + a1 37) (7)
LoldBi+dan) = (—d"ar — "B

+(a) + daz)d" + (8] + 'ba)c)
fS(Clﬁl + d/al) _ (d/C// _ C/d//).

Basic algebraic manipulations of this system yield
to the following three equations:

arfial = — (B + d o) (2 fo + a1 fi1)

—c a1 fras + d’a%az + a%ﬁi — 2B aqas S )

8
aifi(c'Br+dar)e” = F+aipfs(dpr+d o
aifi(c'Br+ d ar)d" = d'F — i fs(¢/ o+ d'ovy)

where

F=p(aj(casd + pic’) — *Progas)
+aid (ay(—picas + d'aras + a1 3])
— (/B + d'ar)(ard'(2¢ fo + a1 f1)
FB1(? fo + alfa)) — 2¢ Braras).

Denote by z the state around which the trans-
formation ¢ = ¢(X) is looked for and denote by
(y,y) the corresponding values of (y,y).

Set f1(y) = 1 and az(y) = 0. By the Cauchy-
Lipschitz theorem, there exists locally around y,
a unique solution ¥y — (ay,c¢,d) of the differen-
tial system (8) with the following initial values:

ar(y) = W)+ 1, e(y) = d(y) = d'(y) = 0,
¢(y) = 1. Such a solution yields to ba(y) via
atby = fo(' B+ d'ar) + Bragas.

For A, b and C derived from the above solution
y— (a1, 1, az, ba, ¢, d) of (7) via the formulae (5)
and (6), the relations

(c’inA) X= (d’yicz)) 9)

define a local diffeomorphism between (y,y) and
X, that is between x and X . This results from the
following arguments:

o since ¢/(§)y +a1(y) = >+ g+ 1 > 0, the

matrix
C
C'y+CA

is locally invertible; thus X 1s a smooth
function of (y, y).

e denote by X the solution of (9) for (¥,y);
since

(01() + ¢ (@) X2 = d' @)y — B1(5),
Xy # 0 and ¢/(y) X2 — d'(y) # 0; the implicit
function theorem for X; + ¢(y) X2 = d(y)
ensures that y can be expressed as a smooth

function of X;
e similarly, y is also a smooth function of X.

Thus, the following lemma 1s proved:

Lemma 2. (Sufficient condition). Assume that the
scalar output of the planar observable systems
(1) satisfies a smooth second order differential
equation of the form

i=fow) + [1y) 9+ () & + fs(y) &

Then, locally, there exists a change of state coor-
dinates putting the system into an implicit affine

form (3).

Lemmas 1 et 2 lead to the following

Theorem 1. A single output observable planar
system (1) is transformable into an implicit affine
form (3), if, and only if, the second-order deriva-
tive of the output is a polynomial of third degree
in the first-order derivative of the output with
coefficients smooth function of the output.

Remark that:

e planar observable systems transformable into
implicit affine forms admit the following nor-
mal forms

X1 = a(y) X2 + b1(y)
Xy = ba(y)
X1 +e(y) X2 = d(y).

This results from the proof of the sufficient
condition.

e The class of planar observable systems, affine
regarding to the unmeasured states in the
sense of (Krener and Respondek, 1985; Be-
sancon and Bornard, 1997; Hammouri and
Gauthier, 1992), admit the following output
differential equation:

J=ko(y) +ki(y) §+kaly) ¥°.

This former class 1s thus smaller than the
class considered here.

3. NECESSARY CONDITION FOR GENERAL
SINGLE OUTPUT SYSTEMS

Denote by n the state dimension and take the
implicit affine form. After n derivations of the
observation equation, the following system:



(CX) Y
a4y
dz(CX) 99+ 2 1 e
0 =d”y +d'y (10)

is a linear overdetermined system with respect to
X. Eliminating of X yields to a polynomial im-
plicit scalar equation with respect to (y, ..., y™).
A careful inspection of the different partial degrees
of this polynomial equation yields to a necessary
condition. Introduce the following definitions bor-
rowed from (Krener and Respondek, 1985).

Definition 1. Note P the ring of polynomials with
indeterminates the successive derivative y*) of
y and with coefficients C* functions of y. By
definition the degree of y(*) is k and the degree of
yU) . yUr)is g 4+ ...+ j,.. Note P* the subring
of polynomials, the degree of which is less than or
equal to k and P¥ the subring of polynomials, the
degree of which is less than or equal to k spanned

by P!, with ¢ < k.

Lemma 3. The system (10) can be written:

PoX + Qo(y) = Ro
Pn—1X+Qn—1:Rn—1 (11)

with P; and R; elements of P fori=1..
Q; element de P~ fori=2...n

.n and

The derivative
1s a monomial

Proof: Immediate for ¢ = 1,2,3 ...
of a monomial of the form f(y)y*)

of degree k + 1 because %)ty(k)) = f’(y)yy(k) 4
Fly)y*h.

The structure of the (vector) polynomials can be
more precisely described:

Py
Py
P=pj)=1] .
Pn—l
with
PO IC
=C'y+CA

L+ CAT?

Qo Ry
Q1 Ry

QI . ,RI . ,A:detP,Aijthe
&n Ry

cofactors of P and M = (A;;), the comatrix.

The elimination of X from the previous equations
leads to:

_1(R_Q)+Qn =R,
that 1s:

PoMY(R— Q)+ AQ, = AR, (12)

The coefficient D of y™) in (12) is: D = A(C'X —
d')=C'M*(R—Q)—d A with R and @ elements
of P"=1. M is an element of P, (n D21 and A

an element of P, (n D/2 We have the following
degrees for the hnes M (%), Q(7) and R(7) of the

corresponding matrices

d°M(1)=n(n—-1)/2
d°M@)=nn—-1)/2—(i—1),i=2...n
d°Q(1)=0

d°Qiy=i—2,i=2...n

PR =i—1i=1...n

Then, D is an element of P’ (n /2 . Isolating the
terms with d’ in X and using:

DZ

with A S (= )"+kpnkAnk and ppr =
¢ (k)yn- 1) + . the term in y™~1) disappears.
D is an element of a subring spanned by P72,

From the equation (C'X — d")y = —(CAX + Cb)
and after multiplication by A, it appears that
the degree of the right term is less than equal to
n(n—1)/2 (degree de AX and of A) and the one
of the left term less than or equal n(n—1)/2+ 1.
This is possible only if the degree of (C"X — d')A
is less than or equal to n(n — 1)/2 — 1. There is

no term of degree n(n — 1)/2 in D. Finally, D is
(”(” 1)/2-1)

DA dy ) —d A4

an element of P,

Consider the degree of the remaining term N. N
is got from the equation (12), in which the term
with (™) is suppressed:

N =(Puly,...,y" )X
+Qn(y, ceey y(n_z)) - Rn(y, cee

P, is an element of P?_,; (polynomial of degree n
without derivatives of order n) and AX element

of P(n(n D72 N is an element of77 (n+1)/2

A

Sum up these results in the following proposition:



Lemma 4. If the single output observable system
(1) is transformable into an affine system (3) then
the output y satisfies the following differential
equation:

y" = N/D (13)

with A element of 77:;(_”1“)/2 and D element of
7?(”(;“1)/2‘1) (see definition 1).

n—

For n = 3, the following output equation exists
necessarily:
(3) — N(ya ya y)

do(y) + d1(y)y + d= ()9

y

with

N=n1(y) (i) +nay) ()97 + ns(y) §5* + na(y)y’

(
+ns5(y) (§)%9 +ns(y) §5° +n2(y) 9°
+ns(y) (3/)2 + ng( gy + n10(y) gt
+n11(y) 49 + ni2(y) ¥°

-9

v)

() y)

+n13(y) ¥+ n1a(y) ¥
()

+n15(Y)Y
+n16(y)

The fact that the denominator depends only on y
is not obvious.

Remark: the gap between the dimension 2 and 3
appears here. For the 3 dimensional case, there are
19 equations to satisfy for 12 functions (overdeter-
mined), when for the 2 dimensional case, there are
5 equations (4 if ¢ is set to 1) for 6 functions (un-
derdetermined). So we see that there are degrees
of freedoms for the 2 dimensional and relations to
satisfy in the 3 dimensional case.

4. CONCLUSION

Here is establishesd a necessary condition so that
an nonlinear system is equivalent to an affine
system (3) with an observation equation, affine
regarding to the state and implicit regarding to
the the measured output. A such class of systems
contains linearizable systems by output injection,
and also affine systems described in (Besangon
and Bornard, 1997). An observer for the system
described here can be found in (Guillaume and
Rouchon, 1997). Our present work is on the in-
trinsic characterization of such systems and also
on the way to compute the coordinates change
when it exists.
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