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1998IFACKeywords: observers, nonlinear control, a�ne systems, input injection1. INTRODUCTIONObservers for nonlinear systems were much stud-ied in the last decade, and real advances weredone during this period. One way of buildingobservers is to �nd new coordinates in whichthe system is in a special form. Two importantclasses of systems were successively studied withsuch techniques, systems linearizable by outputinjection (Krener and Respondek, 1985), and sys-tems which are a�ne regarding to the unmeasuredstates (Besan�con and Bornard, 1997; Hammouriand Gauthier, 1992). In both classes, a part ofthe states can be considered as measured, e.g, theobservation equation admits an explicit structure.In this paper, a larger class of systems is consid-ered: systems transformable into an implicit a�neform. This new class of systems, for which a�neasymptotic observers can be designed, are systems_x = f(x), y = h(x), that can be put, after achange of state coordinates x 7! X, into _X =
A(y)X + b(y) with an implicit observation equa-tion of the form C(y)X = d(y). For single outputsystems, a necessary condition for arbitrary statedimension is derived here. This necessary condi-tion (see lemma 4) is shown to be su�cient whendim(x) = 2 (see theorem 1). This indicates, evenfor single output planar systems, that exist sys-tems transformable into implicit a�ne forms thatare not a�ne regarding to the unmeasured statesin the sense of (Krener and Respondek, 1985; Be-san�con and Bornard, 1997; Hammouri and Gau-thier, 1992): taking implicit observation equationsenlarges the class of systems for which asymptoticobservers derived from linear and least squarestechniques can be designed.This study of single output systems is local andaround "generic" states x: open subsets wherex can be expressed as a smooth function of(h; Lfh; : : : ; Ln�1f h) = (y; _y; : : : ; y(n�1)) (n =dim(x)), are only considered here (i.e. open sub-sets where the tangent manifold is observable).



More precisely, we consider here single outputobservable systems of the form_x = f(x); y = h(x) (1)where f and h are smooth and where x liesan open subset of IRn such that exists a localdi�eomorphism between x and (y; _y; : : : ; y(n�1)).Such systems are called observable, in the sequel.They are said to be transformable into an implicita�ne form, if, and only if, exists a local state dif-feomorphism x = �(X) such that the observationequation y = h(�(X)) de�nes locally an a�nesubspace in the X-space and the restriction of thedynamics in the X-space, _X = F (X), to the a�nesubspace y = h(�(X)) is a�ne (the restriction ofF to y = h(�(X)) is a�ne). In other words, thismeans that in the X coordinates (1) reads_X = A(y)X + b(y); C(y)X = d(y) (2)where the matrices A, b, C and d are smoothfunctions of y.Such systems admit an a�ne observer of the form:_̂X =A(y)X̂ + b(y) (3)�P�1C0(y)(C(y)X̂ � d(y))_P =��P � At(y)P � PA(y)+Ct(y)C(y) (4)which converges exponentially when y is per-sistent (in the sense of (Guillaume and Rou-chon, 1997), i.e. P > �Id for some � > 0).The paper is organized as follows. In section 2,single output planar observable systems trans-formable into implicit a�ne forms are character-ized. Section 3 deals with the necessary conditionfor single output systems with an arbitrary statedimension.2. SINGLE INPUT PLANAR SYSTEMS2.1 Necessary conditionAssume that the observable system (1) is trans-formable into an implicit a�ne form. SetA(y) =� a11(y) a12(y)a21(y) a22(y)�b(y) = � b1(y) b2(y) �tC(y) = � c1(y) c2(y) �After derivation, (0 stands for derivation withrespect to y):

CX = d(C0 _y +CA)X +Cb= d0 _yd(CX)dt = PX +Q=Rwith P = (C00 _y2 + C0�y + 2C0 _yA + CA0 _y + CA2),Q = 2C0b _y + CAb + Cb0 _y and R = d00 _y2 + d0�y.Since � CC0 _y +CA� is assumed invertible, X canbe eliminated from the last equation. This yields asecond order di�erential equation for y. Examinethe structure of this equation. Up to renumberingthe component of x, assume that c1(y) 6= 0. ThusX1 = d(y)=c1(y) � c2(y)=c1(y)X2. Without lostof generality, assume also that the �rst column ofA is zero (substitute X1 into the state equation)and c1 � 1. This leads to the following simpli�edstructure: A(y) = � 0 a1(y)0 a2(y) �b(y) = � b1(y) b2(y) �tC(y) = � 1 c(y) � : (5)Denote �1 = a1 + ca2; �1 = b1 + cb2: (6)Elimination of X leads tog(y)�y = g0(y) + g1(y) _y + g2(y) _y2 + g3(y) _y3withg = (c0�1 + d0�1)g0 = (��1�1a2 + �21b2)g1 = (��1(�01 + c0a2) + d0�1a2 + 2c0�1b2 + �1�01)g2 = (�d00�1 � c00�1 + (�01 + c0a2)d0 + (�01 + c0b2)c0)g3 = (d0c00 � c0d00):Observability of (1), means here that exists alocal di�eomorphism between X and (y; _y). Thisimplies that, locally, g cannot vanish. Thus thefollowing lemma is proved:Lemma 1. (Necessary condition). If the observ-able planar system (1) is transformable into animplicit a�ne system (3) then, its output y sat-is�es a second order di�erential equation of theform�y = f0(y) + f1(y) _y + f2(y) _y2 + f3(y) _y3with f0, f1, f2, f3 smooth functions.2.2 Su�cient conditionAssume that the output y of planar observablesystem (1) satis�es a second order di�erentialequation of the form�y = f0(y) + f1(y) _y + f2(y) _y2 + f3(y) _y3



with the f0, f1, f2 and f3 smooth function of y.A di�eomorphism x = �(X) that put the systeminto an implicit a�ne form 3 can explicitely bebuilt.From previous computation,it appears that theproblem to solve is equivalent to �nd smooth y-function c, d, �1, �1, b2 and a2 such thatf0(c0�1 + d0�1) = (��1�1a2 + �21b2)f1(c0�1 + d0�1) = (��1(�01 + c0a2) + d0�1a2+2c0�1b2 + �1�01)f2(c0�1 + d0�1) = (�d00�1 � c00�1+(�01 + c0a2)d0 + (�01 + c0b2)c0)f3(c0�1 + d0�1) = (d0c00 � c0d00): (7)Basic algebraic manipulations of this system yieldto the following three equations:�1�1�01 = �(c0�1 + d0�1)(2c0f0 + �1f1)�c0�1�1a2 + d0�21a2 + �21�01 � 2c0�1�1a2�21�1(c0�1 + d0�1)c00 = c0F + �31�1f3(c0�1 + d0�1)�21�1(c0�1 + d0�1)d00 = d0F � �21�21f3(c0�1 + d0�1)(8)whereF = �1(�21(c0a2d0 + �01c0)� c02�1�1a2)+�1d0(�1(��1c0a2 + d0�1a2 + �1�01)�(c0�1 + d0�1)(�1d0(2c0f0 + �1f1)+�1(c02f0 + �21f2)) � 2c0�1�1a2):Denote by �x the state around which the trans-formation x = �(X) is looked for and denote by(�y; _�y) the corresponding values of (y; _y).Set �1(y) � 1 and a2(y) � 0. By the Cauchy-Lipschitz theorem, there exists locally around �y,a unique solution y 7! (�1; c; d) of the di�eren-tial system (8) with the following initial values:�1(�y) = ( _�y)2 + 1, c(�y) = d(�y) = d0(�y) = 0,c0(�y) = 1: Such a solution yields to b2(y) via�21b2 = f0(c0�1 + d0�1) + �1�1a2.For A, b and C derived from the above solutiony 7! (�1; �1; a2; b2; c; d) of (7) via the formulae (5)and (6), the relations� CC0 _y + CA� X = � dd0 _y � Cb� (9)de�ne a local di�eomorphism between (y; _y) andX, that is between x and X. This results from thefollowing arguments:� since c0(�y) _�y + �1(�y) = �y2 + �y + 1 > 0, thematrix � CC0 _y + CA�is locally invertible; thus X is a smoothfunction of (y; _y).

� denote by �X the solution of (9) for (�y; _�y);since(�1(�y) + c0(�y) _�y) �X2 = d0(�y) _�y � �1(�y);�X2 6= 0 and c0(�y) �X2 � d0(�y) 6= 0; the implicitfunction theorem for X1 + c(y)X2 = d(y)ensures that y can be expressed as a smoothfunction of X;� similarly, _y is also a smooth function of X.Thus, the following lemma is proved:Lemma 2. (Su�cient condition). Assume that thescalar output of the planar observable systems(1) satis�es a smooth second order di�erentialequation of the form�y = f0(y) + f1(y) _y + f2(y) _y2 + f3(y) _y3:Then, locally, there exists a change of state coor-dinates putting the system into an implicit a�neform (3).Lemmas 1 et 2 lead to the followingTheorem 1. A single output observable planarsystem (1) is transformable into an implicit a�neform (3), if, and only if, the second-order deriva-tive of the output is a polynomial of third degreein the �rst-order derivative of the output withcoe�cients smooth function of the output.Remark that:� planar observable systems transformable intoimplicit a�ne forms admit the following nor-mal forms _X1 = a(y)X2 + b1(y)_X2 = b2(y)X1 + c(y)X2 = d(y):This results from the proof of the su�cientcondition.� The class of planar observable systems, a�neregarding to the unmeasured states in thesense of (Krener and Respondek, 1985; Be-san�con and Bornard, 1997; Hammouri andGauthier, 1992), admit the following outputdi�erential equation:�y = k0(y) + k1(y) _y + k2(y) _y2:This former class is thus smaller than theclass considered here.3. NECESSARY CONDITION FOR GENERALSINGLE OUTPUT SYSTEMSDenote by n the state dimension and take theimplicit a�ne form. After n derivations of theobservation equation, the following system:



CX = dd(CX)dt = d0 _yd2(CX)dt2 = d" _y2 + d0�y (10): : := : : :dn(CX)dtn = d0y(n) + : : :+ d(n) _ynis a linear overdetermined system with respect toX. Eliminating of X yields to a polynomial im-plicit scalar equation with respect to ( _y; : : : ; y(n)).A careful inspection of the di�erent partial degreesof this polynomial equation yields to a necessarycondition. Introduce the following de�nitions bor-rowed from (Krener and Respondek, 1985).De�nition 1. Note P the ring of polynomials withindeterminates the successive derivative y(k) ofy and with coe�cients C1 functions of y. Byde�nition the degree of y(k) is k and the degree ofy(j1) : : : y(jr) is j1 + : : :+ jr. Note Pk the subringof polynomials, the degree of which is less than orequal to k and Pki the subring of polynomials, thedegree of which is less than or equal to k spannedby Pi, with i � k.Lemma 3. The system (10) can be written:P0X + Q0(y) =R0: : := : : :Pn�1X +Qn�1 =Rn�1 (11)PnX + Qn =Rnwith Pi and Ri elements of Pi for i = 1 : : :n andQi element de Pi�1 for i = 2 : : :n.Proof: Immediate for i = 1; 2; 3 : : : The derivativeof a monomial of the form f(y)y(k) is a monomialof degree k + 1 because d(f(y)y(k))dt = f 0(y) _yy(k) +f(y)y(k+1) .The structure of the (vector) polynomials can bemore precisely described:P = (pij) = 0BBB@ P0P1...Pn�11CCCAwithP0 =CP1 =C0 _y +CA...Pn�1=C(n�1) _yn�1+(n � 1)C(n�1)�y _yn�3 + : : :+ CAn�2

Q = 0BBB@ Q0Q1...Qn1CCCA, R = 0BBB@ R0R1...Rn1CCCA, � = detP , �ij thecofactors of P and M = (�ij), the comatrix.The elimination of X from the previous equationsleads to: PnP�1(R �Q) + Qn = Rnthat is: PnM t(R�Q) + �Qn = �Rn (12)The coe�cient D of y(n) in (12) is: D = �(C0X �d0) = C0M t(R�Q)�d0� with R and Q elementsof Pn�1. M is an element of Pn(n�1)=2�1n�1 and �an element of Pn(n�1)=2n�1 . We have the followingdegrees for the lines M (i), Q(i) and R(i) of thecorresponding matricesd�M (1) = n(n� 1)=2d�M (i) = n(n� 1)=2� (i� 1); i = 2 : : :nd�Q(1) = 0d�Q(i) = i� 2; i = 2 : : :nd�R(i) = i� 1; i = 1 : : :nThen, D is an element of Pn(n�1)=2n�1 . Isolating theterms with d0 in X and using:D = nXk=1 c0(k)(�1)n+k�nkd0y(n�1) � d0�+ : : :with � = Pnk=1(�1)n+kpnk�nk and pnk =c0(k)y(n�1) + : : :, the term in y(n�1) disappears.D is an element of a subring spanned by Pn�2.From the equation (C0X � d0) _y = �(CAX + Cb)and after multiplication by �, it appears thatthe degree of the right term is less than equal ton(n� 1)=2 (degree de �X and of �) and the oneof the left term less than or equal n(n� 1)=2+ 1.This is possible only if the degree of (C0X � d0)�is less than or equal to n(n � 1)=2 � 1. There isno term of degree n(n � 1)=2 in D. Finally, D isan element of P(n(n�1)=2�1)n�2 .Consider the degree of the remaining term N . Nis got from the equation (12), in which the termwith y(n) is suppressed:N = (Pn(y; : : : ; y(n�1))X+Qn(y; : : : ; y(n�2)) �Rn(y; : : : ; y(n�1)))�Pn is an element of Pnn�1 (polynomial of degree nwithout derivatives of order n) and �X elementof P(n(n�1)=2)n�1 so N is an element of Pn(n+1)=2n�1 .Sum up these results in the following proposition:



Lemma 4. If the single output observable system(1) is transformable into an a�ne system (3) thenthe output y satis�es the following di�erentialequation: y(n) =N=D (13)with N element of Pn(n+1)=2n�1 and D element ofP(n(n�1)=2�1)n�2 (see de�nition 1).For n = 3, the following output equation existsnecessarily:y(3) = N (y; _y; �y)d0(y) + d1(y) _y + d2(y) _y2withN = n1(y) (�y)3 + n2(y) (�y)2 _y2 + n3(y) �y _y4 + n4(y) _y6+n5(y) (�y)2 _y + n6(y) �y _y3 + n7(y) _y5+n8(y) (�y)2 + n9(y) �y _y2 + n10(y) _y4+n11(y) �y _y + n12(y) _y3+n13(y) �y + n14(y) _y2+n15(y) _y+n16(y)The fact that the denominator depends only on _yis not obvious.Remark: the gap between the dimension 2 and 3appears here. For the 3 dimensional case, there are19 equations to satisfy for 12 functions (overdeter-mined), when for the 2 dimensional case, there are5 equations (4 if g is set to 1) for 6 functions (un-derdetermined). So we see that there are degreesof freedoms for the 2 dimensional and relations tosatisfy in the 3 dimensional case.4. CONCLUSIONHere is establishesd a necessary condition so thatan nonlinear system is equivalent to an a�nesystem (3) with an observation equation, a�neregarding to the state and implicit regarding tothe the measured output. A such class of systemscontains linearizable systems by output injection,and also a�ne systems described in (Besan�conand Bornard, 1997). An observer for the systemdescribed here can be found in (Guillaume andRouchon, 1997). Our present work is on the in-trinsic characterization of such systems and alsoon the way to compute the coordinates changewhen it exists. 5. REFERENCESBesan�con, G. and G. Bornard (1997). On charac-terizing classes of observers forms for nonlin-
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