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1 Introduction

In 1974 Blaschke and Hasse introduced the so called �eld-oriented method for

the control of induction motors [1, 5]. This method is based on a nonlinear

coordinate change, admitting a clear physical interpretation since corresponding

to a rotation by the rotor 
ux angle. In these coordinates the equations of the

induction motor are very similar to the equations of a DC motor. Since the

control of DC motors is much simpler and better understood, �eld-oriented

methods have become very popular. This paper is devoted to a symmetry

interpretation of �eld-oriented control methods (see, e.g., [4] for related works

on symmetry and control of linear systems). We show that:

1. the direct �eld-oriented method admits a nice interpretation in terms of

symmetries; for a control problem invariant with respect to a given Lie

group of �nite dimension this method just consists in a reduction to the

base dynamics.

2. the indirect �eld-oriented method consists in fact in using symmetries for

adding control variables.

In section 2 we recall the classical model of the induction machine, and its

invariance under an arbitrary rotation of the electrical variables. In section 3

we present the direct and indirect �eld-oriented control methods. In section 4 we

propose in a abstract setting the generalization of the direct and indirect �eld-

oriented methods to a control problem invariant under a transformation group

of �nite dimension s: the direct method consists then in eliminating s state

variables corresponding to the orbits; the indirect method consists in adding s

new control variables.
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A preliminary version of this paper was presented at the COSI workshop

organized by R. Sepulchre in July 97 in Brussels.

2 Model of the induction motor

2.1 The di�erential-algebraic model

We recall here the standard two-phase equivalent machine representation of a

symmetrical three-phase induction motor, see for instance [6] for a complete

derivation of the equations.

The electrical equations describing the stator and rotor circuits are

Rs{s +
d's

dt
= us (1)

Rr{r +
d'r

dt
= jnp!'r; (2)

where Rs is the stator resistance, {s the stator current, 's the stator 
ux, us
the voltage applied to the stator, Rr the rotor resistance, {r the rotor current,

'r the rotor 
ux, ! the rotor angular velocity, and j :=
p
�1; the rotor 
ux

and current are expressed in the stator frame, hence the term jnp!'r with !

the mechanical speed. We use the complex representations for currents, 
uxes

and voltages: for instance {s = {sa + j{sb, where {sa and {sb denote the currents

in each of the two stator phases. Since the motor can be actuated through us,

there are two independent (real) controls usa and usb.

Under the assumptions of linearity of the magnetic circuits (valid as long as

the currents are not too large) and neglecting iron losses, 
uxes and currents

are related by

's = Ls{s + Lm{r (3)

'r = Lm{s + Lr{r; (4)

where, Ls the stator inductance, Lr the rotor inductance, Lm the mutual in-

ductance between the stator and the rotor.

As a consequence of the Lorenz force law, the torque produced by the motor

is

np=({?r'r);

where =(z) stands for the imaginary part of the complex number z and z
? for

its conjugate. The motion of the rotor is thus given by

J
d!

dt
= np=({?r'r)� �L; (5)

with J the moment of inertia of the rotor and �L the load torque. Equations (1{

5) form the di�erential-algebraic model of the induction motor.
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2.2 Rotational invariance

Consider the transformation, g�, � 2 R, de�ned by

0
BBBB@

us

{s

's

{r

'r

1
CCCCA 7!

0
BBBB@

Us

Is

�s

Ir

�r

1
CCCCA = exp(j�)

0
BBBB@

us

{s

's

{r

'r

1
CCCCA ;

while ! remains unchanged, which rotates the electrical variables by the angle

�. Clearly, (1){(5) remains unchanged by this transformation:

d�s

dt
+RsIs = Us

d�r

dt
� jnp!�r +RrIr = 0

�s = LsIs + LmIr

�r = LmIs + LrIr

J
d!

dt
= =(�rI

?

r
)� �L:

In other words, the transformation g� is a symmetry of the system. The set

(g�)�2R forms a transformation group G isomorphic to the abstract group S1.

Notice also that the control objectives (in general tracking for ! and rotor


ux module) are also invariant. Hence, the complete control problem is invariant

under the transformation group G.

2.3 The current-fed explicit model

For the sake of simplicity, we will use in the sequel a reduced model of the motor.

Indeed, for most motors the leakage factor 1� LsLr=L
2

m
is small, which allows

to neglect the stator dynamics. This yields the classical reduced model

J
d!

dt
= Lm=Lr=({?s'r)� �L (6)

Tr
d'r

dt
= (�1 + jnpTr!)'r + Lm{s; (7)

where Tr = Lr=Rr and {s can be considered as the control.

This reduced model is of course invariant under the transformation group G

with g� now reduced to

�
{s

'r

�
7!
�

Is

�r

�
= exp(j�)

�
{s

'r

�
:
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3 Field-oriented methods

3.1 Direct �eld-oriented control

The �eld-oriented control method [1, 5] consists in using the so-called (d � q)

frame de�ned by the transformation g�� where � is the rotor 
ux angle:

'r = � exp(|�); � > 0:

Setting {sd + | {sq := exp(�|�) {s (6,7) becomes

J
d!

dt
= Lm=Lr � {sq � �L

Tr
d�

dt
= (Lm{sd � �)

Tr�
d�

dt
= npTr!�+ Lm{sq :

Thanks to the rotational invariance, the equations for ! and � do not depend on

�. Moreover, since the control objectives are invariant, the dynamic of � can be

forgotten and we simply have to design a controller for the two �rst equations:

J
d!

dt
= Lm=Lr � {sq � �L (8)

Tr
d�

dt
= (Lm{sd � �) (9)

with {sd and {sq as controls. If the state variables were measured, the controller

would be obvious since there are two states and two controls (this explains why

the direct current {sd is often called the magnetizing current and the quadrature

current {sq the "torque" current). In general, the 
ux is not measured and some


ux observer must be used.

3.2 Indirect �eld-oriented control

In the indirect �eld-oriented method we use instead of rotor 
ux angle � a

time-varying angle �(t)

J
d!

dt
= Lm=Lr=(I?s�r)� �L

Tr
d�r

dt
= (�1 + jTr(np! �

d�

dt
))�r + LmIs;

where 'r = �r exp(j�(t)), {s = Is exp(j�(t)). The arbitrary time function !s(t)

called the stator velocity,
d�

dt
= !s;

can be seen as an extra control. This provides a system with with 3 control

inputs and 3 states, which is obviously very easy to control when all the states

are measured.
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Notice that contrarily to the direct �eld oriented method, the transformation

is always known (since � is computed). This is very interesting because the

control law can be designed without a 
ux observer: it su�ces to use the 
ux

reference as an estimate of the actual 
ux [10, 3, 2].

4 Generalization

We now generalize the �eld-oriented methods to the Lie group framework (see,

e.g.,[9] for a summary of standard results on Lie groups).

Consider the control system

dx

dt
= f(x; u); x 2M (10)

where M is the state manifold and a Lie transformation group G of dimension

s acting on the manifold M .

De�nition 1. System (10) admits G as a symmetry group if and only if for

each g 2 G there exists a regular static feedback U = kg(x; u) is the new control)

such that for all x and u

Dg(x):f(x; u) = f(g(x); kg(x; u)):

One also says that (10) is invariant under G.

This de�nition just says that the vector �eld f is invariant up to a regular

static feedback, i.e., the equation _x = f(x; u) remains unchanged after the

change of variables (x; u) 7! (X;U) = (g(x); k(x; u)), that is _X = f(X;U).

4.1 Reduction to the base dynamics

Figure 1: foliation of the state manifold.
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We �rst generalize the direct �eld-oriented method: it consists in reducing

the dynamics to the base dynamics which is decoupled from the �ber dynamics

(see �gure 1). We assume that the action of G is regular with s the dimension

of the orbits.

Locally around any point of M , it is always possible to choose rectifying

coordinates (y; z) 2 R
s � R

n�s ((y; z) close to 0, such that the action of any

g 2 G near the identity reads

g � (y; z) = (
(y; z); z)

with 
 a smooth map. The z-coordinates, which are left unchanged by G,

are called the base-coordinates. The y-coordinates are called �ber or orbit

coordinates. For the induction motor z (resp. y) corresponds to (!; �) (resp. �).

Denoting by (fy; fz) the components of f according to the (y; z)-coordinates,

f = f
y
@

@y
+ f

z
@

@z
;

invariance implies that, for each g 2 G close to identity, there exists a feedback

v = kg(x; u) such that

f
z(y; z; u) = f

z(
(y; z); z; kg(y; z; u)):

Since (y; z) and (0; z) belong to the same orbit, there exists g 2 G close to

identity sending (y; z) to (0; z). For the induction motor g consists in a rotation

by minus the rotor 
ux angle �. Thanks to the feedback v = kg(y; z; u), we

must now control only

_z = f
z(0; z; v);

which is independent of the orbit variables y. The feedback v = k(y; z; u) can

be obtained by solving the overdetermined system:

f
z(y; z; u) = f

z(0; z; v):

Invariance ensures this system admits a solution.

4.2 Addition of control variables

We assume here the action of G on M locally e�ective, hence we do not dis-

tinguish between elements of G, the Lie algebra of G, and the in�nitesimal

generators of the action of G on M . The Lie algebra G is spanned by s inde-

pendent vector �elds fS1; : : : ; Ssg on M . For each x 2 M , the tangent space

to the orbit passing through x is nothing but the vector space spanned by

fS1(x); : : : ; Ss(x)g.
Take t 7! gt a curve on G, then its velocity _gt can be expressed as a linear

combination of the Si's:

_gt(x) =

sX
i=1

!i(t)Si(gt(x));
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where the s real functions t 7! !i(t) are arbitrary when the curve t 7! gt is

arbitrary.

Under the time-varying change of coordinates X = gt(x), _x = f(x; u) reads

dX

dt
= Dgt(x) �

dx

dt
+ _gt(x)

= Dgt(x) � f(x; u) +
sX

i=1

!i(t)Si(gt(x)):

Invariance implies the existence of a feedback U = kgt(x; u) such that Dgt(x) �
f(x; u) = f(X;U). Hence

dX

dt
= f(X;U) +

sX
1

!iSi(X); (11)

where the !i can be considered as extra control variables.

The design of a controller for _x = f(x; u), then splits into two steps. The

�rst step consists in designing a control law for (11), e.g., a feedback U = K(X)

and !i = ri(X), i = 1; : : : ; s: this design is easier since it involves s additional

independent inputs.

The second step is just the computation of the actual control u from the

knowledge of the feedback functions K and ri and the actual state x. We have

X = gt(x) with gt the 
ow of the time-varying vector �eld

rX
1

wi(t)Si(z):

At this stage the computation of gt is highly simpli�ed by the use of a matrix

representation of G: gt reduces then to the integration of a matrix equation of

the form

A
�1(t)

dA

dt
(t) =

rX
1

wi(t)Ni

where A(t) is the time-varying matrix associated to gt and the constant matrix

Ni corresponds to the in�nitesimal generator Si. For the induction motor (6,7),

the computation of gt boils down to a direct integration of !s, which plays the

role of !1 with s = 1.

Once gt is known,X is known and the actual control u results formDgt(x)f(x; u) =

f(X;U). Notice the static feedback U = K(X) and wi = ri(X) designed for (11)

leads to a dynamic feedback for the original system, the dynamic part being as-

sociated to gt.

5 Conclusion

The dynamics of the induction motor admits a rather rich structure. In this

paper we have shown that �eld-oriented control strategies strongly rely on the
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rotational invariance of the systems and thus its physical structure. Another

important physical property of such system is dissipation and passivity and can

be exploited for control design (see, e.g., [8, 11] for recent developments).

Dissipation implies that the electrical part of the dynamics is contracting.

More precisely, we have,with the stator and rotor 
ux variables

d

dt

�
's

'r

�
= A(t)

�
's

'r

�
+

�
us

0

�

where

A(t) =

�
Rs 0

0 Rr

��
Lr Lm

Lm Ls

��1
+

�
0 0

0 �jnp!(t)

�
:

The matrix A(t) admits a symmetric part (for the Hermitian product de�ned by

� = diag(R�1
r
; R

�1

s
)), that is �A+ A

?�, negative de�nite (see [7] for general-

izations) It is clear that this property is invariant under rotation, i.e., multipli-

cation by a complex of modulus one. This implies that the derived Lyapounov

functions are invariant by rotation. Such combinations of Lyapounov and sym-

metries will be investigated in the future.
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