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TRACKING CONTROL OF A VIBRATING STRING WITH
AN INTERIOR MASS VIEWED AS DELAY SYSTEM

H. MOUNIER, J. RUDOLPH, M. FLIESS, AND P. ROUCHON

ABSTRACT. A vibrating string, modelled by the wave equation, with an
interior mass is considered. It is viewed as a linear delay system. A
trajectory tracking problem is solved using a new type of controllability.

1. INTRODUCTION

The “hybrid system” modelling a vibrating string with an interior point
mass is analyzed in a remarkable recent paper by Hansen and Zuazua [6].
Using Hilbert’s uniqueness method [7, 8], on the one hand, and nonharmonic
Fourier series [13], on the other hand, they give a detailed description of its
exact controllability and stabilization by boundary feedback.

The present study, which is a companion paper of [3], aims to solve an-
other natural control problem, namely tracking a trajectory of the mass
position. We exploit the well known relation [1] between the undamped
wave equation and linear delay systems.

We freely use [3], where relations to several classical structural proper-
ties of delay systems are established. The present case study illustrates in
particular the importance of 7-freeness [3] for tracking control of a delay
system, in a similar spirit as the “flatness based control” of nonlinear (finite
dimensional) systems [2]. See also [11] for other examples.

In the next Section the delay system model is derived from the hybrid
one. lts m-freeness is established in Section 3. As in [6], two cases are
distinguished: position control on both boundaries or on either one, in which
case the other end is fixed. The tracking control in the single control case is
treated and illustrated by simulations in Section 4. Related examples may
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be found in [4, 12]. In [12] the control of an Euler-Bernoulli flexible beam
is sketched, which uses some of the tools developed in [3].

2. HYBRID SYSTEM AND DELAY SYSTEM MODEL

The device under study can be modelled as a hybrid system: a (one-
dimensional) wave equation for each interval between the boundary and a
point mass together with a second order linear ordinary differential equation
describing the motion of the mass;

p10ip = 110%p v €[-L,0,teRT, (2.1a)
p20tq = 102q v €[0,Ls],t € RT.  (2.1Db)
Here p(z,t) and ¢(z,t) represent the deformation at abscissa z and time
t of the respective parts of the string, supposed homogeneous, occupying
[—L1,0] and [0, Ly]. The physical parameters are their densities p; and p,

and the tensions 7, 72. The position z(t) of the mass M, attached to the
string at o = 0, satisfies

z(t) = p(0,1) = ¢(0,1) teRT,  (2.1c¢)
MO?z(t) + 110,p(0,1) — 190,q(0,t) = 0 teRT.  (2.1d)

Applying position controls u(t) and v(¢) at the ends leads to Dirichlet bound-
ary conditions

Ly, t) = u(t) teRT,  (2.1e)

p 1
Ly, t) = v(t) teRT.  (2.1f)

(=
9(
The (compatible) initial conditions are

z,0) = p*(x), x€[-L1,0], (
z,0) = ¢' (2), zel0, Ly, (

2(0) = 2 = p°(0) = ¢°(0), (2.1
9:2(0) = ' = p*(0) = ¢'(0) (2.1
u M Q(Z%t)

p(Zlvt) T T
‘_Ll b }[JQ

Ficure 1. The vibrating string with an interior point mass

The general solution of (2.1) in the convolution ring D’(R) of distributions
is well known to be

p(e,t) = (02 % 01) (1) + (02 * P1) (1), (22)
q(@,t) = (e * D2) (1) + (0= pupe * ¥2) (1), 2
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with ¢1, @2, 91,92 € D'(R), 85, denoting the Dirac distribution concentrated

at h, and
H1 = v/ ,01/7'17 Hoa =/ ,02/7'2-

The boundary conditions (2.1c), (2.1e), and (2.1f) then read

G1(t) + 1 (1) — ¢2(t) — h2(t) =0 (2.4a)
M (8" # (é1 +11) (1) + mipa (8 % (61 — 1) (1)) —
Topi2 (8" % (d2 — ¥o(t)) =0 (2.4b)
Oy * @1) () + Oy, * V1) (1) = u(?) (2.4¢)
(s, * 2) (1) + (0- o, * ¥2) (1) = v(1) (2.4d)

where &' and §” denote the derivatives of the Dirac distribution concentrated
at 0. Since ¢1(t) = ¢1(t) + a(t) and ¥1(t) = ¥1(t) — a(t) give rise to the

same solution for all «(t), we can choose to have

M(8" 5 (1 + ¥1)) (1) + mupa (d1 = 1) (1) = Tapa(d2 — ¥2) (1) = 0. (2.5)

3. STRUCTURAL PROPERTIES
Defining
m = Tip1/M, N2 = Topiz/M

and the localized delay operators o; and o5 of respective amplitudes Ly
and g Lo, the preceding equations can be resumed as

d D1+ V1 = P2+ Y (3.1a
%(Cbl + 1) +m(d1 — ¥1) — n2(d2 — 2) =0 (3.1b
o191 + Uf1¢1 =u (3.1c
02_1¢2 + 031y = v. (3.1d

REMARK 3.1. Here we use the notation o for the delay operators rather
than § as in [3] in order to avoid any confusion with the Dirac distribution.

)
)
)
)

3.1. CASE OF TWO CONTROLS

The delay system model is defined as the R[%, o1, 09)-module A*? gener-
ated by {¢1, ¥1, ¢2, V2, u, v} with the relations (3.1).
We study the structure of the delay system A%Y with two controls first.

THEOREM 3.2. The system AV is torsion free, but not free. It is o5-free
with basis (o1¢1 — w, ¢1 + 1)

Proof. The presentation matrix of A"" associated with (3.1) is

1 1 -1 -1 0 0
d + d 0 0
PAM,U (%7 01, 02) = | dt n dt n 2 2
o} 1 0 0 -0 O
0 0 1 o2 0 -0y

Calculating the minors which define the variety Vju.» associated to A",
one realizes that Ppuw(sq,sz,s3) has a loss of rank for s; = s3 = 0 and
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s1 = 1z — 11 only. This proves that A*" is torsion free but not free (see [9]
and [3, Proposition 3.1 and Theorem 3.2]).

Introduce by = 01¢1 —u and by = ¢y +11. The independence of by and by
over the quotient field R(<, a1, 03) can be checked on (3.1) using elementary
linear algebra. This readily implies their independence over R[%, o1,09). Let
us check that by and by are generators of A%V, One has 101 = O'%(bl —ou =
—1, whence 1) = —o1by, ¢1 = by + o1by, u = o1by — (1 — 02)by. Then,
using %bz + 771(b2 + 20’1()1) = 772(2¢2 — bz) and ¢2 = bg — ng

1 d m+n

P9 = %%bz-l-—fﬁbrl- by,

1 d il Ui m

S L b
thy 20y L 2 77201 1+ T

Finally, oqv = @2 + 031, yields

o (07" —02) d by + moy(oy — oy bt (m +m)oy' + (n2—m)oy by

2, dt 72 21

The R[%, o1, 09)-linear independence of by and b, is a direct consequence of
rkR[d/dt,al,ch]Auw = 2. |

3.2. CASE OF A SINGLE CONTROL
Let the system be controlled on one boundary only. Therefore, consider
v=01in (3.1d), as in [6]. Equations (3.1) then yield
G141 = (1= 03)iy (3.2a)
oipy + by = oyu (3.2b)
D o4 60) (61 = ) a1+ 3 s = (3.20)

Denote as A" the R[%,Ul,ag]—module generated by {¢1, 1, ¢o, 9, u}
with the relations (3.2).

ProrosiTION 3.3. The system A" is torsion free but not free. It is o1-free,
with basis 1.

Proof. The presentation matrix of A" associated with (3.2) is

1 1 O'%—l 0
2 _
PAM(%7O'17O'2): dO'l d 1 0 g1
_ - _ 1 2
gtmo o —m m(l4+03) 0

The associated variety of zeros Vau is the curve in the sy, s9, s3 space given

by

1+ s%
=0, s =m— .
52 S1=M— - s2
It follows that A" is torsion free, but not free (see [3], Theorems 12 and 13).
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We now show that A" is oy-free, with basis 5. The relation v = 0 in
(3.1d) implies ¢ = —031hy. Using this together with (3.2a) in (3.2c) yields

d
$1=- [(1 —oy) 7+ (m+m)os+ (2 — 771)] f—z (3.3a)
m
_ 2 4 2 o
vi= (1= o3) =+ (12— m)oy + (m + )| 5= (3.3b)
m
d
w= (o7 = o) (1= o) o+ mod — )+ (330
or'+ o — mo? Yo
(o7 + o)~ )] 5
and o generates R[%, 01,02, 01_1] OR[d/dt,01,00] A¥; it is then a basis for this
latter module. O

4. MASS TRACKING
From Proposition 3.3 and equations (2.1c) and (2.2), we get
z = (1—-03)s. (4.1)
THEOREM 4.1. The system A“ is o1(1 — 02)-free, with basis 2.

Thus, the control law allowing to track a desired trajectory z; of z, fol-
lowing directly from (3.3c), involves an advance of uq L. Additionally, we
have from (2.2)

P, 1) = Bppe + S1) (1) + (0- e x 01)(0), @ € [=14,0]
(1) = (O % P2)(8) + (Oppw ¥ ¥2) (1), @ € [0, L]

and ¢y and ¢y are given in terms of z through (3.3a), (3.3b), and (4.1). These
formulae allow to compute the explicit solution of (2.1) and the control law
ugq(t) yielding a desired trajectory z;(t) of the mass position, as the one
shown in Figure 2. The corresponding control function u4(t) is depicted in
Figure 3 and the displacements along the string are shown on Figure 4; they
correspond to jiy = 1, o = V2, 1 =1, e =2, and Ly = 1, Ly = 2.

15F q

0.5F q

0 4

s 2 1 o0 1 2 3 4 5 & 7
FIGURE 2. The desired output z4(t)
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FiGURE 3. The control law ugq(t)
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FIGURE 4. Graph of p(x,t) (x € [-1,0]) and ¢(z,t) (z € [0, 2])
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