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TRACKING CONTROL OF A VIBRATING STRING WITH

AN INTERIOR MASS VIEWED AS DELAY SYSTEM

H. MOUNIER, J. RUDOLPH, M. FLIESS, AND P. ROUCHON

Abstract. A vibrating string, modelled by the wave equation, with an

interior mass is considered. It is viewed as a linear delay system. A

trajectory tracking problem is solved using a new type of controllability.

1. Introduction

The \hybrid system" modelling a vibrating string with an interior point

mass is analyzed in a remarkable recent paper by Hansen and Zuazua [6].

Using Hilbert's uniqueness method [7, 8], on the one hand, and nonharmonic
Fourier series [13], on the other hand, they give a detailed description of its

exact controllability and stabilization by boundary feedback.

The present study, which is a companion paper of [3], aims to solve an-

other natural control problem, namely tracking a trajectory of the mass

position. We exploit the well known relation [1] between the undamped

wave equation and linear delay systems.

We freely use [3], where relations to several classical structural proper-

ties of delay systems are established. The present case study illustrates in

particular the importance of �-freeness [3] for tracking control of a delay

system, in a similar spirit as the \
atness based control" of nonlinear (�nite

dimensional) systems [2]. See also [11] for other examples.

In the next Section the delay system model is derived from the hybrid

one. Its �-freeness is established in Section 3. As in [6], two cases are

distinguished: position control on both boundaries or on either one, in which

case the other end is �xed. The tracking control in the single control case is

treated and illustrated by simulations in Section 4. Related examples may
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be found in [4, 12]. In [12] the control of an Euler-Bernoulli 
exible beam

is sketched, which uses some of the tools developed in [3].

2. Hybrid system and delay system model

The device under study can be modelled as a hybrid system: a (one-

dimensional) wave equation for each interval between the boundary and a

point mass together with a second order linear ordinary di�erential equation

describing the motion of the mass;

�1@
2
t p = �1@

2
xp x 2 [�L1; 0]; t 2 R+; (2.1a)

�2@
2
t q = �2@

2
xq x 2 [0; L2]; t 2 R+: (2.1b)

Here p(x; t) and q(x; t) represent the deformation at abscissa x and time

t of the respective parts of the string, supposed homogeneous, occupying
[�L1; 0] and [0; L2]. The physical parameters are their densities �1 and �2
and the tensions �1, �2. The position z(t) of the mass M , attached to the

string at x = 0, satis�es

z(t) = p(0; t) = q(0; t) t 2 R+; (2.1c)

M@
2
t z(t) + �1@xp(0; t)� �2@xq(0; t) = 0 t 2 R+: (2.1d)

Applying position controls u(t) and v(t) at the ends leads to Dirichlet bound-

ary conditions

p(�L1; t) = u(t) t 2 R+; (2.1e)

q(L2; t) = v(t) t 2 R+: (2.1f)

The (compatible) initial conditions are

p(x; 0) = p
0(x); @tp(x; 0) = p

1(x); x 2 [�L1; 0]; (2.1g)

q(x; 0) = q
0(x); @tq(x; 0) = q

1(x); x 2 [0; L2]; (2.1h)

z(0) = z
0 = p

0(0) = q
0(0); (2.1i)

@tz(0) = z
1 = p

1(0) = q
1(0): (2.1j)

M
u

v

0�L1 L2

p(z1; t)

q(z2; t)

z

Figure 1. The vibrating string with an interior point mass

The general solution of (2.1) in the convolution ring D0(R) of distributions

is well known to be

p(x; t) = (��1x � �1)(t) + (���1x �  1)(t); (2.2)

q(x; t) = (��2x � �2)(t) + (���2x �  2)(t); (2.3)
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with �1; �2;  1;  2 2 D0(R), �h denoting the Dirac distribution concentrated

at h, and

�1 =
p
�1=�1; �2 =

p
�2=�2:

The boundary conditions (2.1c), (2.1e), and (2.1f) then read

�1(t) +  1(t)� �2(t)�  2(t) = 0 (2.4a)

M(�00 � (�1 +  1)(t)) + �1�1(�
0 � (�1 �  1)(t))�

�2�2(�
0 � (�2 �  2(t)) = 0 (2.4b)

(���1L1 � �1)(t) + (��1L1 � 1)(t) = u(t) (2.4c)

(��2L2 � �2)(t) + (���2L2 � 2)(t) = v(t) (2.4d)

where �0 and �00 denote the derivatives of the Dirac distribution concentrated

at 0. Since ��1(t) = �1(t) + �(t) and � 1(t) =  1(t) � �(t) give rise to the

same solution for all �(t), we can choose to have

M(�0 � (�1 +  1))(t) + �1�1(�1 �  1)(t)� �2�2(�2 �  2)(t) = 0: (2.5)

3. Structural properties

De�ning

�1 = �1�1=M; �2 = �2�2=M

and the localized delay operators �1 and �2 of respective amplitudes �1L1
and �2L2, the preceding equations can be resumed as

�1 +  1 = �2 +  2 (3.1a)
d

dt
(�1 +  1) + �1(�1 �  1)� �2(�2 �  2) = 0 (3.1b)

�1�1 + �
�1
1  1 = u (3.1c)

�
�1
2 �2 + �2 2 = v: (3.1d)

Remark 3.1. Here we use the notation � for the delay operators rather

than � as in [3] in order to avoid any confusion with the Dirac distribution.

3.1. Case of two controls

The delay system model is de�ned as the R[ d
dt
; �1; �2]-module �u;v gener-

ated by f�1,  1, �2,  2, u, vg with the relations (3.1).

We study the structure of the delay system �u;v with two controls �rst.

Theorem 3.2. The system �u;v is torsion free, but not free. It is �2-free

with basis (�1�1 � u; �1 +  1).

Proof. The presentation matrix of �u;v associated with (3.1) is

P�u;v ( d
dt
; �1; �2) =

2
6664

1 1 �1 �1 0 0
d

dt
+ �1

d

dt
� �1 ��2 �2 0 0

�
2
1 1 0 0 ��1 0

0 0 1 �
2
2 0 ��2

3
7775 :

Calculating the minors which de�ne the variety V�u;v associated to �u;v ,

one realizes that P�u;v (s1; s2; s3) has a loss of rank for s2 = s3 = 0 and
ESAIM: Cocv, September 1998, Vol. 3, 315{321
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s1 = �2 � �1 only. This proves that �
u;v is torsion free but not free (see [9]

and [3, Proposition 3.1 and Theorem 3.2]).

Introduce b1 = �1�1�u and b2 = �1+ 1. The independence of b1 and b2
over the quotient �eld R( d

dt
; �1; �2) can be checked on (3.1) using elementary

linear algebra. This readily implies their independence overR[ d
dt
; �1; �2]. Let

us check that b1 and b2 are generators of �
u;v. One has �1b1 = �

2
1�1��1u =

� 1, whence  1 = ��1b1, �1 = b2 + �1b1, u = �1b2 � (1 � �
2
1)b1. Then,

using d
dt
b2 + �1(b2 + 2�1b1) = �2(2�2 � b2) and  2 = b2 � �2

�2 =
1

2�2

d

dt
b2 +

�1

�2
�1b1 +

�1 + �2

2�2
b2;

 2 = � 1

2�2

d

dt
b2 �

�1

�2

�1b1 +
�2 � �1

2�2
b2:

Finally, �2v = �2 + �
2
2 2 yields

v =
(��12 � �2)

2�2

d

dt
b2 +

�1�1(�2 � ��12 )

�2
b1 +

(�1 + �2)�
�1
2 + (�2 � �1)�2
2�2

b2:

The R[ d
dt
; �1; �2]-linear independence of b1 and b2 is a direct consequence of

rkR[d=dt;�1;�2]�
u;v = 2.

3.2. Case of a single control

Let the system be controlled on one boundary only. Therefore, consider

v = 0 in (3.1d), as in [6]. Equations (3.1) then yield

�1 +  1 = (1� �
2
2) 2 (3.2a)

�
2
1�1 +  1 = �1u (3.2b)

d

dt
(�1 +  1) + �1(�1 �  1) + �2(1 + �

2
2) 2 = 0: (3.2c)

Denote as �u the R[ d
dt
; �1; �2]-module generated by f�1;  1; �2;  2; ug

with the relations (3.2).

Proposition 3.3. The system �u is torsion free but not free. It is �1-free,

with basis  2.

Proof. The presentation matrix of �u associated with (3.2) is

P�u( d
dt
; �1; �2) =

2
64

1 1 �
2
2 � 1 0

�
2
1 1 0 ��1

d

dt
+ �1

d

dt
� �1 �2(1 + �

2
2) 0

3
75 :

The associated variety of zeros V�u is the curve in the s1; s2; s3 space given

by

s2 = 0; s1 = �1 � �2
1 + s

2
3

1� s
2
3

:

It follows that �u is torsion free, but not free (see [3], Theorems 12 and 13).
ESAIM: Cocv, September 1998, Vol. 3, 315{321
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We now show that �u is �1-free, with basis  2. The relation v = 0 in

(3.1d) implies �2 = ��22 2. Using this together with (3.2a) in (3.2c) yields

�1 = �
�
(1� �

2
2)
d

dt
+ (�1 + �2)�

2
2 + (�2 � �1)

�
 2

2�1
(3.3a)

 1 =

�
(1� �22)

d

dt
+ (�2 � �1)�22 + (�1 + �2)

�
 2

2�1
(3.3b)

u =
�
(��11 � �1)

�
(1� �

2
2)
d

dt
+ �2�

2
2 � �1

�
+

(��11 + �1)(�2 � �1�
2
2)
�  2

2�1

(3.3c)

and  2 generates R[
d
dt
; �1; �2; �

�1
1 ]
R[d=dt;�1;�2] �u; it is then a basis for this

latter module.

4. Mass tracking

From Proposition 3.3 and equations (2.1c) and (2.2), we get

z = (1� �
2
2) 2: (4.1)

Theorem 4.1. The system �u is �1(1� �
2
2)-free, with basis z.

Thus, the control law allowing to track a desired trajectory zd of z, fol-

lowing directly from (3.3c), involves an advance of �1L1. Additionally, we

have from (2.2)

p(x; t) = (��1x � �1)(t) + (���1x �  1)(t); x 2 [�L1; 0]
q(x; t) = (��2x � �2)(t) + (���2x �  2)(t); x 2 [0; L2]

and �1 and  1 are given in terms of z through (3.3a), (3.3b), and (4.1). These

formulae allow to compute the explicit solution of (2.1) and the control law
ud(t) yielding a desired trajectory zd(t) of the mass position, as the one

shown in Figure 2. The corresponding control function ud(t) is depicted in

Figure 3 and the displacements along the string are shown on Figure 4; they

correspond to �1 = 1, �2 =
p
2, �1 = 1, �2 =

p
2, and L1 = 1, L2 = 2.

−3 −2 −1 0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

Figure 2. The desired output zd(t)
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−3 −2 −1 0 1 2 3 4 5 6 7
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Figure 3. The control law ud(t)

−1
−0.5

0
0.5

1
1.5

2

−4
−2

0
2

4
6

8
−2

0

2

4

6

8

Abscissa xTime t

p(
x,

t)
 −

 q
(z

,t)

Figure 4. Graph of p(x; t) (x 2 [�1; 0]) and q(x; t) (x 2 [0; 2])
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