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AbstractThe motion planning solution of a simplified car presented in (Fliess et
al., 1995) admits a geometric formulation through the Frénet formulae. We present
and use this formulation that preserves the invariance with respect to SFE(2) to built

a global asymptotic observer of the non measured direction of the car via the only

measurement of its position. Then we study the tracking of a planned path with an

observer-controller. Although, the observer-controller stability proof is only local, the
attraction domain seems to be very large as shown by numeric simulations (Matlab
scripts are available from the authors via email). Copyright (© 1998 IFAC
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1. INTRODUCTION

The control of nonholomic vehicles was much
studied in the past. In (Campion et al., 1996), a
classification of such vehicles is proposed. The sta-
bilization and the motion planning problem was
also much studied. Stabilizing laws are proposed
in (Canudas de Wit and Sgrdalen, 1992; Sgrdalen
and Egeland, 1995; Rouchon et al.; 1993; Walsh
et al., 1994). The motion planning is studied
in (Laumond et al., 1994; Rouchon et al., 1993;
Tilbury et al., 1992). In this paper, we will study
the problem of the observation and control of a
class of these vehicles around a planned path using
results presented in (Fliess et al., 1995; Rouchon et
al., 1993). We adopt here a geometric point of view
in the sense that all the computations steeming
from (Fliess et al., 1995; Rouchon et al., 1993) are
presented in an invariant manner via the Frénet
frame [motion planning, tracking, observer] in or-
der to preserve the structure of the system with

respect to the Euclidean group SE(2). In sections
2, 3, 4, we present with the Frénet formulae an
invariant solution of the motion planning design
and tracking around the planned path. We then
consider the problem of tracking this path when
the only measurement is the position of the car.
In the section 5, we present a reduced Luenberger-
like observer of the direction of the car via the
only measurements of the position of the car.
In the section 6, we connect the controller and
the reduced observer and do some remarks on
the convergence and realization of the observer-
controller. Simulations of section 7 illustrate ro-
bustness and the convergence domain.

2. MODEL OF THE CAR

We use here a well known model of the car (see
e.g. (Campion et al., 1996) ) given by equations:
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where (z,y,0) € R? x S! is the state, (u, tan ) is
the control and [ is a positive parameter (length).
It was established in (Fliess et al., 1995) that
and y are flat outputs. In Frénet coordinates, the
system is described by the equations:
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f represents the derivation of the function f with
respect to the time, P = (x,y) is the position
of middle of the back axis of the car (point
in the plan), v is the velocity of the car (first
control), ¢ the steering angle (second control)
and [ the distance between the front and back
. = . .

axis of the car. 7= (cosf,sinf) is the tangent
vector of length 1 to the curve followed by P, and
— .

v= (—sin#, cos ), the normal vector to the curve

such that (?, I_)) admits a positive orientation. We
use here this representation in order to preserve
the invariance of the system by the group of
transformations SE(2).

Notice also that the dynamics is invariant by time
scaling. So we propose the following one:

vds.=v dt. (2)

where s.(f) correspond to an arc length parame-
terization [see below]. In the sequel, all the deriva-
tions are done according to this arc length. The
main advantage is that all the computations can
be done in a geometric frame, independent of the
time t. The system is now described by:

—/ —
P =vr
/ t
¥ gt g
l

where (.)' represents here the operator %’3 =
140)
$o dt

3. MOTION PLANNING OF THE CAR

Our goal is to plan the motion from an initial
position (P, 776) to a final position (Pf,?f).

(Pft Tf)
(Fo,70)

Figure 1. Planned path for the car.

We suppose we have a regular curve P, parame-
terized by the arc length s., such that (P.(sg), ?c
— — —
(s0)) = (Po, 7o) and (Pe(sy), Te (s7)) = (P, 7
). We then know all the geometric characteristics:

772 (se), 17; (sc), ke(se) (curvature). ..

We have the following planned motion:

—
P, =7
—/ tan . — —
Te = I c— kc Ve
ve = 1.

The reference arc length s, is chosen among arbi-
trary C'! functions of the time such that:

[OaT] - [O,Sf]
t — sc(t)
0—=20
T — Sf .

If we add the condition on s, so that the car
starts at time ¢ = 0 from a steady state and stops
at time ¢t = T at another steady state, we have:

50(0) = $.(T) = 0.

Thus, we can easily obtain v, = $.(¢) and tan ¢, =
{ k.. The controls

{t—%vc:$Jﬂ

t — ey = arctan(l k) .

steer the car from the initial point ( Py, 7_'6) att =10
to the final point (Py, 77})) att =1T.

4. CONTROLLER SYNTHESIS

We use the flatness of the system to built the
controller. From (Fliess et al., 1995), we know that
P 1s a flat output of the system. A linearizing
feedback is obtained by standard input/output
decoupling techniques via dynamic feedback. Pre-
sented with Frénet formulae, this leads to:
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where U is the new control vector. We obtained

a dynamic feedback with the introduction of the
e _ . —

auxiliary state v. With the control u set to:

N —t —t =

—
U=P,~01(P ~P) =P = F), (3)
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we obtain an error dynamics (P =P — P.):
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o1 and oy are parameters which are respectively
homogeneous to m~=! and m~? (inverse of a length
and square of a length). We can then track the
planned path and assign the dynamics through
o1 and 3. The controls of the car are given by:
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tang = [ 17.2
We remark that locally around the planned path,
v is in a neighborhood of 1 (because we have
$¢ ~ § around the planned path). The above
formulae are valid even at steady state i.e. when
v=20,ie $ =0 (v="0s).

5. OBSERVER SYNTHESIS

The controller built in the section 4, needs the
measurements of (P, ?) ie. (z,y,0). When only
partial measurements of the state are available, it
can not be used in the same way. In order to use
the structure of the controller, we will estimate
the non-measured variables thanks to an observer
of 7 (or ¢ in the original coordinates). As in
(Ribo et al., 1997), an extended Kalman filter can
be used. We propose here another observer with
global convergence and that remains invariant
with respect to SFE(2).

We keep the same notations as in previous sections
and built a purely geometric observer. This ob-
server converge with a convergence rate, function
of the covered length.

We consider a Luenberger-like reduced nonlinear
observer with the introduction of the new auxil-
lary variable:

We built the following observer which is the copy

of the dynamics of variable j\>:

(P-B)-P) (4)
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where v 1s the normal vector to T = A — %(P

N . - .
— P.) such that ||7]| = ||7|| and (7, 7) admits a
positive orientation. Due to input-output injection

. = = =
argument, the dynamics of the error X =X — X 1is

given by:
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We have 177\> =0 (? = _>). The derivative of
V= ||j\>||2 along the trajectories is given by:
~1 ~ o~
B Tt
Vi= A= SllP

The choice of the parameter a allows us to make
the derivative V' negative. This ensured the sta-
bility. Moreover, we have:

s
v
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So, as soon as [ —ds. — —oo when s. — 400,
a

So
we have asymptotic stability to zero.

6. OBSERVER - CONTROLLER SYNTHESIS

With the estimation of 7 and the measurements
of P and v, we propose an observer-controller
based on the controller (3) presented in the section
4 and on the observer (4) presented in the section
5. We replace formally the non-measured variables
by their estimates in the controller (3). We have
thus:
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The error dynamics is (7 = X):
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Obviously, (P, P, X) = (0,0, 0) is an equilib-
rium point of the error dynamics. Locally around
the planned path, we obtain by linearization a
triangular structure, and the convergence proof is
evident. Although the convergence is not ensured
globally, simulations will show satisfactory results,
even far away from the planned path.

Another problem is to avoid the “peacking” phe-
nomena. It can appear when starting far from the
actual values if v is equal to zero. This can be
done thanks to the remark that locally around
the planned trajectory v is in the neighborhood
of 1. We can change the control:
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rog = 8, Yo = 8, 90 = 7T/2
i30 = 8a 370 = 8a 90 - 37T/4 (5)
Loe = 8; Yoe = 0; 906 = 77/2

max(v2,7)

where ~ is a positive number, small in comparison
to 1. Then tan ¢ and v are bounded and the state
1s also kept bounded.

7. SIMULATIONS

The following simulations illustrate the results of
the previous sections. All the simulations are done
with MATLAB and the m.files are available from
the authors via email.

We assign a reference trajectory described in
polar coordinates (p.,a.) by the parameterized
equation p. = 6 4+ 2cos(ba./2). The trajec-
tory in Euclidean coordinates is given by: P. =
(pe cos(ae), pe sin(ee)). We chose: o (1) = 0'(%)471'
with o given by: o(u) = 3u? — 2u3. We have:
S5¢ =/ p'? + p?a.. The length | between the two
axis of the car is [ = 2 m. The simulation time
T is set to T' = 1 so that the car can achieve one
period of the cycle. The initial condition for v will
be set to 1 according to the fact that the actual
value is in the neighborhood of 1 very quickly.

The open loop control of the car is easily com-
puted thanks to the flatness of the system. The
closed trajectory is displayed on figure 2.

Planned trajectory
T T T

y_c() (in m)
=)

10 -8 -6 -4 -2 0 2 4 6 8 10
x_c(t) (in m)

Figure 2. Open loop control of the car.

Let us look closer at the performance of the
observer-controller. We set the gains of the con-
troller oy and o2 to (01,02) = (2/5,1/25). The
observer gain a is set to @ = —1, so that the
convergence of the observer is quicker than the
one of the controller. The initial conditions of
the system, observer and reference trajectory are
given by:

The results of the convergence are illustrated
on the figure 3. Then we add an error of 20%

Closed loop control with observation
T T T T T

y(t) (in m)
=)

0
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Figure 3. Control of the car by the observer-
controller with an error on the initial con-
ditions (dotted: reference, dash-dotted: car
trajectory).

on the parameter [ and keep the same initial
conditions (5). We see on the figure 4 that the
performance are still good and that the tracking
error 1s maximum when curvature is maximum.

Closed loop control with observation - parameter error 20%
T T T T T T T

y(t) (in m)
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0 4 6 8 10
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Figure 4. idem as on the figure 3 with parame-
ter error (dotted: reference, dash-dotted: car
trajectory).

8. CONCLUSION

The observer-controller presented here is particu-
larly simple. Most of this simplicity is due to an
intensive use of Frénet formulae leading to simple
equations and invariant computations. Symme-
tries have already been used for the design of
controllers in the past (see e.g. (Grizzle and Mar-
cus, 1985; Hazewinkel and Martin, 1983; van der



Schaft, n.d.; Fagnani and Willems, 1993)). This
paper shows that symmetry can also be used for
observer design: observer (4) is clearly invariant.
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