
2k�, the juggling robotYves Lenoir Philippe Martin� Pierre RouchonCentre Automatique et Syst�emes, �Ecole des Mines de Paris35 rue Saint-Honor�e, 77305 Fontainebleau, France.E-mail: flenoir,martin,rouchong@cas.ensmp.frKey words: nonlinear control, underactuated me-chanical systems, 
atness, motion planning, dynamicfeedback, singularitiesAbstractThe 2k� robot, developed at �Ecole des Mines deParis, has �ve degrees of freedom (dof's): 3 actu-ated angles for the manipulator and 2 non-actuatedangles for the pendulum. This underactuated sys-tem is 
at, the oscillation center of the pendulumbeing the 
at output. Steering the pendulum fromthe lower to the upper equilibrium requires to crossa singularity where the �rst order approximation ofthe system is not controllable. This di�culty is in-vestigated in details: 
atness, invariant calculationsand time-scaling arguments yield a robust controlscheme. Its real-time implementation is reported.1 Introduction2k� is a robot, developed at �Ecole des Mines deParis, consisting of a manipulator carrying a pendu-lum, see �gure 1. There are �ve degrees of freedom(dof's): 3 angles for the manipulator and 2 anglesfor the pendulum. The 3 dof's of the manipulatorare actuated by electric drives, while the 2 dof's ofthe pendulum are not actuated.The goal is to design a control law steering thependulum from the lower equilibrium to the upperequilibrium, and more generally able to stabilize thependulum while the manipulator is moving around.This system is typical of underactuated nonlinearand unstable mechanical systems such as the Vtol[8], the ducted fan [10, 9], the crane [3], champaign
yer [?]. As shown in [7, 3, 9] the 2k�-robot is 
at,the 
at output being Huygens oscillation center ofthe pendulum. The contribution of the paper istwice:�Corresponding author
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θ  3Figure 1: The robot 2k�.1. plani�cation of open-loop trajectories steeringfrom the lower to the upper equilibrium and thedesign of a tracking loop controller.2. the real-time implementation of this controlscheme.Point 1 requires to deal with a singularity both forthe open-loop and the closed-loop. This singularityis similar to those of non-holonomic system aroundequilibrium point. It can be over-come via the sametechnique: time-scaling.For the pendulum dynamics, all the computationare done in an intrinsic way via vectors and geo-metrical constructions, in order to preserve invari-ance with respect to the Galilean group. This re-duces computations to a minimum, and preservesthe physics of the system. This leads to a robustcontrol scheme depending essentially on two parame-ters (the length of the equivalent punctual pendulumand the acceleration of gravity) and avoid the preciseknowledge of manipulator parameters (excepted itsgeometry for conversion between angular to Carte-sian coordinates).In section 2 equations of motion are sketch point-ing output their structures and the splitting betweenthe pendulum dynamics (the 2 unactuated dof's) andthe manipulator dynamics (the 3 actuated dof's).1



In section 3 we show that, whatever the friction ef-fort and inertia in the manipulator are, the systemis 
at with oscillation center of the pendulum as
at-output. Section 4 is devoted to the design ofopen-loop trajectories steering the pendulum fromthe lower to the upper equilibrium. In section 5,the closed-loop tracking is designed using hierarchi-cal control between the pendulum and manipulatordynamics and time-scaling arguments. Finally, sec-tion 6 relates the real-time implementation and themain characteristics of the robot.2 The equations of motionThe pendulum is modeled as a one-dimensionalrod � connected at the end point S of the manipu-lator. In the inertial reference frame fO;~{;~|;~kg �xedwith respect to Earth, with ~k the upward vertical,Newton's second law for the pendulum readsm _~VC = m~g + ~F(1) _~� = ~CS � ~F;(2)where ~F is the reaction of the manipulator on thependulum, ~VC is the velocity vector of the center ofmass C and ~� is the kinetic momentum about C,~� := Z� ~CM � ~VM d�(M ):As � is one-dimensional, any pointM of � satis�es~SM = lM~u, where ~u := ~SCk ~SCk . Hence,~CM = (lM � lC ) ~u~VM � ~VC = (lM � lC ) _~u;which implies, since R� ~CMd�(M ) = ~0,~� = I~u� _~u;where I := R�(lM � lC)2d�(M ) is the moment ofinertia of � about C.For the manipulator, we will only need to know itcan be described by_~VS = ~A( ~OS; ~VS ; ~F; T );(3)where T is the 3-dimensional input corresponding tothe 3 actuated dof's ((�1; �2�3) on �gure 1).Notice (1)-(2)-(3) is an implicit di�erential system.To put it in explicit form the coupling force ~F mustbe eliminated. The resulting explicit system wouldthen have a state of dimension 10 (5 generalized po-sitions and 5 generalized velocities).

3 The 2k�-robot is 
atThe important role of the oscillation center for con-trol design has been �rst noticed in [1]. We recallin this section that the robot enjoys a nice property,namely all its variables can be known without inte-gration as soon as the motion of a single special pointH of the pendulum (the so-called center of oscilla-tion [11]) is known. In other words the system is
at [3], which will be a key feature for the design ofthe the control law.Indeed, using (1)-(2) and noticing _~� = I~u � �~u, we�nd~u� _~VH = ~u� � _~VC + (lH � lC)�~u�= ~u� _~VC + (lH � lC) _~�= ~u� ~g + � 1m + (lH � lC ) lCI �~u� ~F :Therefore, the only point H of the pendulum suchthat lH := lC + ImlCsatis�es ~u� ( _~VH � ~g) = ~0. In other words _~VH � ~g iscolinear to the direction of the pendulum.It is now clear that the motion of the center ofoscillation completely de�nes the evolution of all thesystem variables: indeed, when the motion of H,i.e., t 7! ~OH(t), is known, ~VH and _~VH are known atall times. The orientation of the pendulum is thencomputed from _~VH by~u = � _~VH � ~gk _~VH � ~gk(at least when _~VH 6= ~g), and _~u; �~u; : : : follow by dif-ferentiation. Therefore, we obviously know the posi-tion, velocity, acceleration, : : : of every point of thependulum, and �nally obtain ~F and T from the sys-tem equations (1) and (3).Hence any motion of the center of oscillation de-termines a trajectory of the system (the converse isobvious). This property is clearly very helpful toplan reference trajectories; it is also very helpful todesign a controller able to track desired referencetrajectory [3, 9, 4]The orientation of the pendulum is a priori notde�ned from _~VH when _~VH = ~g, i.e., when the centerof oscillation H is freely falling. Notice any systemtrajectory connecting the lower and upper rest pointsnecessarily cross this singularity. Indeed, _~VH = ~0 atrest and ~u = �~k = + _~VH � ~gk _~VH � ~gk2



when the pendulum is down, while~u = ~k = � _~VH � ~gk _~VH � ~gkwhen the pendulum is up.4 Design of a suitable referencetrajectoryAs shown previously, any smooth trajectory from thelower to the upper equilibrium crosses the singular-ity _~VH = ~g. This singularity is intrinsic: around_~VH = ~g, the �rst order approximation is not con-trollable. This implies that the algebraic equationsbetween the system variables and H with its deriva-tives are singular. Nevertheless, we will see that itis possible to design a wide family of smooth trajec-tories for H such that this algebraic systems admitsa smooth solution. A careful inspection of compu-tations of section 3, shows that the di�culty comesfrom sub-system de�ning S. It corresponds to theintersection of the sphere of center H and radius lHwith the straight line passing throughH and of direc-tion _~VH �~g, direction that becomes unde�ned at thesingularity. The problem reduces thus to smoothlyde�ne the direction of _~VH � ~g.A natural path for H is a circle of radius lH = rin a vertical plane (see �gure 2). It is de�ned byk ~OHk = r and ~OH:~| = 0 We assume that the systemis a steady-state at the beginning t = 0 and at theend t = T > 0 with S is at the origin:~OS(O) = ~VS(O) = _~VS(0) = ~0~OS(T ) = ~VS(T ) = _~VS(T ) = ~0Let [0; 1] 3 s 7! �(s) be a smooth function, sym-metric with respect to s = 1=2, strictly increasing on]0; 1[ and subject to the boundary conditions�(0) = ��2_�(0) = 0��(0) = 0�(3)(0) = 0�(4)(0) = 0 and �(1) = �2_�(1) = 0��(1) = 0�(3)(1) = 0�(4)(1) = 0(we used for instance a polynomial of degree 9). Weconsider derivatives up to order 4, since the referencetorques T must be continuous and they depend on(H; : : : ;H(4)).

Writing ~OH in coordinates, ~OH = �x~{+�y~|+�z~k,we have the desired motion for H by taking�x(t) := r cos(�(t=T ))�y(t) := 0�z(t) := r sin(�(t=T ))where T is the yet to be de�ned duration of the mo-tion.We now prove that a suitable choice of T providesa tc such that ��x(tc) = ��z(tc) + g = 0 while ��x��z+gis non-zero and smooth around tc. This will ensurethe direction of the pendulum is smoothly de�nedwhen crossing the singularity. For that consider thefunctions fx(s) := cos(�(s))fz(s) := sin(�(s)):Notice fx (resp. fz) is symmetric (resp. antisymmet-ric) with respect to s = 1=2 and that for all n 2 N,�(n)x (t) := rTnf (n)x (t=T )�(n)z (t) := rTnf (n)z (t=T ):For s small (and positive),�(s) � ��2 + ask; k � 5;with a > 0 since � is strictly increasing on ]0; 1[.This impliesfx(s) � cos(��2 + ask) � ask;hence �fx(s) > 0 for s (positive) small. But �fx(1=2) =� _�2(1=2) < 0, and there must be rc 2]0; 1=2[ suchthat �fx(rc) = 0. By symmetry �fx(sc) = 0 for sc :=1� rc 2]1=2; 1[.On the other hand �fz(sc) < 0; indeed,�fz(sc) = �fx(sc) cos�(sc) + �fz(sc) sin�(sc)sin�(sc)= � _�2(sc)sin�(sc) < 0;since sin� > 0 on ]1=2; 1[. We can thus de�neT :=r� gr �fz(sc) and tc := scT;to get get ��x(tc) = ��z(tc) + g = 0.Assuming moreover f (3)x (sc):f (3)z (sc) 6= 0 (this istrue for almost all � satisfying the above require-ments), Taylor's theorem gives��x(� + tc) = � rT 2 �f (3)x (sc) + �2Fx(� )��z(� + tc) + g = � rT 2 �f (3)z (sc) + �2Fz(� );3



SFigure 2: reference trajectory steering the pendulumfrom the lower equilibrium to the upper one.where Fx and Fz are smooth mappings. Hence ��xand ��z + g change signs at tc while their ratio isnonzero and smooth. In other words, by Taylor'stheorem,_~VH(� + tc=T )� ~gk _~VH(� + tc=T )� ~gk = sign(� )�~uc + � ~U (� )�;where ~uc is the unit vector~uc = f (3)x (sc) ~{ + f (3)z (sc)~kq�f (3)x (sc)�2 + �f (3)z (sc)�2and � 7! ~U (� ) is smooth.This means that the orientation of the pendulumis smoothly de�ned on [0; T ] from the motion of thecenter of oscillation by~u(t) = sign(t� tc=T ) _~VH(t) � ~gk _~VH(t) � ~gk(we assume without restriction that tc is the onlypoint such that _~VH (tc) = ~g). It is now obviousto build a smooth trajectory of (1)-(2)-(3) steeringthe robot from the lower equilibrium to the upperequilibrium. Figure 2 displays the motions of Hand S obtained with � the polynomial of degree 8,sc � 0:630, T � 1:238 s for g = 9:81 ms�2 andlH = r = 0:35 m.5 The tracking feedback lawWe assume full state measures. The tracking con-trolled is decomposed into two levels:

1. the low-level corresponds to the manipulator;it is fast and ensures a velocity control of themanipulator; for each actuated axis, the correc-tion from the reference torque (deduced fromthe steering trajectory of previous section) iscomputed via a simple high-gain and propor-tional angular velocity-loop.2. the high-level corresponds to the pendulumwiththe velocity of S as control; it is slow and pro-vide, after a transformation into angular veloc-ity, the velocity set-point of the low-level.This two-time scale structure ensures the robustnesswith respect to modeling error in the manipulatordynamics: with ~VS as input, the pendulum dynamicsis precisely known and admits only two well de�nedparameter, g and lH .We start with the precise validation of this two-time-scale structure. A careful choice of the statevariables used for the pendulum dynamics must bedone. The use of position/velocity variables in thedesign of the high-level controller will destroy, ingeneral such structure. Roughly speaking, posi-tion/impulsion variables are necessary at this stage.This phenomenon is comparable to a classical com-putation due to Kapitsa and relative to the motionof a particle under highly oscillating forces [6].We will use the following notation: whenever ~X isa vector, we decompose it into ~X = x~u+ ~X?, wherex = ~X:~u is the component along the pendulum and~X?:~u = 05.1 Time-scale reductionThe low-level high-gain loop transforms the manip-ulator dynamics into" _~VS = ~V� ~VS + O(")with " a \small" positive parameter.To correctly perform the reduction we rewrite thesystem in state form in the adapted coordinates~OH; ~V ?H ; ~OS; ~VS .Writing ~V ?H = ~VH � ~VH :~u, we then �nd_z}|{~V ?H = _~VH � ( _~VH :~u+ ~VH : _~u)~u� (~VH :~u) _~u= _~VH � ~g � ( _~VH � ~g):~u+ ~g? � (~VH : _~u)~u� (~VH :~u) _~u= ~g? � (~V ?H : _~u)~u� vS _~u;4



using the fact that _~VH � ~g is colinear to ~u and_~u:~VH = _~u:(vH~u+ ~V ?H )= _~u:~V ?H~VH :~u = (~VS + lH _~u):~u= ~VS :~u:We then have the state form_~OH = ~V ?H + vS~u_~V ?H = ~g? � (~V ?H : _~u)~u� vS _~u_~OS = ~VS" _~VS = ~V� ~VS +O(")where ~u and _~u are de�ned in terms of the state vari-ables by lH~u = ~OH � ~OSlH _~u = ~V ?H � ~V ?S :Notice this system is not controllable due to over-parametrization (we use 3+3 = 6 position variablesin the state though there are only 5 dof's). Nev-ertheless, the theorem of singular perturbations [5]ensures it can be approximated with an error of or-der " in the \low" frequency range by the \slow"system 8>>>>>>>>>>><>>>>>>>>>>>: _~OH = ~V ?H + vS~u_~V ?H = ~g? � (~V ?H : _~u) ~u� vS _~u_~OS = ~VlH~u = ~OH � ~OSlH _~u = ~V ?H � ~V ?:(4)5.2 The high-level controllerThere follows_~VH = _~V ?H + _v~u+ v _~u= ~g + ( _v � ~V ?H : _~u� ~g:~u)~u;so that the globally de�ned dynamic feedback~V = �~u+ ~V ?H � lH ~W?_� = ~g:~u+ ~V ?H : ~W? � lHw;where ~W is the new control, transforms (4), hence(1)-(2)-(3), into ( _~VH = ~g � lHw~u_~u = ~W?:(5)

Notice ~u(t) will be a unit vector as soon as ~u(0)is a unit vector. The controllable state of this sys-tem has thus dimension 3+3+2=8 obtained from theoriginal controllable system of dimension 10 with adynamic feedback adding 1 state and after time-scalereduction of 3 states. This global dynamic feedbackhas been obtained via a state representation of thedynamics that is not minimal.The time varying change of coordinatesH 7! P = H � 1=2t2~g; ~VH 7! ~VH � t~g, put (5) into the so-called second order nonholo-nomic form �P = �lHw~u _~u = ~W?:with ~u 2 S2 and 3 controls w 2 R and ~W? 2TS2~u. Lower and upper equilibria correspond hereto ~W? = 0 and jlHwj = gLet us concentrate on the sub-system_~V P = �lHw~u _~u = ~W?:ignoring _P = ~VP . This sub-system is the analog of anonholonomic car in R4 rolling without slipping onR3 with the velocity �lHw 2 R and two steering an-gles represented by ~u 2 S2. The singularity _~VH = ~gcorresponds to zero velocity: its crossing coincideshere with the switch between backward and forwardmotion. Such a similarity enable us to mimic thetime-varying tracking controller already used for tra-jectory tracking of such non-holonomic 
at systems[2]. Denoting reference by superscript r, we have thefollowing dynamics feedback (� � 1):_� = (~u � ~�) _sr(t)�lHw = � _sr(t)~W? = (~� � (~u � ~�)~u) _sr(t)with ~� = [~V rP ]00 + �1(�~u� [~V rH ]0) + �2(~VH � ~V rH ):(6)Operator 0 denotes derivatives with respect to sr thearc length of the curve followed by ~V rP and de�ned bydsr = � ��� _~V H(t) � ~g��� dt. The two design parameters�1 = (1=�1+ 1=�2) and �2 = �1=(�1�2) correspondto the two tracking poles �1, �2 in scale sr : theirsign depends on the sign of _sr .The above tracking controller is a velocity track-ing controlled for H. To obtain a position trackingcontroller we just have replaced in (6) ~V rP by~V rP � (H �Hr) _sr=�3(7)with �3 _sr < 0 and j�3j � j�1j ; j�2j in order to ensurestability for time-scale reasons.5



6 Experiments6.1 The experimental setupThe main geometrical and mechanical characteris-tics of manipulator and pendulum are:� pendulum length : 0:40 m with lH = 0:35 m;� manipulator bodies length : 0:32 m and 0:28 m;� max acceleration capacity for the pendulum os-cillation center 7 g;The pendulum is brought by a two axis Cardanjoint, each one being equipped with an incremen-tal single turn encoder (angular resolution betweenelectrical transitions : 0:000628 rd and 0:000785 rd).The three angles of the manipulator bodies are mea-sured by incremental single turn encoder (angularresolution between electrical transitions : 0:000314rd).The encoder electrical transitions are sampled bya high frequency clock. This allows to give the accu-rate time of the angular transitions to the numer-ical �lter (derivator) which computes the angularspeeds. Therefore the precision of speed measure-ment remains high at very low speed, which is therequired quality in order to stabilize the pendulum.The time scaling of the whole control system isshared as below :� open-loop pendulum characteristic time, 189 ms;� angular transitions sampling clock, 800 ns;� measurement period, 4 ms (typical);� derivator time constant, 4 ms;� manipulator control period, 12 ms (typical);� manipulator angular speed control time con-stant, 66 ms (the "high-gain" low-level controller);� pendulum cartesian speed tracking time con-stants (�1 and �2 used in (6) ) are 150 ms and 225ms;� pendulum cartesian position tracking time con-stant (�3 used in (7)) is of 675 ms;The real-time controller software is implementedunder SUN Unix 4.1.3 Operating System on a SUNSparc 2.6.2 Experimental resultsThe experimental data of �gure 3 correspond to theabove tracking controller with a reference trajectorymade of the concatenation of the one of �gure 2. No-tice the good tracking performance for ~VH . The lowfrequency oscillation during the intermediate stabi-lization phase (between the rise and fall phases) isdue to imperfection not taking into account in themodel.
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