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Abstract

The 2kn robot, developed at Ecole des Mines de
Paris, has five degrees of freedom (dof’s): 3 actu-
ated angles for the manipulator and 2 non-actuated
angles for the pendulum. This underactuated sys-
tem 1is flat, the oscillation center of the pendulum
being the flat output. Steering the pendulum from
the lower to the upper equilibrium requires to cross
a singularity where the first order approximation of
the system is not controllable. This difficulty is in-
vestigated in details: flatness, invariant calculations
and time-scaling arguments yield a robust control
scheme. Its real-time implementation is reported.

1 Introduction

2k 1s a robot, developed at Ecole des Mines de
Paris, consisting of a manipulator carrying a pendu-
lum, see figure 1. There are five degrees of freedom
(dof’s): 3 angles for the manipulator and 2 angles
for the pendulum. The 3 dof’s of the manipulator
are actuated by electric drives, while the 2 dof’s of
the pendulum are not actuated.

The goal i1s to design a control law steering the
pendulum from the lower equilibrium to the upper
equilibrium, and more generally able to stabilize the
pendulum while the manipulator is moving around.

This system is typical of underactuated nonlinear
and unstable mechanical systems such as the Vtol
[8], the ducted fan [10, 9], the crane [3], champaign
flyer [?]. As shown in [7, 3, 9] the 2km-robot is flat,
the flat output being Huygens oscillation center of
the pendulum. The contribution of the paper is
twice:
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Figure 1: The robot 2km.

1. planification of open-loop trajectories steering
from the lower to the upper equilibrium and the
design of a tracking loop controller.

2. the real-time implementation of this control
scheme.

Point 1 requires to deal with a singularity both for
the open-loop and the closed-loop. This singularity
1s similar to those of non-holonomic system around
equilibrium point. It can be over-come via the same
technique: time-scaling.

For the pendulum dynamics, all the computation
are done in an intrinsic way via vectors and geo-
metrical constructions, in order to preserve invari-
ance with respect to the Galilean group. This re-
duces computations to a minimum, and preserves
the physics of the system. This leads to a robust
control scheme depending essentially on two parame-
ters (the length of the equivalent punctual pendulum
and the acceleration of gravity) and avoid the precise
knowledge of manipulator parameters (excepted its
geometry for conversion between angular to Carte-
sian coordinates).

In section 2 equations of motion are sketch point-
ing output their structures and the splitting between
the pendulum dynamics (the 2 unactuated dof’s) and
the manipulator dynamics (the 3 actuated dof’s).



In section 3 we show that, whatever the friction ef-
fort and inertia in the manipulator are, the system
i1s flat with oscillation center of the pendulum as
flat-output. Section 4 is devoted to the design of
open-loop trajectories steering the pendulum from
the lower to the upper equilibrium. In section 5,
the closed-loop tracking is designed using hierarchi-
cal control between the pendulum and manipulator
dynamics and time-scaling arguments. Finally, sec-
tion 6 relates the real-time implementation and the
main characteristics of the robot.

2 The equations of motion

The pendulum 1s modeled as a one-dimensional
rod ¥ connected at the end point S of the manipu-
lator. In the inertial reference frame {0, 7 7, E} fixed
with respect to Earth, with k the upward vertical,

Newton’s second law for the pendulum reads
(1) mVie = mg + F
(2) F=0C5xF,

where F is the reaction of the manipulator on the
pendulum, Vi is the velocity vector of the center of
mass C' and & is the kinetic momentum about C,

&'::/C’Mx Vi dp(M).
b

As Y 1s one-dimensional, any point M of X satisfies

SM =y, where @ 1= —=¢_

~—. Hence
I1sCl ’

CM = (Ipyr —lc) @

Var = Ve = (lar — o) i,
which implies, since [, C’Mdu(M) =0,
F=Ii x i,

where [ = fz(lM —l¢)*du(M) is the moment of
inertia of X about C'.

For the manipulator, we will only need to know it
can be described by
(3) Vs = A(O05, Vs, F, 7),
where 7 is the 3-dimensional input corresponding to
the 3 actuated dof’s ({01, 0203) on figure 1).

Notice (1)-(2)-(3) is an implicit differential system.
To put it in explicit form the coupling force F must
be eliminated. The resulting explicit system would
then have a state of dimension 10 (5 generalized po-
sitions and 5 generalized velocities).

3 The 2km-robot is flat

The important role of the oscillation center for con-
trol design has been first noticed in [1]. We recall
in this section that the robot enjoys a nice property,
namely all its variables can be known without inte-
gration as soon as the motion of a single special point
H of the pendulum (the so-called center of oscilla-
tion [11]) is known. In other words the system is
flat [3], which will be a key feature for the design of
the the control law. . )
Indeed, using (1)-(2) and noticing & = Il x @, we

find

U X VHIUX (%+(1H—lc)ﬁ)
IﬁX%—l—(hq—lc)é
oL 1 lex. =
—adx g+ (E+(ZH_ZC)TC)UXF~
Therefore, the only point H of the pendulum such
that /
lg :=lc+—
mlc

satisfies @ x (VH —-q) = 0. In other words Vy — g is
colinear to the direction of the pendulum.

It is now clear that the motion of the center of
oscillation completely defines the evolution of all the
system variables: indeed, when the motion of H,

ie., tr— O_H(t), is known, Vi and Vi are known at
all times. The orientation of the pendulum is then

computed from Vit by

P
g:iffig
Ve — 4l

(at least when Vit # §), and @, i, ... follow by dif-
ferentiation. Therefore, we obviously know the posi-
tion, velocity, acceleration, ... of every point of the
pendulum, and finally obtain F and T from the Sys-
tem equations (1) and (3).

Hence any motion of the center of oscillation de-
termines a trajectory of the system (the converse is
obvious). This property is clearly very helpful to
plan reference trajectories; it is also very helpful to
design a controller able to track desired reference
trajectory [3, 9, 4]

The orientation of the pendulum is a priori not
defined from VH when VH = ¢, i.e., when the center
of oscillation H 1s freely falling. Notice any system
trajectory connecting the lower and upper rest points

necessarily cross this singularity. Indeed, Vir = 0 at
rest and )
Ve — g

1Vir = 3l



when the pendulum is down, while

. Vo —
g:k:_fig
Vir — gl

when the pendulum is up.

4 Design of a suitable reference
trajectory

As shown previously, any smooth trajectory from the
lower to the upper equilibrium crosses the singular-

ity Vg = g. This singularity is intrinsic: around
VH = ¢, the first order approximation is not con-

trollable. This implies that the algebraic equations
between the system variables and H with its deriva-
tives are singular. Nevertheless, we will see that it
is possible to design a wide family of smooth trajec-
tories for H such that this algebraic systems admits
a smooth solution. A careful inspection of compu-
tations of section 3, shows that the difficulty comes
from sub-system defining S. It corresponds to the
intersection of the sphere of center H and radius g
with the straight line passing through H and of direc-

tion VH — ¢, direction that becomes undefined at the
singularity. The problem reduces thus to smoothly

define the direction of Viy — g

A natural path for H is a circle of radius I = r
in a vertical plane (see figure 2). Tt is defined by
||O_H|| = and OH.J= 0 We assume that the system
is a steady-state at the beginning ¢ = 0 and at the
end ¢ =T > 0 with S is at the origin:

— —

05(0) = Vs(0) = V5(0) =0

OS(T) = Vs(T) = Vs(T) = 0

Let [0,1] 5 s — «(s) be a smooth function, sym-
metric with respect to s = 1/2, strictly increasing on
]0, 1] and subject to the boundary conditions

a(0) = =3 a(l) = 5
a(0) =0 a(l)=0
a(0) =0 and a(l)=0
a®0)=0 a®(1)=0
a®0)=0 a®(1)=0

(we used for instance a polynomial of degree 9). We
consider derivatives up to order 4, since the reference
torques 7 must be continuous and they depend on

(H,...,H®).

Writing OH in coordinates, OH = Xe¥+ Xy ]+ Xz l;,
we have the desired motion for H by taking

Xz(t) :=rcos(a(t/T))
Xy(t) =0
Xz (t) := rsin(a(t/T))

where T'is the yet to be defined duration of the mo-
tion.

We now prove that a suitable choice of 1" provides
a te such that x,(t.) = X.(tc) + ¢ = 0 while X=
1s non-zero and smooth around ¢.. This will ensure
the direction of the pendulum is smoothly defined
when crossing the singularity. For that consider the

functions

fr(8) := cos(a(s))

f:(s) :=sin(a(s)).
Notice fy (resp. f.)issymmetric (resp. antisymmet-
ric) with respect to s = 1/2 and that for all n € IV,

.
) = )
() () .= — F) (/7).
) = )
For s small (and positive),

a(s)N—g—l—ask, k>5

with @ > 0 since « is strictly increasing on ]0, 1[.
This implies

fo(s) ~ cos(—g + as®) ~ as”,

hence fx(s) > 0 for s (positive) small. But fx(1/2) =
—a*(1/2) < 0, and there must be r. €]0,1/2[ such
that fy(rc) = 0. By symmetry f;(s.) = 0 for s, :=
1= 1 €]1/2,1]. )

On the other hand f,(s.) < 0; indeed,
fx(sc) cosa(se) + fz(sc) sin e (sc)

sin ae(s.)

fz(sc) =

12
— _M < 0’
sin a(sc)

since sina > 0 on |1/2, 1[. We can thus define

T:=,/— g and

r.fz (Sc)
to get get Yo(te) = X2(t.)+9=0.
Assuming moreover féS)(sc).fz(S)(sc) # 0 (this is
true for almost all « satisfying the above require-
ments), Taylor’s theorem gives

te :=s. T,

. r
Xx(T + tc) = _ﬁTf@('S) (Sc) + TZF@'(T)

X.z(T + tc) +9= —%sz(?’)(sc) + Tze(T),



Figure 2: reference trajectory steering the pendulum
from the lower equilibrium to the upper one.

where F, and F, are smooth mappings. Hence x,
and Y, + g change signs at ¢, while their ratio is
nonzero and smooth. In other words, by Taylor’s
theorem,

Vir(r+t./T) — §

- — = sign(r) (Uc + 7'[7(7')),
Vi (7 +t/T) — gl

where . 1s the unit vector

£ (s) T+ 1) (s)R
VP e + (19 ))?

and 7 +— ﬁ(r) is smooth.

This means that the orientation of the pendulum
is smoothly defined on [0, 7] from the motion of the
center of oscillation by

Ue =

(t) = sign(t — 1./T)~L =8
1Vir(t) —

(we assume without restriction that ¢, is the only

point such that VH(tc) = §). Tt is now obvious
to build a smooth trajectory of (1)-(2)-(3) steering
the robot from the lower equilibrium to the upper
equilibrium. Figure 2 displays the motions of H
and S obtained with « the polynomial of degree 8,
se ~ 0.630, T ~ 1.238 s for ¢ = 9.81 ms~2 and
lg =r=0.35m.

5 The tracking feedback law

We assume full state measures. The tracking con-
trolled is decomposed into two levels:

1. the low-level corresponds to the manipulator;
it is fast and ensures a velocity control of the
manipulator; for each actuated axis, the correc-
tion from the reference torque (deduced from
the steering trajectory of previous section) is
computed via a simple high-gain and propor-
tional angular velocity-loop.

2. the high-level corresponds to the pendulum with
the velocity of S as control; it is slow and pro-
vide, after a transformation into angular veloc-
ity, the velocity set-point of the low-level.

This two-time scale structure ensures the robustness
with respect to modeling error in the manipulator
dynamics: with ‘75 as input, the pendulum dynamics
1s precisely known and admits only two well defined
parameter, g and lf.

We start with the precise validation of this two-
time-scale structure. A careful choice of the state
variables used for the pendulum dynamics must be
done. The use of position/velocity variables in the
design of the high-level controller will destroy, in
general such structure. Roughly speaking, posi-
tion/impulsion variables are necessary at this stage.
This phenomenon is comparable to a classical com-
putation due to Kapitsa and relative to the motion
of a particle under highly oscillating forces [6].

We will use the following notation: whenever X is
a vector, we decompose it into X = zti+ X, where
r = X .4 is the component along the pendulum and
X-u=0

5.1 Time-scale reduction

The low-level high-gain loop transforms the manip-
ulator dynamics into

6% = ‘7—‘_/’5—1—0(6)

with ¢ a “small” positive parameter.

To correctly perform the reduction we rewrite the
system in state form in the adapted coordinates
OH , Vi, 05, Vs.

Writing ‘_/JLI_ = VH - VH.U, we then find



using the fact that Vir is colinear to « and

~ 7
a.(vgrd + Vi)

AV
S Al

Vi il = (Vs + Ly id) @
= Vs.il.

We then have the state form

OH =V} +vsd
V=g — ()i — vsil
05 = Vs

6% =V- VS + O(e)

where @ and @ are defined in terms of the state vari-

ables by

lgi = OH — 08

it = i — -
Notice this system 1s not controllable due to over-
parametrization (we use 3+ 3 = 6 position variables
in the state though there are only 5 dof’s). Nev-
ertheless, the theorem of singular perturbations [5]
ensures it can be approximated with an error of or-
der ¢ in the “low” frequency range by the “slow”
system
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5.2 The high-level controller
There follows

)
[l
SRS
T+
S
31
L+
S
=y

so that the globally defined dynamic feedback
V=Gt =W
(=gi+ V7 W —lgw,

where W is the new control, transforms (4), hence

(1)-(2)-(3), into

Vg = §— lgwi
(5) { L
u=W

Notice #(t) will be a unit vector as soon as @(0)
i1s a unit vector. The controllable state of this sys-
tem has thus dimension 3+3+2=8 obtained from the
original controllable system of dimension 10 with a
dynamic feedback adding 1 state and after time-scale
reduction of 3 states. This global dynamic feedback
has been obtained via a state representation of the
dynamics that is not minimal.

The time varying change of coordinates

He P=H-—1/2, Vg Vg —1tj
, put (b) into the so-called second order nonholo-
nomic form
P = —lgwu ﬁ = W_.
with @ € S2 and 3 controls w € R and W~ €

2 ey .

TS&_; Lower and upper equilibria correspond here
to W~ =0 and |le| =y

Let us concentrate on the sub-system

VPI—leﬁ 1.7: W_.

ignoring P = Vp. This sub-system is the analog of a
nonholonomic car in R* rolling without slipping on
R3 with the velocity —{fw € R and two steering an-
gles represented by @ € S?. The singularity Vi = g
corresponds to zero velocity: its crossing coincides
here with the switch between backward and forward
motion. Such a similarity enable us to mimic the
time-varying tracking controller already used for tra-
jectory tracking of such non-holonomic flat systems
[2]. Denoting reference by superscript ", we have the
following dynamics feedback (& ~ 1):

§ = (@) 5(0)
—lgw = €5(1)
Wo = (- () & ()

with

(6)

Operator ' denotes derivatives with respect to s, the
arc length of the curve followed by V7 and defined by
ds, = + ‘VH(t) —7
A1 = (1/o14+ 1/03) and As = —1/(o102) correspond
to the two tracking poles o1, o2 in scale s.: their
sign depends on the sign of s,.

The above tracking controller is a velocity track-
ing controlled for H. To obtain a position tracking
controller we just have replaced in (6) V3 by

(7)

with o3s, < 0and |o3| < |o1], |02 in order to ensure
stability for time-scale reasons.

7= VB + M (& — Vi) + X (Vir — V).

dt. The two design parameters

Vi — (H — H")s, /o3



6 Experiments

6.1 The experimental setup

The main geometrical and mechanical characteris-
tics of manipulator and pendulum are:

e pendulum length : 0.40 m with [z = 0.35 m;

e manipulator bodies length : 0.32 m and 0.28 m;

e max acceleration capacity for the pendulum os-
cillation center 7 g;

The pendulum is brought by a two axis Cardan
joint, each one being equipped with an incremen-
tal single turn encoder (angular resolution between
electrical transitions : 0.000628 rd and 0.000785 rd).
The three angles of the manipulator bodies are mea-
sured by incremental single turn encoder (angular
resolution between electrical transitions : 0.000314
rd).

The encoder electrical transitions are sampled by
a high frequency clock. This allows to give the accu-
rate time of the angular transitions to the numer-
ical filter (derivator) which computes the angular
speeds. Therefore the precision of speed measure-
ment remains high at very low speed, which is the
required quality in order to stabilize the pendulum.

The time scaling of the whole control system is
shared as below :

e open-loop pendulum characteristic time, 189 ms;

e angular transitions sampling clock, 800 ns;

e measurement period, 4 ms (typical);

e derivator time constant, 4 ms;

e manipulator control period, 12 ms (typical);

e manipulator angular speed control time con-
stant, 66 ms (the "high-gain” low-level controller);

e pendulum cartesian speed tracking time con-
stants (o1 and o2 used in (6) ) are 150 ms and 225
ms;

e pendulum cartesian position tracking time con-
stant (o3 used in (7)) is of 675 ms;

The real-time controller software is implemented
under SUN Unix 4.1.3 Operating System on a SUN
Sparc 2.

6.2 Experimental results

The experimental data of figure 3 correspond to the
above tracking controller with a reference trajectory
made of the concatenation of the one of figure 2. No-
tice the good tracking performance for Vir. The low
frequency oscillation during the intermediate stabi-
lization phase (between the rise and fall phases) is
due to imperfection not taking into account in the
model.

Cartesian positions of the oscillation center H (reference with dashed-line)
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Figure 3: real data corresponding to steering from
the lower equilibrium to the upper one and back to
the lower.
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