Theory and practice in the motion planning and control of
a flexible robot arm using Mikusinski operators
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Abstract

The motion planning and the synthesis of a tracking con-
troller of a flexible robot arm is studied in an algebraic
framework using Mikusinski’s operational calculus. Ex-
perimental results are reported.
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1 Introduction

Vibration control of flexible robots is getting some im-
portance in space applications and in the optimization
of the weight/power ratio and the robot dynamics. Con-
trol laws are derived most often on the basis of a discrete
flexible model (see, e.g., [10, 8] or [3]) However, several
authors, such as [11], use partial differential integral equa-
tions or dynamic models of rigid robots [2] in the control
of flexible robot arms.

In a complementary spirit, we present here techniques
for moving such an arm from rest to rest while speci-
fying the motion of a particular point. The proposed
techniques lead to exact and explicit formulae, i.e. they
allow the solution without integration of any differential
equation. These formulae are seen to result in computa-
tionally efficient and robust schemes. The experimental
experience confirms the practical relevance of the theo-
retical predictions.

The elementary foundations of an algebraic theory of
constant linear systems are laid down, which, generaliz-
ing [13, 15, 26], leads to the consideration of finite type
modules over domains. The notions of controllability and
observability are defined in this context. To deal with
equations such as the Euler-Bernoulli one, the ground
ring is generated by Mikusiriski’s operators [23, 24], or,
more precisely, by operational functions [23, 24]; recall
that the operational calculus of Mikusinski [23, 24] forms
a substitute as elegant as easy to handle for the Laplace
transformation. The freeness of a certain module, the
properties of which are obtained through homological ar-
guments (see [12, 19])!, permits to obtain the desired
behavior of the beam with an open loop control, by as-
signing a trajectory to a basis of this module: this is an
approach analogous to the flatness based control [14] of
nonlinear finite dimensional systems. A regulation with
passivity, close to the proportional-derivative one used
in [1], leads to the stabilization. The numerical compu-
tations use series developments of Mikusinski’s operators
[24] and a result on Gevrey-Roumieu functions due to
Ramis [29].

Comparisons with the very rich literature on dis-
tributed parameter systems (see, e.g., [21, 22, 4, 9, 18]
and the references therein)? will be made elsewhere. No-
tice, however, that such a comparison has been made in
the thesis of one of the authors [26] (see also [15, 16, 25,
27]) for another class of infinite dimensional systems, viz.

IWe especially use the resolution of Serre’s conjecture by Quillen
[28] and Suslin [32], already exploited in [26] (see also [15, 16]).

2We refer the reader also to also to [5, 7] for the consideration
of equations of the same type as ours.



Figure 1: Rotating beam with an end mass.

the one of localized delay systems.

2 The flexible robot arm

The flexible robot arm under consideration consists in a
flexible beam with length L. Its end » = 0 is clamped
in the axle of a motor, the angle of which with respect
to a fixed reference is #, a mass M being attached at the
other end » = L. The movement of this beam is supposed
to be described by the following model — which is valid
under standard hypothesis like linear elasticity, small de-
flection, and negligible Coriolis forces, i.e. # small — and
boundary conditions:
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where V' (r, 1) is the field of deflections of the beam with
respect to its equilibrium, which is determined by the
angle @ of the rotating axis. Here 7 is the control torque,
and EI, p, J, Jn, and S are the physical constants in a
common notation.

3 R-linear systems

The controllability notions introduced hereafter are
adapted from [13, 15, 16, 26]. The algebraic language is
elementary and can be found in several textbooks, such
as, e.g. , [12, 19].

Let R be a commutative ring with unity and with no
zero divisors. An R-linear system, or R-system, ¥ is a
finitely generated R—module A. Denote as [€] the sub-R-
module generated by a family £ of A. An element w of an
R-module M is said to be torsion if it satisfies a relation
of the form pw = 0 with p € M, p # 0.

Ezxample 1. — A relationship between the previous
module theoretic definition and the system equations can
be seen on the following example.

An input u = (u1,...,uy) is a finite sequence of ele-
ments in A such that the quotient module A/[u] is tor-

sion; w is called independent if [u] is a free R—module of
rank m. An output y = (y1,-..,¥p) is a finite sequence
of elements in A.

Ezample 2. — Take R = k[4], where k is a commu-
tative field, such as R. One then obtains the module-
theoretic approach to finite dimensional linear systems
(see [13]).

Ezample 3. — Set R = R[%,&l,...,ér], where 0;, ¢ =
1,...,r, is a localized delay operator: for every function
f R—=>R §f(t) = f(t—h;), h; € Ri. One thus obtains
the constant linear systems with localized delays (see [26]
and also [15, 16]).

Let A be an R-algebra. The R-system ¥ is called A-
torsion-free (resp. projective, free) controllable if the A—
module A ®g A is torsion free (resp. projective, free).
The A-free (resp. projective) controllablility implies the
A-projective (resp. torsion free) controllability.

Remark 4. — An R-system is A-torsion free control-

lable if no variable of the system satisfies an autonomous
equation with coefficients in A (autonomous meaning not
involving the input). If A = k[4], this equation is a dif-
ferential one; if A = ]R[%,(il, ..., 0r], it is a difference-
differential one.
An R-system ¥ is A-free controllable if there exists a ba-
Sis by, ..., by, i.e. , if the b;s are linearily A-independent
and generate A.

The following result is adapted from [31]:

Theorem and Definition 1 Assume ¥ is R-torsion-
free controllable. Then there exists m € R,m # 0, such
that Ax = R[r~'|®@gA is free. The system X is called
m-free.

Ezample 5. — The type of freeness in the preceding no-
tion amounts to allowing the formal inversion of the oper-
ator 7 in all algebraic calculations. For example, consid-
ering the delay system y(t) = u(t — 1), the corresponding
module A over R[<, 4] has the equation Ly = du. It is
d-free with basis y: one has u = 6y, or u(t) = y(t +1).

Remark 6. — Unlike in [15, 26, 13], we do not introduce
a state representation for ¥. It seems indeed being useless
for the present applications.

4 Mikusinski’s operators

The continuous functions [0, +oo[— C, together with ad-
dition and convolution product, form a commutative ring,
with no zero divisors, as shown by a famous theorem
due to Titchmarsh. Its field of fractions M is the set
of Mikusiriski’s operators [23, 24]. The unit of M is the
Dirac operator. The derivation operator is denoted as s.

4.1 Mikusinski systems

A linear system over Mikusiriski’s operators, or, more
briefly, a Mikusiniski system, is an R-linear system, where
R C M is a finite type k-algebra, with k a subfield of C.



Ezample 7. - With R = k[s,e”hs ..
hi,...,h, € Ry, where e7?15 ... e~h% are shift op-
erators (cf. [23, 24]), we obtain systems with localized
delays.

Example 8. — With R generated by s and a finite
number of Mikusiniski operators, we obtain linear systems
with generalized localized or distributed delays.

e—hrs]’

4.2 Parametric Mikusinski systems

Counsider the ring Ry of operational functions (cf. [23, 24])
I - M, where I is an interval of R. A linear parametric
system over the operators of Mikusirnski, or, more briefly,
a parametric system of Mikusiniski is a module of finite
type over a k-algebra R C Ry with no zero divisors and
of finite type. A natural example is given below.

5 The flexible robot arm as a parametric
Mikusinski system

Set

[ pS
a = %L{ r=>Lzx, T=aot,

With this, the equations (1) are transformed into the
well-known Euler-Bernoulli partial differential equation
together with the boundary conditions below.

w=V +rb.
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5.1 Modules

With the initial conditions w(z,0) = 0 and 220 —
0, Mikusinski’s operational calculus [23, 24] associates
(2) with the s-dependent ordinary differential equation
s2w = —'Y, where @ denotes the operational function
corresponding to w. The operators /s and i/s being
logarithmic [23, 24], the general solution of (2) can be

expressed as
w(z,s) = a(s)CF (5)+b(s)Cy (s)+c(s)ST (s)+d(s)S, (s)

with

Cy(s)

v |+
$?
=

Cf(s) =

S%(s) +1iSz(s) o
—hgs . S =g

Si(s) =
and

C:(s) = cosh[hy/s(1 — z)] S:(s) = sinh[hy/s(1 — 7)],

where h = e/™/* (i being v/—1). The coefficients a, b, c,
d are determined by the boundary conditions:

aCy +bCy +cSg +dSy; =0
s(—aS§ +bSy) +cCy +dCf =4a
b = —Xsd
c = usa

(7)

Set
R, :C[S,C:,C;,S;_,Sz_]

and let M be the Rp—module generated by a, b, ¢, d, and
.

Lemma 1 M is of rank 1, torsion free, but not free.
Proof

The first two assumptions are easily shown. For the third
one, consider the following presentation matrix of M

Cy ¢y Sf Sy 0
-sS§ sSy Cy CFf -1
0 1 0 Xs O

— s 0 1 0 0

Setting 21 = CF, 20 = C;, z3 = S}, 24 = S, the
minors of order four are zero for z; = 29 = 23 = z4 = 0.
A lemma of [6] and the resolution of Serre’s conjecture in
[28, 32] imply that M is not free. O
Set

wy = CF + psSF

We have:

T, = AsCy — S, .

Lemma 2 The module Ry[r, '] @r M is free with basis

g = 7r0_1a.

Proof
One readily obtains: a = myy, b = —Aswoy, ¢ = usmoy,
and d = woy. O
Then

i = [(—sSg + usCy)mo + (Cf — As*Sy )wo)] 4. (8)

Note that (6) can be rewritten as
w(z,s) = (W + TxWwo)Y- (9)

It follows:

Theorem 1 The R,—module A" generated by 4 and
is torsion free, of rank 1. The localized R,[ry *]-module

A%, generated by @ and w, is free, with basis j.



Proof

Indeed w(1,s) = moy = a and Ay thus contains . The
result then follows from (8) and (9). O

In other terms, one has R,—torsion free controllability
(resp. Ry[m, ']-free controllability) for the parametric
Mikusiniski R,-system (resp. R,[my']-system), associ-
ated with A” (resp. A7 ).

Remark 9. — Compared with flatness [14], already
mentioned in the introduction, there exists a great vari-
ety of possible choices for the module, and thus also for
a basis. Indeed, Mikusiniski’s operators belong to a field,
M. The selection should be done in view of simplifica-
tions of the calculations (convergent series) and of the
physical meaning.

5.2 Trajectory and open loop control calculation

Developping formulae (8) and (9) leads to the consider-
ation of operators like ) -, ays™. For the treatment of
these series, we need the following considerations. A C*°
function f : I — R, where [ is an open interval of R, is
of class C{T'(un)} (see [24]), if, and only if, there exists
My, Ry € Ry such that, for all ¢ € I and for all derivation
order n,

£ ()] < MyT(pn)(Ry)",

where T is the Euler function. In other words, the func-
tions of class C{I'(un)} are regular functions f such that
the series >, <o ) ()X ™ is Gevrey of order p (see [29])*
uniformly in ¢. It is clear that analytic functions belong to
C{T'(un)}, where p > 1. For p > 1, the class C{T'(un)}
is much bigger, by a theorem due to Denjoy-Carleman
(see [24]): it includes, in particular, sigmoid functions of
the type partition of unity (see [24, example of page 125,
with £, = (T'(un))~'/"] or the function g here below).
Finally, the set of functions of the class C{T'(un)} forms
a ring for the usual addition and product. This type of
function spaces is also considered in [17], where they are
called S type spaces.

If y(¢t) is of class C{T'(un)}, with p < 2, the follow-
ing series, which corresponds to cosh(v/2s)y, is absolutely
convergent

3 % Y (8).

n>0

For any specialization of the basis y to a function of class

3See [30] for an excellent servey on divergent series.

C{T'(un)}, p < 2, equation (8) yields
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and with (9),
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(11)
where R (resp. &) denotes the real (resp. imaginary) part.
In other words, the two relations above define a family
of trajectories for the hybrid system (2) parametrized by
all functions of class C{T'(un)}, u < 2.

—R)(1+i— z)ntt - gint]

5.3 The experiment

Consider now three equilibrium states of the beam corre-
sponding to three angles 61, 6>, and 3. Let the reference

be
yr(t) = (Sxg)(t)

with S a suitably chosen interpolating B-spline of order
6 and [0,7] > t — g(t) an approximation of the Dirac
distribution of class C{T'(un)}. The above formulae al-
low to achieve y(0) = 61, y(T/2) = 65, and y(T) = 65
with y(™(0) = y(™(T/2) = y(™(T) = 0 for all n. > 0 by
means of a regular control [0,7] 3 ¢ + u(¢). This control
law corresponds to a rotation of angle #3 — 6; during the
time T with a rest at 62 around T'/2. The whole scheme
ensures the absence of vibrations at the end of the move-
ment ¢t > T. The Figures 2 and 3 correspond to a beam
of length L = 1.005m with an end mass of M = 5.9kg
(EI = 47.25N.m?, pS = 2.04kg.m™!, J = 0.047kg.m?,
Jm = 0.0018kg.m?). The arm is equipped with an optical
sensor measuring the angle § and with two deformation
sensors (tensometrical sensors) allowing the evaluation of
the deflection w(1,t). The motor has a nominal torque of
3.5N. The movement of 3rad is achieved in 30s ( 6, =0
and ;3 = 3 with a rest at 6> = 1.5).



Using Proposition 5 of [29] characterizing the Gevrey-
Roumieu functions of type s > 0, it is easy to show that
the function g defined by

10,1[3> t — exp[—(t(1 —t)) "]

. v > 0, is of class C{I'(un)}, p = 1 + 1/v. The above
\ | , ’ function y is thus of class C{I'((un)}, with p = 1.9 < 2.
‘ \ ; )/ The series are calculated with about ten terms.
\ \ ! / // ‘ Remark 10. — A first robustness analysis has been
\ L » conducted by varying several parameters. In the follow-
‘ ~_ N A 7 . ing table the maximum error on the control torque for
= /7 _- given errors of the parameters are reported.

=——— "Q.\‘ | Par. | Nominal val.| Error val. |Par. err.|T0rque err.
N/

L 1.005 m 1.1m 10% 34%
M 5.9 kg 71kg | 20% 12%
pS | 204kgmt| 4kgm ! | 100% 6%
EI 47.25 N.m? 23 N.m? 100% 1.7%
J 0.047 kg.m? | 0.094 kg.m?| 100% 5.6%

Note that the only sensitive parameters are L and M,
which are always accurately measured in practice. The
errors due to other usually less well known parameters,
Figure 2: Various positions of the beam during the mo- like EI, are negligible. This inherent robustness of our
tion. control scheme is to a great extent due to the exactness
of the calculations. The only approximation is the trun-
cation of the derivation operators of infinite order; this
approximation appears at the very end of the calcula-
tions, though, which results at the same time in increased
accuracy and robustness.

5.4 Stabilizing feedback

In order to follow the preceding open loop trajecto-
ries with asymptotic stability, let us introduce a pas-
sivity based feedback. The reference trajectory for 6
and w are denoted by 6,.(r) and w,(z,7/a). The con-
trol is the motor torque 7 with reference 7.(7) =
—EI/L? ‘9;;;” (0,7/a). An elementary damping feedback,
using only the angle # and its velocity %,

y e db,
— \\:‘\\“\\\\Q\\\QQ\\&\\ T =Tu(7) = k(0 =6.(r) o { —— = 2= (7)
*33*““‘&‘3&*:‘:\3\\\\\\\\\\\\

deformation H (m)
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with k& and ¢ two positive parameters, ensures the asymp-
totic tracking of the reference (see [20] for a possible
choice of these gains). The figures 4, 5, and 6 show the
calculated and measured angle trajectory, the tracking
error, and the calculated and measured torques.

temps (s) abscisse (m)

Figure 3: The field of deflections w(x,t). 6 Conclusion

The control law is quite robust with the partially un-
certain model parameters of the experimental robot. A
noticable advantage of this method is the ability to freely
design a nominal physical trajectory avoiding the excita-
tion of flexible modes at the end of the movement. In
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