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Abstract

The motion planning and the synthesis of a tracking con-

troller of a 
exible robot arm is studied in an algebraic

framework using Mikusi�nski's operational calculus. Ex-

perimental results are reported.
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1 Introduction

Vibration control of 
exible robots is getting some im-

portance in space applications and in the optimization

of the weight/power ratio and the robot dynamics. Con-

trol laws are derived most often on the basis of a discrete


exible model (see, e.g., [10, 8] or [3]) However, several

authors, such as [11], use partial di�erential integral equa-

tions or dynamic models of rigid robots [2] in the control

of 
exible robot arms.

In a complementary spirit, we present here techniques

for moving such an arm from rest to rest while speci-

fying the motion of a particular point. The proposed

techniques lead to exact and explicit formulae, i.e. they

allow the solution without integration of any di�erential

equation. These formulae are seen to result in computa-

tionally e�cient and robust schemes. The experimental

experience con�rms the practical relevance of the theo-

retical predictions.

The elementary foundations of an algebraic theory of

constant linear systems are laid down, which, generaliz-

ing [13, 15, 26], leads to the consideration of �nite type

modules over domains. The notions of controllability and

observability are de�ned in this context. To deal with

equations such as the Euler{Bernoulli one, the ground

ring is generated by Mikusi�nski's operators [23, 24], or,

more precisely, by operational functions [23, 24]; recall

that the operational calculus of Mikusi�nski [23, 24] forms

a substitute as elegant as easy to handle for the Laplace

transformation. The freeness of a certain module, the

properties of which are obtained through homological ar-

guments (see [12, 19])1, permits to obtain the desired

behavior of the beam with an open loop control, by as-

signing a trajectory to a basis of this module: this is an

approach analogous to the 
atness based control [14] of

nonlinear �nite dimensional systems. A regulation with

passivity, close to the proportional{derivative one used

in [1], leads to the stabilization. The numerical compu-

tations use series developments of Mikusi�nski's operators

[24] and a result on Gevrey-Roumieu functions due to

Ramis [29].

Comparisons with the very rich literature on dis-

tributed parameter systems (see, e.g., [21, 22, 4, 9, 18]

and the references therein)2 will be made elsewhere. No-

tice, however, that such a comparison has been made in

the thesis of one of the authors [26] (see also [15, 16, 25,

27]) for another class of in�nite dimensional systems, viz.

1We especially use the resolution of Serre's conjecture by Quillen

[28] and Suslin [32], already exploited in [26] (see also [15, 16]).
2We refer the reader also to also to [5, 7] for the consideration

of equations of the same type as ours.
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Figure 1: Rotating beam with an end mass.

the one of localized delay systems.

2 The 
exible robot arm

The 
exible robot arm under consideration consists in a


exible beam with length L. Its end r = 0 is clamped

in the axle of a motor, the angle of which with respect

to a �xed reference is �, a mass M being attached at the

other end r = L. The movement of this beam is supposed

to be described by the following model | which is valid

under standard hypothesis like linear elasticity, small de-


ection, and negligible Coriolis forces, i.e. _� small | and

boundary conditions:

@4V

@4r
(r; �) =

��S
EI

@2

@�2
[V (r; �) + r�(�)]

Jm
d2�

d�2
(�) = T +EI

@2V

@r2
(0; �)

V (0; �)= 0;
@V

@r
(0; �) = 0

@2

@r2
V (L; �)=

�J
EI

@2

@�2

�
@V

@r
(L; �) + �(�)

�
@3V

@r3
(L; �)=

M

EI

@2

@�2
[V (L; �) + L�(�)] ;

(1)

where V (r; �) is the �eld of de
ections of the beam with

respect to its equilibrium, which is determined by the

angle � of the rotating axis. Here T is the control torque,

and EI , �, J , Jm, and S are the physical constants in a

common notation.

3 R-linear systems

The controllability notions introduced hereafter are

adapted from [13, 15, 16, 26]. The algebraic language is

elementary and can be found in several textbooks, such

as, e.g. , [12, 19].

Let R be a commutative ring with unity and with no

zero divisors. An R-linear system, or R-system, � is a

�nitely generated R{module �. Denote as [�] the sub-R{

module generated by a family � of �. An element w of an

R-module M is said to be torsion if it satis�es a relation

of the form pw = 0 with p 2M , p 6= 0.

Example 1. { A relationship between the previous

module theoretic de�nition and the system equations can

be seen on the following example.

An input u = (u1; : : : ; um) is a �nite sequence of ele-

ments in � such that the quotient module �=[u] is tor-

sion; u is called independent if [u] is a free R{module of

rank m. An output y = (y1; : : : ; yp) is a �nite sequence

of elements in �.

Example 2. { Take R = k[ d
dt
], where k is a commu-

tative �eld, such as R. One then obtains the module-

theoretic approach to �nite dimensional linear systems

(see [13]).

Example 3. { Set R = R[ d
dt
; �1; : : : ; �r], where �i, i =

1; : : : ; r, is a localized delay operator: for every function

f : R ! R, �if(t) = f(t�hi), hi 2 R+ . One thus obtains

the constant linear systems with localized delays (see [26]

and also [15, 16]).

Let A be an R-algebra. The R-system � is called A-

torsion-free (resp. projective, free) controllable if the A{

module A 
R � is torsion free (resp. projective, free).

The A-free (resp. projective) controllablility implies the

A-projective (resp. torsion free) controllability.

Remark 4. { An R-system is A-torsion free control-

lable if no variable of the system satis�es an autonomous

equation with coe�cients in A (autonomous meaning not

involving the input). If A = k[ d
dt
], this equation is a dif-

ferential one; if A = R[ d
dt
; �1; : : : ; �r], it is a di�erence-

di�erential one.

An R-system � is A-free controllable if there exists a ba-

sis b1, : : :, bm, i.e. , if the bis are linearily A-independent

and generate �.

The following result is adapted from [31]:

Theorem and De�nition 1 Assume � is R-torsion-

free controllable. Then there exists � 2 R; � 6= 0, such

that �� = R[��1]
R� is free. The system � is called

�-free.

Example 5. { The type of freeness in the preceding no-

tion amounts to allowing the formal inversion of the oper-

ator � in all algebraic calculations. For example, consid-

ering the delay system _y(t) = u(t� 1), the corresponding

module � over R[ d
dt
; �] has the equation d

dt
y = �u. It is

�-free with basis y: one has u = ��1y, or u(t) = y(t+1).

Remark 6. { Unlike in [15, 26, 13], we do not introduce

a state representation for �. It seems indeed being useless

for the present applications.

4 Mikusi�nski's operators

The continuous functions [0;+1[! C , together with ad-

dition and convolution product, form a commutative ring,

with no zero divisors, as shown by a famous theorem

due to Titchmarsh. Its �eld of fractions M is the set

of Mikusi�nski's operators [23, 24]. The unit of M is the

Dirac operator. The derivation operator is denoted as s.

4.1 Mikusi�nski systems

A linear system over Mikusi�nski's operators, or, more

brie
y, a Mikusi�nski system, is an R-linear system, where

R �M is a �nite type k-algebra, with k a sub�eld of C .

2



Example 7. { With R = k[s; e�h1s; : : : ; e�hrs],

h1; : : : ; hr 2 R+ , where e�h1s; : : : ; e�hrs are shift op-

erators (cf. [23, 24]), we obtain systems with localized

delays.

Example 8. { With R generated by s and a �nite

number of Mikusi�nski operators, we obtain linear systems

with generalized localized or distributed delays.

4.2 Parametric Mikusi�nski systems

Consider the ringRI of operational functions (cf. [23, 24])

I !M, where I is an interval of R. A linear parametric

system over the operators of Mikusi�nski, or, more brie
y,

a parametric system of Mikusi�nski is a module of �nite

type over a k-algebra R � RI with no zero divisors and

of �nite type. A natural example is given below.

5 The 
exible robot arm as a parametric

Mikusi�nski system

Set

� =

r
�S

EI
L2; r = Lx; � = �t; w = V + r�:

With this, the equations (1) are transformed into the

well-known Euler-Bernoulli partial di�erential equation

together with the boundary conditions below.

@2w

@t2
= �

@4w

@4x
(2)

w(0; t) = 0;
@w(0; t)

@x
= L�(t) (3)

@2w(1; t)

@x2
= ��

@3w

@x2@t
(1; t); (4)

@3w(1; t)

@x3
= �

@2w

@t2
(1; t); (5)

with

� =
J

�SL3
; � =

M

�SL
:

5.1 Modules

With the initial conditions w(x; 0) = 0 and
@w(x;0)

@t
=

0, Mikusi�nski's operational calculus [23, 24] associates

(2) with the s-dependent ordinary di�erential equation

s2ŵ = �ŵ(4), where ŵ denotes the operational function

corresponding to w. The operators
p
s and i

p
s being

logarithmic [23, 24], the general solution of (2) can be

expressed as

ŵ(x; s) = a(s)C+
x (s)+b(s)C�x (s)+c(s)S+

x (s)+d(s)S�x (s)

(6)

with

C+
x (s) =

Cx(s) + Cx(s)

2
C�x (s) =

Cx(s)� Cx(s)

2i

S+
x
(s) =

Sx(s) + iSx(s)

2h
p
s

S�
x
(s) =

�Sx(s) + iSx(s)

2�h
p
s

and

Cx(s) = cosh[h
p
s(1� x)] Sx(s) = sinh[h

p
s(1� x)];

where h = ei�=4 (i being
p
�1). The coe�cients a, b, c,

d are determined by the boundary conditions:

aC+
0 + bC�0 + cS+

0 + dS�0 = 0

s(�aS+
0 + bS�0 ) + cC�0 + dC+

0 = û

b = ��sd
c = �sa

(7)

Set

Rx = C [s; C+
x
; C�

x
; S+

x
; S�

x
]

and let M be the R0{module generated by a, b, c, d, and

û.

Lemma 1 M is of rank 1, torsion free, but not free.

Proof

The �rst two assumptions are easily shown. For the third

one, consider the following presentation matrix of M0
BB@

C+
0 C�0 S+

0 S�0 0

�sS+
0 sS�0 C�0 C+

0 �1
0 1 0 �s 0

��s 0 1 0 0

1
CCA

Setting z1 = C+
x , z2 = C�x , z3 = S+

x , z4 = S�x , the

minors of order four are zero for z1 = z2 = z3 = z4 = 0.

A lemma of [6] and the resolution of Serre's conjecture in

[28, 32] imply that M is not free. �

Set

!x = C+
x + �sS+

x �x = �sC�x � S�x :

We have:

Lemma 2 The module R0[�
�1
0 ]
R M is free with basis

ŷ = �0
�1a.

Proof

One readily obtains: a = �0ŷ, b = ��s!0ŷ, c = �s�0ŷ,

and d = !0ŷ. �

Then

û =
�
(�sS+

0 + �sC�0 )�0 + (C+
0 � �s2S�0 )!0)

�
ŷ: (8)

Note that (6) can be rewritten as

ŵ(x; s) = (!x�0 + �x!0)ŷ: (9)

It follows:

Theorem 1 The Rx{module �x generated by û and ŵ

is torsion free, of rank 1. The localized Rx[�
�1
0 ]{module

�x
�0
, generated by û and ŵ, is free, with basis ŷ.
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Proof

Indeed ŵ(1; s) = �0ŷ = a and �x
�0

thus contains ŷ. The

result then follows from (8) and (9). �

In other terms, one has Rx{torsion free controllability

(resp. Rx[�
�1
0 ]{free controllability) for the parametric

Mikusi�nski Rx{system (resp. Rx[�
�1
0 ]{system), associ-

ated with �x (resp. �x
�0
).

Remark 9. { Compared with 
atness [14], already

mentioned in the introduction, there exists a great vari-

ety of possible choices for the module, and thus also for

a basis. Indeed, Mikusi�nski's operators belong to a �eld,

M. The selection should be done in view of simpli�ca-

tions of the calculations (convergent series) and of the

physical meaning.

5.2 Trajectory and open loop control calculation

Developping formulae (8) and (9) leads to the consider-

ation of operators like
P

n�0 �ns
n. For the treatment of

these series, we need the following considerations. A C1

function f : I ! R, where I is an open interval of R, is

of class Cf�(�n)g (see [24]), if, and only if, there exists

Mf ; Rf 2 R+ such that, for all t 2 I and for all derivation

order n,

jf (n)(t)j �Mf�(�n)(Rf )
n;

where � is the Euler function. In other words, the func-

tions of class Cf�(�n)g are regular functions f such that

the series
P

n�0 f
(n)(t)Xn is Gevrey of order � (see [29])3

uniformly in t. It is clear that analytic functions belong to

Cf�(�n)g, where � � 1. For � > 1, the class Cf�(�n)g
is much bigger, by a theorem due to Denjoy-Carleman

(see [24]): it includes, in particular, sigmoid functions of

the type partition of unity (see [24, example of page 125,

with "n = (�(�n))�1=n] or the function g here below).

Finally, the set of functions of the class Cf�(�n)g forms

a ring for the usual addition and product. This type of

function spaces is also considered in [17], where they are

called S type spaces.

If y(t) is of class Cf�(�n)g, with � < 2, the follow-

ing series, which corresponds to cosh(
p
2s)y, is absolutely

convergent

X
n�0

2n

(2n)!
y(n)(t):

For any specialization of the basis y to a function of class

3See [30] for an excellent servey on divergent series.

Cf�(�n)g; � < 2, equation (8) yields

u(t) =
�Jm
L�2

"
1+

1X
n=0

22n+1

(4n+ 4)!

�
(1 + ��)

d2

dt2
+

(4n+ 4)(�+
4n+ 3

2
�)
� d2n+4

dt2n+4

#
y(t)+

EI

L2

"
1X
n=0

22n+1

(4n+ 4)!

�
(4n+ 4)

�1
2
+

��

2

� d2

dt2
+

(4n+ 3)(�+
(4n+ 1)(4n+ 2)

2
�)
� d2n+2

dt2n+2

#
y(�)

(10)

and with (9),

w(x; t) =

"
1X
n=0

(�1)ns2n

(4n)!

 
x4n+1

2(4n+ 1)
+

(= �<)(1 + i� x)4n+1

2(4n+ 1)
+ �=(1 + i� x)4n

!#
y(t)+"

1X
n=0

(�1)ns2n+2

(4n+ 4)!

 
��

2
+

(4n+ 2)!

(4n+ 4)!

h
(= �<)(1 + i� x)4n+1 � x4n+1

i

��(4n+ 3)(4n+ 4)<(1 + i� x)4n+2

!#
y(t)

(11)

where< (resp. =) denotes the real (resp. imaginary) part.

In other words, the two relations above de�ne a family

of trajectories for the hybrid system (2) parametrized by

all functions of class Cf�(�n)g, � < 2.

5.3 The experiment

Consider now three equilibrium states of the beam corre-

sponding to three angles �1, �2, and �3. Let the reference

be

yr(t) = (S � g)(t)

with S a suitably chosen interpolating B-spline of order

6 and [0; T ] 3 t 7! g(t) an approximation of the Dirac

distribution of class Cf�(�n)g. The above formulae al-

low to achieve y(0) = �1, y(T=2) = �2, and y(T ) = �3
with y(n)(0) = y(n)(T=2) = y(n)(T ) = 0 for all n > 0 by

means of a regular control [0; T ] 3 t 7! u(t). This control

law corresponds to a rotation of angle �3 � �1 during the

time T with a rest at �2 around T=2. The whole scheme

ensures the absence of vibrations at the end of the move-

ment t � T . The Figures 2 and 3 correspond to a beam

of length L = 1:005m with an end mass of M = 5:9kg

(EI = 47:25N.m2, �S = 2:04kg.m�1, J = 0:047kg.m2,

Jm = 0:0018kg.m2). The arm is equipped with an optical

sensor measuring the angle � and with two deformation

sensors (tensometrical sensors) allowing the evaluation of

the de
ection w(1; t). The motor has a nominal torque of

3:5N. The movement of 3rad is achieved in 30s ( �1 = 0

and �3 = 3 with a rest at �2 = 1:5).
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Figure 2: Various positions of the beam during the mo-

tion.
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Figure 3: The �eld of de
ections w(x; t).

Using Proposition 5 of [29] characterizing the Gevrey-

Roumieu functions of type s > 0, it is easy to show that

the function g de�ned by

]0; 1[3 t 7! exp[�(t(1� t))�� ]

� > 0, is of class Cf�(�n)g, � = 1 + 1=�. The above

function y is thus of class Cf�((�n)g, with � = 1:9 < 2.

The series are calculated with about ten terms.

Remark 10. { A �rst robustness analysis has been

conducted by varying several parameters. In the follow-

ing table the maximum error on the control torque for

given errors of the parameters are reported.

Par. Nominal val. Error val. Par. err. Torque err.

L 1:005 m 1:1 m 10% 34%

M 5:9 kg 7:1 kg 20% 12%

�S 2:04 kg.m�1 4 kg.m�1 100% 6%

EI 47:25 N.m2 23 N.m2 100% 1:7%

J 0:047 kg.m2 0:094 kg.m2 100% 5:6%

Note that the only sensitive parameters are L and M ,

which are always accurately measured in practice. The

errors due to other usually less well known parameters,

like EI , are negligible. This inherent robustness of our

control scheme is to a great extent due to the exactness

of the calculations. The only approximation is the trun-

cation of the derivation operators of in�nite order; this

approximation appears at the very end of the calcula-

tions, though, which results at the same time in increased

accuracy and robustness.

5.4 Stabilizing feedback

In order to follow the preceding open loop trajecto-

ries with asymptotic stability, let us introduce a pas-

sivity based feedback. The reference trajectory for �

and w are denoted by �r(�) and wr(x; �=�). The con-

trol is the motor torque T with reference Tr(�) =

�EI=L2 @2wr

@x2
(0; �=�). An elementary damping feedback,

using only the angle � and its velocity d�

d�
,

T = Tr(�)� k(� � �r(�)) � �

�
d�

d�
�

d�r

d�
(�)

�
;

with k and � two positive parameters, ensures the asymp-

totic tracking of the reference (see [20] for a possible

choice of these gains). The �gures 4, 5, and 6 show the

calculated and measured angle trajectory, the tracking

error, and the calculated and measured torques.

6 Conclusion

The control law is quite robust with the partially un-

certain model parameters of the experimental robot. A

noticable advantage of this method is the ability to freely

design a nominal physical trajectory avoiding the excita-

tion of 
exible modes at the end of the movement. In

5
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