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Introduction

Control systems are ubiquitous in modern technology. The use of feedback
control can be found in systems ranging from simple thermostats that regu-
late the temperature of a room, to digital engine controllers that govern the
operation of engines in cars, ships, and planes, to 
ight control systems for
high performance aircraft. The rapid advances in sensing, computation, and
actuation technologies is continuing to drive this trend and the role of control
theory in advanced (and even not so advanced) systems is increasing.

A typical use of control theory in many modern systems is to invert the
system dynamics to compute the inputs required to perform a speci�c task.
This inversion may involve �nding appropriate inputs to steer a control system
from one state to another or may involve �nding inputs to follow a desired
trajectory for some or all of the state variables of the system. In general, the
solution to a given control problem will not be unique, if it exists at all, and so
one must trade o� the performance of the system for the stability and actuation
e�ort. Often this tradeo� is described as a cost function balancing the desired
performance objectives with stability and e�ort, resulting in an optimal control
problem.

This inverse dynamics problem assumes that the dynamics for the system
are known and �xed. In practice, uncertainty and noise are always present in
systems and must be accounted for in order to achieve acceptable performance
of this system. Feedback control formulations allow the system to respond to
errors and changing operating conditions in real-time and can substantially
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a�ect the operability of the system by stabilizing the system and extending its
capabilities. Again, one may formulate the feedback regulation problems as
an optimization problem to allow tradeo�s between stability, performance, and
actuator e�ort.

The basic paradigm used in most, if not all, control techniques is to exploit
the mathematical structure of the system to obtain solutions to the inverse
dynamics and feedback regulation problems. The most common structure to
exploit is linear structure, where one approximates the given system by its li-
nearization and then uses properties of linear control systems combined with
appropriate cost function to give closed form (or at least numerically com-
putable) solutions. By using di�erent linearizations around di�erent operating
points, it is even possible to obtain good results when the system is nonlinear

by \scheduling" the gains depending on the operating point.
As the systems that we seek to control become more complex, the use of

linear structure alone is often not su�cient to solve the control problems that
are arising in applications. This is especially true of the inverse dynamics
problems, where the desired task may span multiple operating regions and
hence the use of a single linear system is inappropriate.

In order to solve these harder problems, control theorists look for di�erent
types of structure to exploit in addition to simple linear structure. In this
paper we concentrate on a speci�c class of systems, called \(di�erentially) 
at
systems", for which the structure of the trajectories of the (nonlinear) dynamics
can be completely characterized. Flat systems are a generalization of linear
systems (in the sense that all linear, controllable systems are 
at), but the
techniques used for controlling 
at systems are much di�erent than many of the
existing techniques for linear systems. As we shall see, 
atness is particularly
well tuned for allowing one to solve the inverse dynamics problems and one
builds o� of that fundamental solution in using the structure of 
atness to
solve more general control problems.

Flatness was �rst de�ned by Fliess et al. [13, 16] using the formalism of
di�erential algebra, see also [33] for a somewhat di�erent approach. In di�er-
ential algebra, a system is viewed as a di�erential �eld generated by a set of
variables (states and inputs). The system is said to be 
at if one can �nd a set
of variables, called the 
at outputs, such that the system is (non-di�erentially)
algebraic over the di�erential �eld generated by the set of 
at outputs. Roughly
speaking, a system is 
at if we can �nd a set of outputs (equal in number to the
number of inputs) such that all states and inputs can be determined from these
outputs without integration. More precisely, if the system has states x 2 Rn,
and inputs u 2 Rm then the system is 
at if we can �nd outputs y 2 Rm of the

form

y = h(x; u; _u; : : : ; u(r))
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such that

x = '(y; _y; : : : ; y(q))

u = �(y; _y; : : : ; y(q)):

More recently, 
atness has been de�ned in a more geometric context, where
tools for nonlinear control are more commonly available. One approach is to use
exterior di�erential systems and regard a nonlinear control system as a Pfa�an
system on an appropriate space [51]. In this context, 
atness can be described
in terms of the notion of absolute equivalence de�ned by E. Cartan [6, 7, 70].

In this paper we adopt a somewhat di�erent geometric point of view, relying
on a Lie-B�acklund framework as the underlying mathematical structure. This
point of view was originally described by Fliess et al. in 1993 [14] and is related
to the work of Pomet et al. [57, 55] on \in�nitesimal Brunovsky forms" (in the
context of feedback linearization). It o�ers a compact framework in which to
describe basic results and is also closely related to the basic techniques that are
used to compute the functions that are required to characterize the solutions
of 
at systems (the so-called 
at outputs).

Applications of 
atness to problems of engineering interest have grown
steadily in recent years. It is important to point out that many classes of
systems commonly used in nonlinear control theory are 
at, see for instance
the examples in section 4. As already noted, all controllable linear systems can
be shown to be 
at. Indeed, any system that can be transformed into a linear
system by changes of coordinates, static feedback transformations (change of
coordinates plus nonlinear change of inputs), or dynamic feedback transforma-
tions is also 
at. Nonlinear control systems in \pure feedback form", which
have gained popularity due to the applicability of backstepping [29] to such
systems, are also 
at. Thus, many of the systems for which strong nonlinear
control techniques are available are in fact 
at systems, leading one to question
how the structure of 
atness plays a role in control of such systems.

One common misconception is that 
atness amounts to dynamic feedback
linearization. It is true that any 
at system can be feedback linearized using
dynamic feedback (up to some regularity conditions that are generically satis-
�ed). However, 
atness is a property of a system and does not imply that one
intends to then transform the system, via a dynamic feedback and appropriate
changes of coordinates, to a single linear system. Indeed, the power of 
atness
is precisely that it does not convert nonlinear systems into linear ones. When
a system is 
at it is an indication that the nonlinear structure of the system is
well characterized and one can exploit that structure in designing control algo-
rithms for motion planning, trajectory generation, and stabilization. Dynamic
feedback linearization is one such technique, although it is often a poor choice
if the dynamics of the system are substantially di�erent in di�erent operating
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regimes.
Another advantage of studying 
atness over dynamic feedback linearization

is that 
atness is a geometric property of a system, independent of coordinate
choice. Typically when one speaks of linear systems in a state space context,
this does not make sense geometrically since the system is linear only in certain
choices of coordinate representations. In particular, it is di�cult to discuss the
notion of a linear state space system on a manifold since the very de�nition
of linearity requires an underlying linear space. In this way, 
atness can be
considered the proper geometric notion of linearity, even though the system
may be quite nonlinear in almost any natural representation.

Finally, the notion of 
atness can be extended to distributed parameters
systems with boundary control, see section 3.2.2, and is useful even for control-

ling linear systems, whereas feedback linearization is yet to be de�ned in that
context.

This paper provides a self-contained description of 
at systems. Section 1
introduces the fundamental concepts of equivalence and 
atness in a simple ge-
ometric framework. This is essentially an open-loop point of view. In section 2
we adopt a closed-loop point of view and relate equivalence and 
atness to
feedback design. Section 3 is devoted to open problems and new perspectives
including developments on symmetries and distributed parameters systems.
Finally, section 4 contains a representative catalog of 
at systems arising in
various �elds of engineering.

1 Equivalence and 
atness

1.1 Control systems as in�nite dimensional vector �elds

A system of di�erential equations

_x = f(x); x 2 X � R
n (1)

is by de�nition a pair (X; f), where X is an open set of Rn and f is a smooth
vector �eld on X. A solution, or trajectory, of (1) is a mapping t 7! x(t) such
that

_x(t) = f(x(t)) 8t � 0:

Notice that if x 7! h(x) is a smooth function on X and t 7! x(t) is a trajectory
of (1), then

d

dt
h(x(t)) =

@h

@x
(x(t)) � _x(t) = @h

@x
(x(t)) � f(x(t)) 8t � 0:
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For that reason the total derivative, i.e., the mapping

x 7! @h

@x
(x) � f(x)

is somewhat abusively called the \time-derivative" of h and denoted by _h.

We would like to have a similar description, i.e., a \space" and a vector
�eld on this space, for a control system

_x = f(x; u); (2)

where f is smooth on an open subset X � U � R
n�Rm. Here f is no longer

a vector �eld on X, but rather an in�nite collection of vector �elds on X

parameterized by u: for all u 2 U , the mapping

x 7! fu(x) = f(x; u)

is a vector �eld on X. Such a description is not well-adapted when considering
dynamic feedback.

It is nevertheless possible to associate to (2) a vector �eld with the \same"
solutions using the following remarks: given a smooth solution of (2), i.e., a
mapping t 7! (x(t); u(t)) with values in X � U such that

_x(t) = f(x(t); u(t)) 8t � 0;

we can consider the in�nite mapping

t 7! �(t) = (x(t); u(t); _u(t); : : : )

taking values in X�U �R1
m
, where R1

m
= R

m�Rm� : : : denotes the product
of an in�nite (countable) number of copies of Rm. A typical point of R1

m
is

thus of the form (u1; u2; : : : ) with ui 2 Rm. This mapping satis�es

_�(t) =
�
f(x(t); u(t)); _u(t); �u(t); : : :

�
8t � 0;

hence it can be thought of as a trajectory of the in�nite vector �eld

(x; u; u1; : : :) 7! F (x; u; u1; : : : ) = (f(x; u); u1; u2; : : :)

on X � U �R1
m
. Conversely, any mapping

t 7! �(t) = (x(t); u(t); u1(t); : : : )

that is a trajectory of this in�nite vector �eld necessarily takes the form
(x(t); u(t); _u(t); : : : ) with _x(t) = f(x(t); u(t)), hence corresponds to a solution
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of (2). Thus F is truly a vector �eld and no longer a parameterized family of
vector �elds.

Using this construction, the control system (2) can be seen as the data of the
\space" X �U �R1

m
together with the \smooth" vector �eld F on this space.

Notice that, as in the uncontrolled case, we can de�ne the \time-derivative"
of a smooth function (x; u; u1; : : : ) 7! h(x; u; u1; : : : ; uk) depending on a �nite
number of variables by

_h(x; u; u1; : : : ; uk+1) := Dh �F

=
@h

@x
� f(x; u) + @h

@u
� u1 + @h

@u1
� u2 + � � � :

The above sum is �nite because h depends on �nitely many variables.

Remark. To be rigorous we must say something of the underlying topology and
di�erentiable structure of R1

m
to be able to speak of smooth objects [76]. This

topology is the Fr�echet topology, which makes things look as if we were working
on the product of k copies of Rm for a \large enough" k. For our purpose it is
enough to know that a basis of the open sets of this topology consists of in�nite
products U0 � U1 � : : : of open sets of Rm, and that a function is smooth if
it depends on a �nite but arbitrary number of variables and is smooth in the
usual sense. In the same way a mapping � : R1

m
! R

1

n
is smooth if all of its

components are smooth functions.
R
1
m

equipped with the Fr�echet topology has very weak properties: useful
theorems such as the implicit function theorem, the Frobenius theorem, and
the straightening out theorem no longer hold true. This is only because R1

m

is a very big space: indeed the Fr�echet topology on the product of k copies of
R
m for any �nite k coincides with the usual Euclidian topology.
We can also de�ne manifoldsmodeled on R1

m
using the standard machinery.

The reader not interested in these technicalities can safely ignore the details
and won't loose much by replacing \manifold modeled on R1

m
" by \open set

of R1
m
".

We are now in position to give a formal de�nition of a system:

De�nition 1. A system is a pair (M; F ) where M is a smooth manifold, pos-
sibly of in�nite dimension, and F is a smooth vector �eld on M.

Locally, a control system looks like an open subset of R� (� not necessarily
�nite) with coordinates (�1; : : : ; ��) together with the vector �eld

� 7! F (�) = (F1(�); : : : ; F�(�))

where all the components Fi depend only on a �nite number of coordinates. A
trajectory of the system is a mapping t 7! �(t) such that _�(t) = F (�(t)).
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We saw in the beginning of this section how a \traditional" control system
�ts into our de�nition. There is nevertheless an important di�erence: we lose
the notion of state dimension. Indeed

_x = f(x; u); (x; u) 2 X � U � R
n�Rm (3)

and

_x = f(x; u); _u = v (4)

now have the same description (X � U �R1
m
; F ), with

F (x; u; u1; : : : ) = (f(x; u); u1; u2; : : : );

in our formalism: t 7! (x(t); u(t)) is a trajectory of (3) if and only if t 7!
(x(t); u(t); _u(t)) is a trajectory of (4). This situation is not surprising since the
state dimension is of course not preserved by dynamic feedback. On the other
hand we will see there is still a notion of input dimension.

Example 1 (The trivial system). The trivial system (R1
m
; Fm), with coordinates

(y; y1; y2; : : : ) and vector �eld

Fm(y; y
1
; y

2
; : : : ) = (y1; y2; y3; : : : )

describes any \traditional" system made of m chains of integrators of arbitrary

lengths, and in particular the direct transfer y = u.

In practice we often identify the \system" F (x; u) := (f(x; u); u1; u2; : : : )
with the \dynamics" _x = f(x; u) which de�nes it. Our main motivation for
introducing a new formalism is that it will turn out to be a natural framework
for the notions of equivalence and 
atness we want to de�ne.

Remark. It is easy to see that the manifoldM is �nite-dimensional only when
there is no input, i.e., to describe a determined system of di�erential equations
one needs as many equations as variables. In the presence of inputs, the sys-
tem becomes underdetermined, there are more variables than equations, which
accounts for the in�nite dimension.

Remark. Our de�nition of a system is adapted from the notion of di�ety in-
troduced in [76] to deal with systems of (partial) di�erential equations. By
de�nition a di�ety is a pair (M; CTM) where M is smooth manifold, possibly
of in�nite dimension, and CTM is an involutive �nite-dimensional distribution
on M, i.e., the Lie bracket of any two vector �elds of CTM is itself in CTM.
The dimension of CTM is equal to the number of independent variables.

As we are only working with systems with lumped parameters, hence gov-

erned by ordinary di�erential equations, we consider di�eties with one di-
mensional distributions. For our purpose we have also chosen to single out a
particular vector �eld rather than work with the distribution it spans.
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1.2 Equivalence of systems

In this section we de�ne an equivalence relation formalizing the idea that two
systems are \equivalent" if there is an invertible transformation exchanging
their trajectories. As we will see later, the relevance of this rather natural
equivalence notion lies in the fact that it admits an interpretation in terms of
dynamic feedback.

Consider two systems (M; F ) and (N; G) and a smoothmapping	 :M! N
(remember that by de�nition every component of a smooth mapping depends
only on �nitely many coordinates). If t 7! �(t) is a trajectory of (M; F ), i.e.,

8�; _�(t) = F (�(t));

the composed mapping t 7! �(t) = 	(�(t)) satis�es the chain rule

_�(t) =
@	

@�
(�(t)) � _�(t) = @	

@�
(�(t)) � F (�(t)):

The above expressions involve only �nite sums even if the matrices and vectors
have in�nite sizes: indeed a row of @	

@�
contains only a �nite number of non zero

terms because a component of 	 depends only on �nitely many coordinates.
Now, if the vector �elds F and G are 	-related, i.e.,

8�; G(	(�)) =
@	

@�
(�) � F (�)

then

_�(t) = G(	(�(t)) = G(�(t));

which means that t 7! �(t) = 	(�(t)) is a trajectory of (N; G). If moreover
	 has a smooth inverse � then obviously F;G are also �-related, and there is
a one-to-one correspondence between the trajectories of the two systems. We
call such an invertible 	 relating F and G an endogenous transformation.

De�nition 2. Two systems (M; F ) and (N; G) are equivalent at (p; q) 2M�N
if there exists an endogenous transformation from a neighborhood of p to a
neighborhood of q. (M; F ) and (N; G) are equivalent if they are equivalent at
every pair of points (p; q) of a dense open subset ofM�N.

Notice that whenM and N have the same �nite dimension, the systems are
necessarily equivalent by the straightening out theorem. This is no longer true
in in�nite dimensions.

Consider the two systems (X�U �R1
m
; F ) and (Y �V �R1

s
; G) describing

the dynamics

_x = f(x; u); (x; u) 2 X � U � R
n�Rm (5)

_y = g(y; v); (y; v) 2 Y � V � R
r �Rs

: (6)
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The vector �elds F;G are de�ned by

F (x; u; u1; : : :) = (f(x; u); u1; u2; : : : )

G(y; v; v1; : : :) = (g(y; v); v1; v2; : : : ):

If the systems are equivalent, the endogenous transformation 	 takes the form

	(x; u; u1; : : : ) = ( (x; u); �(x; u); _�(x; u); : : : ):

Here we have used the short-hand notation u = (u; u1; : : : ; uk), where k is some
�nite but otherwise arbitrary integer. Hence 	 is completely speci�ed by the
mappings  and �, i.e, by the expression of y; v in terms of x; u. Similarly, the
inverse � of 	 takes the form

�(y; v; v1; : : : ) = ('(y; v); �(y; v); _�(y; v); : : : ):

As 	 and � are inverse mappings we have

 
�
'(y; v); �(y; v)

�
= y

�
�
'(y; v); �(y; v)

�
= v

and
'
�
 (x; u); �(x; u)

�
= x

�
�
 (x; u); �(x; u)

�
= u:

Moreover F and G 	-related implies

f
�
'(y; v); �(y; v)

�
= D'(y; v) � g(y; v)

where g stands for (g; v1; : : : ; vk), i.e., a truncation ofG for some large enough k.
Conversely,

g
�
 (x; u); �(y; u)

�
= D (x; u) � f (y; u):

In other words, whenever t 7! (x(t); u(t)) is a trajectory of (5)

t 7! (y(t); v(t)) =
�
'(x(t); u(t)); �(x(t); u(t))

�
is a trajectory of (6), and vice versa.

Example 2 (The PVTOL, see example 21). The system generated by

�x = �u1 sin � + "u2 cos �

�z = u1 cos � + "u2 sin � � 1

�� = u2:

is globally equivalent to the systems generated by

�y1 = �� sin �; �y2 = � cos � � 1;
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where � and � are the control inputs. Indeed, setting

X := (x; z; _x; _z; �; _�)

U := (u1; u2)
and

Y := (y1; y2; _y1; _y2)

V := (�; �)

and using the notations in the discussion after de�nition 2, we de�ne the map-
pings Y =  (X;U ) and V = �(X;U ) by

 (X;U ) :=

0
BB@
x� " sin �
z + " cos �

_x� " _� cos �

_z � " _� sin �

1
CCA and �(X;U ) :=

�
u1 � " _�2

�

�

to generate the mapping 	. The inverse mapping � is generated by the map-
pings X = '(Y; V ) and U = �(Y; V ) de�ned by

'(Y; V ) :=

0
BBBBBB@

y1 + " sin �
y2 � " cos �

_y1 + " _� cos �

_y2 � " _� sin �
�

_�

1
CCCCCCA

and �(Y; V ) :=

�
� + " _�2

��

�

An important property of endogenous transformations is that they preserve
the input dimension:

Theorem 1. If two systems (X�U �R1
m
; F ) and (Y �V �R1

s
; G) are equiv-

alent, then they have the same number of inputs, i.e., m = s.

Proof. Consider the truncation �� of � on X � U � (Rm)�,

�� : X � U � (Rm+k)� ! Y � V � (Rs)�

(x; u; u1; : : : ; uk+�) 7! ('; �; _�; : : : ; �(�));

i.e., the �rst �+ 2 blocks of components of 	; k is just a �xed \large enough"
integer. Because 	 is invertible, 	� is a submersion for all �. Hence the
dimension of the domain is greater than or equal to the dimension of the range,

n+m(k + � + 1) � s(� + 1) 8� > 0;

which implies m � s. Using the same idea with 	 leads to s � m.

Remark. Our de�nition of equivalence is adapted from the notion of equiva-
lence between di�eties. Given two di�eties (M; CTM) and (N; CTN), we say
that a smooth mapping 	 from (an open subset of) M to N is Lie-B�acklund
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if its tangent mapping T	 satis�es T�(CTM) � CTN. If moreover 	 has a
smooth inverse � such that T	(CTN) � CTM, we say it is a Lie-B�acklund
isomorphism. When such an isomorphism exists, the di�eties are said to be
equivalent. An endogenous transformation is just a special Lie-B�acklund iso-
morphism, which preserves the time parameterization of the integral curves.
It is possible to de�ne the more general concept of orbital equivalence [14, 12]
by considering general Lie-B�acklund isomorphisms, which preserve only the
geometric locus of the integral curves (see an example in section 26).

1.3 Di�erential Flatness

We single out a very important class of systems, namely systems equivalent to
a trivial system (R1

s
; Fs) (see example 1):

De�nition 3. The system (M; F ) is 
at at p 2M (resp. 
at) if it equivalent
at p (resp. equivalent) to a trivial system.

We specialize the discussion after de�nition 2 to a 
at system (X � U �
R
1
m
; F ) describing the dynamics

_x = f(x; u); (x; u) 2 X � U � R
n�Rm

:

By de�nition the system is equivalent to the trivial system (R1
s
; Fs) where the

endogenous transformation 	 takes the form

	(x; u; u1; : : :) = (h(x; u); _h(x; u); �h(x; u); : : : ): (7)

In other words 	 is the in�nite prolongation of the mapping h. The inverse �
of 	 takes the form

	(y) = ( (y); �(y); _�(y); : : : ):

As � and 	 are inverse mappings we have in particular

'
�
h(x; u)

�
= x and �

�
h(x; u)

�
= u:

Moreover F and G �-related implies that whenever t 7! y(t) is a trajectory of
y = v {i.e., nothing but an arbitrary mapping{

t 7!
�
x(t); u(t)

�
=
�
 (y(t)); �(y(t))

�
is a trajectory of _x = f(x; u), and vice versa.

We single out the importance of the mapping h of the previous example:

De�nition 4. Let (M; F ) be a 
at system and 	 the endogenous transforma-
tion putting it into a trivial system. The �rst block of components of 	, i.e.,
the mapping h in (7), is called a 
at (or linearizing) output.
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With this de�nition, an obvious consequence of theorem 1 is:

Corollary 1. Consider a 
at system. The dimension of a 
at output is equal
to the input dimension, i.e., s = m.

Example 3 (The PVTOL). The system studied in example 2 is 
at, with

y = h(X;U ) := (x� " sin �; z + " cos �)

as a 
at output. Indeed, the mappingsX = '(y) and U = �(y) which generate
the inverse mapping � can be obtained from the implicit equations

(y1 � x)2 + (y2 � z)2 = "
2

(y1 � x)(�y2 + 1)� (y2 � z)�y1 = 0

(�y2 + 1) sin � + �y1 cos � = 0:

We �rst solve for x; z; �,

x = y1 + "
�y1p

�y21 + (�y2 + 1)2

z = y2 + "
(�y2 + 1)p

�y21 + (�y2 + 1)2

� = arg(�y1; �y2 + 1);

and then di�erentiate to get _x; _z; _�; u in function of the derivatives of y. Notice
the only singularity is �y21 + (�y2 + 1)2 = 0.

1.4 Application to motion planning

We now illustrate how 
atness can be used for solving control problems. Con-
sider a nonlinear control system of the form

_x = f(x; u) x 2 Rn
; u 2 Rm

with 
at output

y = h(x; u; _u; : : : ; u(r)):

By virtue of the system being 
at, we can write all trajectories (x(t); u(t))
satisfying the di�erential equation in terms of the 
at output and its derivatives:

x = '(y; _y; : : : ; y(q))

u = �(y; _y; : : : ; y(q)):
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We begin by considering the problem of steering from an initial state to
a �nal state. We parameterize the components of the 
at output yi, i =
1; : : : ;m by

yi(t) :=
X
j

Aij�j(t); (8)

where the �j(t), j = 1; : : : ; N are basis functions. This reduces the problem
from �nding a function in an in�nite dimensional space to �nding a �nite set
of parameters.

Suppose we have available to us an initial state x0 at time �0 and a �nal
state xf at time �f . Steering from an initial point in state space to a desired
point in state space is trivial for 
at systems. We have to calculate the values
of the 
at output and its derivatives from the desired points in state space and
then solve for the coe�cients Aij in the following system of equations:

yi(�0) =
P

j
Aij�j(�0) yi(�f ) =

P
j
Aij�j(�f )

...
...

y
(q)
i
(�0) =

P
j
Aij�

(q)
j
(�0) y

(q)
i
(�f ) =

P
j
Aij�

(q)
j
(�f ):

(9)

To streamline notation we write the following expressions for the case of
a one-dimensional 
at output only. The multi-dimensional case follows by
repeatedly applying the one-dimensional case, since the algorithm is decoupled
in the component of the 
at output. Let �(t) be the q + 1 by N matrix

�ij(t) = �
(i)
j
(t) and let

�y0 = (y1(�0); : : : ; y
(q)
1 (�0))

�yf = (y1(�f ); : : : ; y
(q)
1 (�f ))

�y = (�y0; �yf ):

(10)

Then the constraint in equation (9) can be written as

�y =

�
�(�0)
�(�f )

�
A =: �A: (11)

That is, we require the coe�cients A to be in an a�ne sub-space de�ned by
equation (11). The only condition on the basis functions is that � is full rank,
in order for equation (11) to have a solution.

The implications of 
atness is that the trajectory generation problem can
be reduced to simple algebra, in theory, and computationally attractive algo-
rithms in practice. In the case of the towed cable system of example 25, a
reasonable state space representation of the system consists of approximately

13



128 states. Traditional approaches to trajectory generation, such as optimal
control, cannot be easily applied in this case. However, it follows from the
fact that the system is 
at that the feasible trajectories of the system are com-
pletely characterized by the motion of the point at the bottom of the cable. By
converting the input constraints on the system to constraints on the curvature
and higher derivatives of the motion of the bottom of the cable, it is possible
to compute e�cient techniques for trajectory generation.

1.5 Motion planning with singularities

In the previous section we assumed the endogenous transformation

	(x; u; u1; : : :) :=
�
h(x; u); _h(x; u); �h(x; u); : : :

�
generated by the 
at output y = h(x; u) everywhere nonsingular, so that we
could invert it and express x and u in function of y and its derivatives,

(y; _y; : : : ; y(q)) 7! (x; u) = �(y; _y; : : : ; y(q)):

But it may well be that a singularity is in fact an interesting point of operation.
As � is not de�ned at such a point, the previous computations do not apply.
A way to overcome the problem is to \blow up" the singularity by considering
trajectories t 7! y(t) such that

t 7! �
�
y(t); _y(t); : : : ; y(q)(t)

�
can be prolonged into a smooth mapping at points where � is not de�ned. To
do so requires a detailed study of the singularity. A general statement is beyond
the scope of this paper and we simply illustrate the idea with an example.

Example 4. Consider the 
at dynamics

_x1 = u1; _x2 = u2u1; _x3 = x2u1;

with 
at output y := (x1; x3). When u1 = 0, i.e., _y1 = 0 the endogenous
transformation generated by the 
at output is singular and the inverse mapping

(y; _y; �y)
�7�! (x1; x2; x3; u1; u2) =

�
y1;

_y2

_y1
; y2; _y1;

�y2 _y1 � �y1 _y2

_y31

�
;

is unde�ned. But if we consider trajectories t 7! y(t) :=
�
�(t); p(�(t))

�
, with �

and p smooth functions, we �nd that

_y2(t)

_y1(t)
=

dp

d�

�
�(t)

�
� _�(t)

_�(t)
and

�y2 _y1 � �y1 _y2
_y31

=

d
2
p

d�2

�
�(t)

�
� _�3(t)

_�3(t)
;

14



hence we can prolong t 7! �(y(t); _y(t); �y(t)) everywhere by

t 7!
�
�(t);

dp

d�

�
�(t)

�
; p(�(t)); _�(t);

d
2
p

d�2

�
�(t)

��
:

The motion planning can now be done as in the previous section: indeed, the
functions � and p and their derivatives are constrained at the initial (resp.
�nal) time by the initial (resp. �nal) point but otherwise arbitrary.

For a more substantial application see [66, 67, 16], where the same idea
was applied to nonholonomic mechanical systems by taking advantage of the
\natural" geometry of the problem.

2 Feedback design with equivalence

2.1 From equivalence to feedback

The equivalence relation we have de�ned is very natural since it is essentially a
1�1 correspondence between trajectories of systems. We had mainly an open-
loop point of view. We now turn to a closed-loop point of view by interpreting
equivalence in terms of feedback. For that, consider the two dynamics

_x = f(x; u); (x; u) 2 X � U � R
n�Rm

_y = g(y; v); (y; v) 2 Y � V � R
r �Rs

:

They are described in our formalism by the systems (X � U � R
1

m
; F ) and

(Y � V �R1
s
; G), with F and G de�ned by

F (x; u; u1; : : : ) := (f(x; u); u1; u2; : : :)

G(y; v; v1; : : : ) := (g(y; v); v1; v2; : : : ):

Assume now the two systems are equivalent, i.e., they have the same trajecto-
ries. Does it imply that it is possible to go from _x = f(x; u) to _y = g(y; v) by
a (possibly) dynamic feedback

_z = a(x; z; v); z 2 Z � R
q

u = �(x; z; v);

and vice versa? The question might look stupid at �rst glance since such a

feedback can only increase the state dimension. Yet, we can give it some sense
if we agree to work \up to pure integrators" (remember this does not change
the system in our formalism, see the remark after de�nition 1).
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Theorem 2. Assume _x = f(x; u) and _y = g(y; v) are equivalent. Then _x =
f(x; u) can be transformed by (dynamic) feedback and coordinate change into

_y = g(y; v); _v = v
1
; _v1 = v

2
; : : : ; _v� = w

for some large enough integer �. Conversely, _y = g(y; v) can be transformed
by (dynamic) feedback and coordinate change into

_x = f(x; u); _u = u
1
; _u1 = u

2
; : : : ; _u� = w

for some large enough integer �.

Proof [33]. Denote by F and G the in�nite vector �elds representing the two
dynamics. Equivalence means there is an invertible mapping

�(y; v) = ('(y; v); �(y; v); _�(y; v); : : : )

such that

F (�(y; v)) = D�(y; v):G(y; v): (12)

Let ~y := (y; v; v1; : : : ; v�) and w := v
�+1. For � large enough, ' (resp. �)

depends only on ~y (resp. on ~y and w). With these notations, � reads

�(~y; w) = ('(~y); �(~y; w); _�(y; w); : : : );

and equation (12) implies in particular

f('(~y); �(~y; w)) = D'(~y):~g(~y; w); (13)

where ~g := (g; v1; : : : ; vk). Because � is invertible, ' is full rank hence can be
completed by some map � to a coordinate change

~y 7! �(~y) = ('(~y); �(~y)):

Consider now the dynamic feedback

u = �(��1(x; z); w))

_z = D�(��1(x; z)):~g(��1(x; z); w));

which transforms _x = f(x; u) into�
_x
_z

�
= ~f (x; z; w) :=

�
f(x; �(��1(x; z); w))

D�(��1(x; z)):~g(��1(x; z); w))

�
:

Using (13), we have

~f
�
�(~y); w

�
=

�
f
�
'(~y); �(~y; w)

�
D�(~y):~g(~y; w)

�
=

�
D'(~y)
D�(~y)

�
� ~g(~y; w) = D�(~y):~g(~y; w):

Therefore ~f and ~g are �-related, which ends the proof. Exchanging the roles
of f and g proves the converse statement.
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As a 
at system is equivalent to a trivial one, we get as an immediate conse-
quence of the theorem:

Corollary 2. A 
at dynamics can be linearized by (dynamic) feedback and
coordinate change.

Remark. As can be seen in the proof of the theorem there are many feedbacks
realizing the equivalence, as many as suitable mappings �. Notice all these
feedback explode at points where ' is singular (i.e., where its rank collapses).

Further details about the construction of a linearizing feedback from an
output and the links with extension algorithms can be found in [35].

Example 5 (The PVTOL). We know from example 3 that the dynamics

�x = �u1 sin � + "u2 cos �

�z = u1 cos � + "u2 sin � � 1

�� = u2

admits the 
at output

y = (x� " sin �; z + " cos �):

It is transformed into the linear dynamics

y
(4)
1 = v1; y

(4)
2 = v2

by the feedback

�� = �v1 sin � + v2 cos � + � _�2

u1 = � + " _�2

u2 =
�1
�
(v1 cos � + v2 sin � + 2 _� _�)

and the coordinate change

(x; z; �; _x; _z; _�; �; _�) 7! (y; _y; �y; y(3)):

The only singularity of this transformation is � = 0, i.e., �y21 + (�y2 + 1)2 = 0.
Notice the PVTOL is not linearizable by static feedback (see section 3.1.2).

2.2 Endogenous feedback

Theorem 2 asserts the existence of a feedback such that

_x = f(x; �(x; z; w))

_z = a(x; z; w):
(14)
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reads, up to a coordinate change,

_y = g(y; v); _v = v
1
; : : : ; _v� = w: (15)

But (15) is trivially equivalent to _y = g(y; v) (see the remark after de�nition 1),
which is itself equivalent to _x = f(x; u). Hence, (14) is equivalent to _x =
f(x; u). This leads to

De�nition 5. Consider the dynamics _x = f(x; u). We say the feedback

u = �(x; z; w)

_z = a(x; z; w)

is endogenous if the open-loop dynamics _x = f(x; u) is equivalent to the closed-
loop dynamics

_x = f(x; �(x; z; w))

_z = a(x; z; w):

The word \endogenous" re
ects the fact that the feedback variables z and
w are in loose sense \generated" by the original variables x; u (see [33, 36] for
further details and a characterization of such feedbacks)

Remark. It is also possible to consider at no extra cost \generalized" feedbacks
depending not only on w but also on derivatives of w.

We thus have a more precise characterization of equivalence and 
atness:

Theorem 3. Two dynamics _x = f(x; u) and _y = g(y; v) are equivalent if and
only if _x = f(x; u) can be transformed by endogenous feedback and coordinate
change into

_y = g(y; v); _v = v
1
; : : : ; _v� = w: (16)

for some large enough integer �, and vice versa.

Corollary 3. A dynamics is 
at if and only if it is linearizable by endogenous
feedback and coordinate change.

Another trivial but important consequence of theorem 2 is that an endoge-
nous feedback can be \unraveled" by another endogenous feedback:

Corollary 4. Consider a dynamics

_x = f(x; �(x; z; w))

_z = a(x; z; w)
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where

u = �(x; z; w)

_z = a(x; z; w)

is an endogenous feedback. Then it can be transformed by endogenous feedback
and coordinate change into

_x = f(x; u); _u = u
1
; : : : ; _u� = w: (17)

for some large enough integer �.

This clearly shows which properties are preserved by equivalence: proper-
ties that are preserved by adding pure integrators and coordinate changes, in
particular controllability.

An endogenous feedback is thus truly \reversible", up to pure integrators.
It is worth pointing out that a feedback which is invertible in the sense of

the standard {but maybe unfortunate{ terminology [52] is not necessarily en-
dogenous. For instance the invertible feedback _z = v; u = v acting on the
scalar dynamics _x = u is not endogenous. Indeed, the closed-loop dynamics
_x = v; _z = v is no longer controllable, and there is no way to change that by
another feedback!

2.3 Tracking: feedback linearization

One of the central problems of control theory is trajectory tracking: given a
dynamics _x = f(x; u), we want to design a controller able to track any reference
trajectory t 7!

�
xr(t); ur(t)

�
. If this dynamics admits a 
at output y = h(x; u),

we can use corollary 2 to transform it by (endogenous) feedback and coordinate
change into the linear dynamics y(�+1) = w. Assigning then

v := y
(�+1)
r

(t)�K�~y

with a suitable gain matrix K, we get the stable closed-loop error dynamics

�y(�+1) = �K�~y;

where yr(t) := (xr(t); ur(t)
�
and ~y := (y; _y; : : : ; y�) and �� stands for �� �r(t).

This control law meets the design objective. Indeed, there is by the de�nition
of 
atness an invertible mapping

�(y) = ('(y); �(y); _�(y); : : : )
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relating the in�nite dimension vector �elds F (x; u) := (f(x; u); u; u1; : : :) and
G(y) := (y; y1; : : : ). From the proof of theorem 2, this means in particular

x = '(~yr(t) + �~y)

= '(~yr(t)) +R'(yr(t);�~y):�~y

= xr(t) +R'(yr(t);�~y):�~y

and

u = �(~yr(t) + �~y;�K�~y)

= �(~yr(t)) + R�(y
(�+1)
r

(t);�~y):

�
�~y

�K�~y

�

= ur(t) +R�(~yr(t); y
(�+1)
r

(t);�~y;�w):

�
�~y

�K�~y

�
;

where we have used the fundamental theorem of calculus to de�ne

R'(Y;�Y ) :=

Z 1

0
D'(Y + t�Y )dt

R�(Y;w;�Y;�w) :=

Z 1

0

D�(Y + t�Y;w + t�w)dt:

Since �y ! 0 as t ! 1, this means x ! xr(t) and u ! ur(t). Of course
the tracking gets poorer and poorer as the ball of center ~yr(t) and radius �y
approaches a singularity of '. At the same time the control e�ort gets larger
and larger, since the feedback explodes at such a point (see the remark after
theorem 2). Notice the tracking quality and control e�ort depend only on the
mapping �, hence on the 
at output, and not on the feedback itself.

We end this section with some comments on the use of feedback lineari-
zation. A linearizing feedback should always be fed by a trajectory generator,
even if the original problem is not stated in terms of tracking. For instance, if
it is desired to stabilize an equilibrium point, applying directly feedback line-
arization without �rst planning a reference trajectory yields very large control
e�ort when starting from a distant initial point. The role of the trajectory gen-
erator is to de�ne an open-loop \reasonable" trajectory {i.e., satisfying some
state and/or control constraints{ that the linearizing feedback will then track.

2.4 Tracking: singularities and time scaling

Tracking by feedback linearization is possible only far from singularities of the
endogenous transformation generated by the 
at output. If the reference tra-
jectory passes through or near a singularity, then feedback linearization cannot
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be directly applied, as is the case for motion planning, see section 1.5. Never-
theless, it can be used after a time scaling, at least in the presence of \simple"
singularities. The interest is that it allows exponential tracking, though in a
new \singular" time.

Example 6. Take a reference trajectory t 7! yr(t) = (�(t); p(�(t)) for ex-
ample 4. Consider the dynamic time-varying compensator u1 = � _�(t) and
_� = v1 _�(t). The closed loop system reads

x
0

1 = �; x
0

2 = u2�; x
0

3 = x2� �
0 = v1:

where 0 stands for d=d�, the extended state is (x1; x2; x3; �), the new control is
(v1; v2). An equivalent second order formulation is

x
00

1 = v1; x
00

3 = u2�
2 + x2v1:

When � is far from zero, the static feedback u2 = (v2 � x2v1)=�
2 linearizes the

dynamics,

x
00

1 = v1; x
00

3 = v2

in � scale. When the system remains close to the reference, � � 1, even if for
some t, _�(t) = 0. Take

v1 = 0� sign(�)a1(� � 1)� a2(x1 � �)

v2 =
d
2
p

d�2
� sign(�)a1

�
x2� � dp

d�

�
)� a2(x3 � p)

(18)

with a1 > 0 and a2 > 0 , then the error dynamics becomes exponentially stable
in �-scale (the term sign(�) is for dealing with _� < 0 ).

Similar computations for trailer systems can be found in [15, 12].

2.5 Tracking: 
atness and backstepping

2.5.1 Some drawbacks of feedback linearization

We illustrate on two simple (and caricatural) examples that feedback lineari-
zation may not lead to the best tracking controller in terms of control e�ort.

Example 7. Assume we want to track any trajectory t 7!
�
xr(t); ur(t)

�
of

_x = �x� x
3 + u; x 2 R:

The linearizing feedback

u = x+ x
3 � k�x+ _xr(t)

= ur(t) + 3xr(t)�x
2 +

�
1 + 3x2

r
(t) � k

�
�x+�x3
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meets this objective by imposing the closed-loop dynamics � _x = �k�x.
But a closer inspection shows the open-loop error dynamics

� _x =�
�
1 + 3x2

r
(t)
�
�x��x3 + 3xr(t)�x

2 +�u

= ��x
�
1 + 3x2

r
(t)� 3xr(t)�x+�x2

�
+�u

is naturally stable when the open-loop control u := ur(t) is applied (indeed
1 + 3x2

r
(t) � 3xr(t)�x + �x2 is always strictly positive). In other words, the

linearizing feedback does not take advantage of the natural damping e�ects.

Example 8. Consider the dynamics

_x1 = u1; _x2 = u2(1� u1);

for which it is required to track an arbitrary trajectory t 7!
�
xr(t); ur(t)

�
(notice ur(t) may not be so easy to de�ne because of the singularity u1 = 1).
The linearizing feedback

u1 = �k�x1 + _x1r(t)

u2 =
�k�x2 + _x2r(t)

1 + k�x1 � _x1r(t)

meets this objective by imposing the closed-loop dynamics � _x = �k�x. Un-
fortunately u2 grows unbounded as u1 approaches one. This means we must in
practice restrict to reference trajectories such that j1�u1r(t)j is always \large"
{in particular it is impossible to cross the singularity{ and to a \small" gain k.

A smarter control law can do away with these limitations. Indeed, consid-
ering the error dynamics

� _x1 = �u1

�_x2 = (1� u1r(t)��u1)�u2 � u2r(t)�u1;

and di�erentiating the positive function V (�x) := 1
2 (�x

2
1 +�x22) we get

_V = �u1(�x1 � u2r(t)�x2) + (1� u1r(t)��u1)�u1�u2:

The control law

�u1 = �k(�x1 � u2r(t)�x2)

�u2 = �(1� u1r(t) ��u1)�x2

does the job since

_V = �
�
�x1 � u2r(t)�x2

�2 � �(1� u1r(t)��u1)�x2
�2 � 0:
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Moreover, when u1r(t) 6= 0, _V is zero if and only if k�xk is zero. It is thus
possible to cross the singularity {which has been made an unstable equilibrium
of the closed-loop error dynamics{ and to choose the gain k as large as desired.
Notice the singularity is overcome by a \truly" multi-input design.

It should not be inferred from the previous examples that feedback linear-
ization necessarily leads to ine�cient tracking controllers. Indeed, when the
trajectory generator is well-designed, the system is always close to the refer-
ence trajectory. Singularities are avoided by restricting to reference trajectories
which stay away from them. This makes sense in practice when singularities
do not correspond to interesting regions of operations. In this case, designing
a tracking controller \smarter" than a linearizing feedback often turns out to
be rather complicated, if possible at all.

2.5.2 Backstepping

The previous examples are rather trivial because the control input has the
same dimension as the state. More complicated systems can be handled by
backstepping. Backstepping is a versatile design tool which can be helpful in a
variety of situations: stabilization, adaptive or output feedback, etc ([29] for a
complete survey). It relies on the simple yet powerful following idea: consider
the system

_x = f(x; �); f(x0; �0) = 0

_� = u;

where (x; �) 2 Rn�R is the state and u 2 R the control input, and assume we
can asymptotically stabilize the equilibrium x0 of the subsystem _x = f(x; �),
i.e., we know a control law � = �(x); �(x0) = �0 and a positive function V (x)
such that

_V = DV (x):f(x; �(x)) � 0:

A key observation is that the \virtual" control input � can then \back-
stepped" to stabilize the equilibrium (x0; �0) of the complete system. Indeed,
introducing the positive function

W (x; �) := V (x) +
1

2
(� � �(x))2

and the error variable z := � � �(x), we have

_W = DV (x):f(x; �(x) + z) + z
�
u� _�(x; �)

�
= DV (x):

�
f(x; �(x)) + R(x; z):z

�
+ z
�
u�D�(x):f(x; �)

�
= _V + z

�
u�D�(x):f(x; �) +DV (x):R(x; z)

�
;
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where we have used the fundamental theorem of calculus to de�ne

R(x; h) :=

Z 1

0

@f

@�
(x; x+ th)dt

(notice R(x; h) is trivially computed when f is linear in �). As _V is negative by
assumption, we can make _W negative, hence stabilize the system, by choosing
for instance

u := �z +D�(x):f(x; �)�DV (x):R(x; z):

2.5.3 Blending equivalence with backstepping

Consider a dynamics _y = g(y; v) for which we would like to solve the tracking
problem. Assume it is equivalent to another dynamics _x = f(x; u) for which
we can solve this problem, i.e., we know a tracking control law together with
a Lyapunov function. How can we use this property to control _y = g(y; v)?
Another formulation of the question is: assume we know a controller for _x =
f(x; u). How can we derive a controller for

_x = f(x; �(x; z; v))

_z = a(x; z; v);

where u = �(x; z; v); _z = a(x; z; v) is an endogenous feedback? Notice back-
stepping answers the question for the elementary case where the feedback in
question is a pure integrator.

By theorem 2, we can transform _x = f(x; u) by (dynamic) feedback and
coordinate change into

_y = g(y; v); _v = v
1
; : : : ; _v� = w: (19)

for some large enough integer �. We can then trivially backstep the control
from v to w and change coordinates. Using the same reasoning as in section 2.3,
it is easy to prove this leads to a control law solving the tracking problem for
_x = f(x; u). In fact, this is essentially the method we followed in section 2.3 on
the special case of a 
at _x = f(x; u). We illustrated in section 2.5.1 potential
drawbacks of this approach.

However, it is often possible to design better {though in general more
complicated{ tracking controllers by suitably using backstepping. This point
of view is extensively developed in [29], though essentially in the single-input
case, where general equivalence boils down to equivalence by coordinate change.
In the multi-input case new phenomena occur as illustrated by the following
examples.
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Example 9 (The PVTOL). We know from example 2 that

�x = �u1 sin � + "u2 cos �

�z = u1 cos � + "u2 sin � � 1

�� = u2

(20)

is globally equivalent to

�y1 = �� sin �; �y2 = � cos � � 1;

where � = u1+" _�
2 . This latter form is rather appealing for designing a tracking

controller and leads to the error dynamics

��y1 = �� sin � + �r(t) sin �r(t)

��y2 = � cos � � �r(t) cos �r(t)

Clearly, if � were a control input, we could track trajectories by assigning

�� sin � = �1(�y1;�_y1) + �y1r(t)

� cos � = �2(�y2;�_y2) + �y2r(t)

for suitable functions �1; �2 and �nd a Lyapunov function V (�y;�_y) for the
system. In other words, we would assign

� = �
�
�y;�_y; �yr(t)

�
:=
p
(�1 + �y1r)2 + (�2 + �y2r)2

� = �
�
�y;�_y; �yr(t)

�
:= arg(�1 + �y1r ; �2 + �y2r):

(21)

The angle � is a priori not de�ned when � = 0, i.e., at the singularity of the

at output y. We will not discuss the possibility of overcoming this singularity
and simply assume we stay away from it. Aside from that, there remains a big
problem: how should the \virtual" control law (21) be understood? Indeed, it
seems to be a di�erential equation: because y depends on �, hence � and �
are in fact functions of the variables

x; _x; z; _z; �; _�; yr(t); _yr(t); �yr(t):

Notice � is related to the actual control u1 by a relation that also depends on _�.
Let us forget this apparent di�culty for the time being and backstep (21)

the usual way. Introducing the error variable �1 := � � �
�
�y;�_y; �yr(t)

�
and

using the fundamental theorem of calculus, the error dynamics becomes

��y1 = �1(�y1;�_y1)� �1 Rsin

�
�(�y;�_y; �yr(t)); �1

�
�
�
�y;�_y; �yr(t)

�
��y2 = �2(�y1;�_y1) + �1 Rcos

�
�(�y;� _y; �yr(t)); �1

�
�
�
�y;�_y; �yr(t)

�
_�1 = _� � _�

�
�1;�y;�_y; �yr(t); y

(3)
r
(t)
�
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Notice the functions

Rsin(x; h) = sinx
cosh� 1

h
+ cos x

sinh

h

Rcos(x; h) = cosx
cos h� 1

h
� sinx

sinh

h

are bounded and analytic. Di�erentiate now the positive function

V1(�y;�_y; �1) := V (�y;�_y) +
1

2
�
2
1

to get

_V1 =
@V

@�y1
� _y1 +

@V

@�_y1
(�1 � �1Rsin�) +

@V

@�y2
�_y2 +

@V

@�_y2
(�2 + �1Rcos�) + �1 ( _� � _�)

= _V + �1

�
_� � _� + �1

�
Rcos

@V

@�y1
�Rsin

@V

@�y2

�
�
�
;

where we have omitted arguments of all the functions for the sake of clarity. If
_� were a control input, we could for instance assign

_� := ��1 + _�� �1

�
Rcos

@V

@�y1
� Rsin

@V

@�y2

�
�

:= �1

�
�1;�y;�_y; �yr(t); y

(3)
r

(t)
�
;

to get _V1 = _V � �
2
1 � 0: We thus backstep this \virtual" control law: we

introduce the error variable

�2 := _� ��1

�
�1;�y;�_y; �yr(t); y

(3)
r
(t)
�

together with the positive function

V2(�y;�_y; �1; �2) := V1(�y;�_y; �1) +
1

2
�
2
2:

Di�erentiating

V2 = _V + �1(��1 + �2) + �2(v2 � _�1)

= _V1 + �2(u2 � _�1 + �2);

and we can easily make _V1 negative by assigning

u2 := �2

�
�1; �2;�y;�_y; �yr(t); y

(3)
r
(t); y(4)

r
(t)
�

(22)
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for some suitable function �2.
A key observation is that �2 and V2 are in fact functions of the variables

x; _x; z; _z; �; _�; yr(t); : : : ; y
(4)
r
(t);

which means (22) makes sense. We have thus built a static control law

u1 = �
�
x; _x; z; _z; �; _�; yr(t); _yr(t); �yr(t)

�
+ " _�2

u2 = �2

�
x; _x; z; _z; �; _�; yr(t); : : : ; y

(4)
r
(t)
�

that does the tracking for (20). Notice it depends on yr(t) up to the fourth
derivative.

Example 10. The dynamics

_x1 = u1; _x2 = x3(1� u1); _x3 = u2;

admits (x1; x2) as a 
at output. The corresponding endogenous transformation
is singular, hence any linearizing feedback blows up, when u1 = 1. However,
it is easy to backstep the controller of example 8 to build a globally tracking

static controller

Remark. Notice that none the of two previous examples can be linearized by
static feedback (see section 3.1.2). Dynamic feedback is necessary for that.
Nevertheless we were able to derive static tracking control laws for them. An
explanation of why this is possible is that a 
at system can in theory be lin-
earized by a quasistatic feedback [10] {provided the 
at output does not depend
on derivatives of the input{.

2.5.4 Backstepping and time-scaling

Backstepping can be combined with linearization and time-scaling, as illus-
trated in the following example.

Example 11. Consider example 4 and its tracking control de�ned in example 6.
Assume, for example, that _� � 0. With the dynamic controller

_� = v1 _�; u1 = � _�; u2 = (v2 � x2v1)=�
2

where v1 and v2 are given by equation (18), we have, for the error e = y � yr ,
a Lyapunov function V (e; de=d�) satisfying

dV=d� � �aV (23)

with some constant a > 0. Remember that de=d� corresponds to (� � 1; x2� �
dp=d�). Assume now that the real control is not (u1; u2) but ( _u1 := w1; u2).

With the extended Lyapunov function

W = V (e; de=d�) +
1

2
(u1 � � _�)2
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we have
_W = _V + (w1 � _� _� � ���)((u1 � � _�):

Some manipulations show that

_V = (u1 � _��)

�
@V

@e1
+
@V

@e2
x2 +

@V

@e
0

2

u2�

�
+ _�

dV

d�

(remember _� = v1 _� and (v1; v2) are given by (18)). The feedback (b > 0)

w1 = �
�
@V

@e1
+
@V

@e2
x2 +

@V

@e02

u2�

�
+ _� _� + ��� � b(u1 � � _�)

achieves asymptotic tracking since _W � �a _�V � b(u1 � � _�)2:

2.5.5 Conclusion

It is possible to generalize the previous examples to prove that a control law
can be backstepped \through" any endogenous feedback. In particular a 
at
dynamics can be seen as a (generalized) endogenous feedback acting on the

at output; hence we can backstep a control law for the 
at output through
the whole dynamics. In other words the 
at output serves as a �rst \virtual"
control in the backstepping process. It is another illustration of the fact that
a 
at output \summarizes" the dynamical behavior.

Notice also that in a tracking problem the knowledge of a 
at output is
extremely useful not only for the tracking itself (i.e., the closed-loop problem)
but also for the trajectory generation (i.e., the open-loop problem)

3 Open problems and new perspectives

3.1 Checking 
atness: an overview

3.1.1 The general problem

Devising a general computable test for checking whether _x = f(x; u); x 2
R
n
; u 2 Rm is 
at remains up to now an open problem. This means there are no

systematic methods for constructing 
at outputs. This does not make 
atness
a useless concept: for instance Lyapunov functions and uniform �rst integrals
of dynamical systems are extremely helpful notions both from a theoretical and
practical point of view though they cannot be systematically computed.

The main di�culty in checking 
atness is that a candidate 
at output y =
h(x; u; : : : ; u(r)) may a priori depend on derivatives of u of arbitrary order r.
Whether this order r admits an upper bound (in terms of n and m) is at the
moment completely unknown. Hence we do not know whether a �nite bound
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exists at all. In the sequel, we say a system is r-
at if it admits a 
at output
depending on derivatives of u of order at most r.

To illustrate this upper bound might be at least linear in the state dimen-
sion, consider the system

x
(�1)
1 = u1; x

(�2)
2 = u2; _x3 = u1u2

with �1 > 0 and �2 > 0. It admits the 
at output

y1 = x3 +

�1X
i=1

(�1)ix(�1�i)1 u
(i�1)
2 ; y2 = x2;

hence is r-
at with r := min(�1; �2) � 1. We suspect (without proof) there is
no 
at output depending on derivatives of u of order less than r � 1.

If such a bound �(n;m) were known, the problem would amount to checking
p-
atness for a given p � �(n;m) and could be solved in theory. Indeed, it
consists [33] in �nding m functions h1; : : : ; hm depending on (x; u; : : : ; u(p))
such that

dim span
n
dx1; : : : ; dxn; du1; : : : ; dum; dh

(�)
1 ; : : : ; dh

(�)
m

o
0����

= m(� + 1);

where � := n+ pm. This means checking the integrability of the partial di�er-
ential system with a transversality condition

dxi ^ dh^ : : :^ dh(�) = 0; i = 1; : : : ; n

duj ^ dh^ : : :^ dh(�) = 0; j = 1; : : : ;m

dh^ : : :^ dh(�) 6= 0;

where dh(�) stands for dh
(�)
1 ^ : : :^ dh(�)m . It is in theory possible to conclude

by using a computable criterion [3, 58], though this seems to lead to practically
intractable calculations. Nevertheless it can be hoped that, due to the special
structure of the above equations, major simpli�cations might appear.

3.1.2 Known results

Systems linearizable by static feedback. A system which is linearizable
by static feedback and coordinate change is clearly 
at. Hence the geometric
necessary and su�cient conditions in [26, 25] provide su�cient conditions for

atness. Notice a 
at system is in general not linearizable by static feedback
(see for instance example 3), with the major exception of the single-input case.

Single-input systems. When there is only one control input 
atness reduces
to static feedback linearizability [8] and is thus completely characterized by the
test in [26, 25].
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A�ne systems of codimension 1. A system of the form

_x = f0(x) +

n�1X
j=1

ujgj(x); x 2 Rn
;

i.e., with one input less than states and linear w.r.t. the inputs is 0-
at as soon
as it is controllable [8] (more precisely strongly accessible for almost every x).

The picture is much more complicated when the system is not linear w.r.t.
the control, see [34] for a geometric su�cient condition.

A�ne systems with 2 inputs and 4 states. Necessary and su�cient con-
ditions for 1-
atness of the system can be found in [56]. They give a good idea
of the complexity of checking r-
atness even for r small.

Driftless systems. For driftless systems of the form _x =
P

m

i=1 fi(x)ui ad-
ditional results are available.

Theorem 4 (Driftless systems with two inputs [38]). The system

_x = f1(x)u1 + f2(x)u2

is 
at if and only if the generic rank of Ek is equal to k+2 for k = 0; : : : ; n�2n
where E0 := spanff1; f2g, Ek+1 := spanfEk; [Ek; Ek]g, k � 0.

A 
at two-input driftless system is always 0-
at. As a consequence of a
result in [46], a 
at two-input driftless system satisfying some additional regu-
larity conditions can be put by static feedback and coordinate change into the
chained system [47]

_x1 = u1; _x2 = u2; _x3 = x2u1; : : : ; _xn = xn�1u1:

Theorem 5 (Driftless systems, n states, and n� 2 inputs [39, 40]).

_x =

n�2X
i=1

uifi(x); x 2 Rn

is 
at as soon as it is controllable (i.e., strongly accessible for almost every x).
More precisely it is 0-
at when n is odd, and 1-
at when n is even.

All the results mentioned above rely on the use of exterior di�erential sys-
tems. Additional results on driftless systems, with applications to nonholono-
mic systems, can be found in [74, 73, 70].
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Mechanical systems. For mechanical systems with one control input less
than con�guration variables, [62] provides a geometric characterization, in
terms of the metric derived form the kinetic energy and the control codis-
tribution, of 
at outputs depending only on the con�guration variables.

A necessary condition. Because it is not known whether 
atness can be
checked with a �nite test, see section 3.1.1, it is very di�cult to prove that a
system is not 
at. The following result provides a simple necessary condition.

Theorem 6 (The ruled-manifold criterion [65, 16]). Assume _x = f(x; u)
is 
at. The projection on the p-space of the submanifold p = f(x; u), where x
is considered as a parameter, is a ruled submanifold for all x.

The criterion just means that eliminating u from _x = f(x; u) yields a set
of equations F (x; _x) = 0 with the following property: for all (x; p) such that
F (x; p) = 0, there exists a 2 Rn, a 6= 0 such that

8� 2 R; F (x; p+ �a) = 0:

F (x; p) = 0 is thus a ruled manifold containing straight lines of direction a.
The proof directly derives from the method used by Hilbert [23] to prove the

second order Monge equation d
2
z

dx2
=
�
dy

dx

�2
is not solvable without integrals.

A restricted version of this result was proposed in [71] for systems lineariz-
able by a special class of dynamic feedbacks.

As crude as it may look, this criterion is up to now the only way {except
for two-input driftless systems{ to prove a multi-input system is not 
at.

Example 12. The system

_x1 = u1; _x2 = u2; _x3 = (u1)
2 + (u2)

3

is not 
at, since the submanifold p3 = p
2
1 + p

3
2 is not ruled: there is no a 2 R3,

a 6= 0, such that

8� 2 R; p3+ �a3 = (p1 + �a1)
2 + (p2 + �a2)

3
:

Indeed, the cubic term in � implies a2 = 0, the quadratic term a1 = 0 hence
a3 = 0.

Example 13. The system _x3 = _x21 + _x22 does not de�ne a ruled submanifold of
R

3: it is not 
at in R. But it de�nes a ruled submanifold in C 3 : in fact it is

at in C , with the 
at output

y =
�
x3 � ( _x1 � _x2

p
�1)(x1 + x2

p
�1); x1 + x2

p
�1
�
:
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Example 14 (The ball and beam [21]). We now prove by the ruled manifold cri-
terion that

�r = �Bg sin � +Br _�2

(mr2 + J + Jb)�� = � � 2mr _r _� �mgr cos �;

where (r; _r; �; _�) is the state and � the input, is not 
at (as it is a single-
input system, we could also prove it is not static feedback linearizable, see
section 3.1.2). Eliminating the input � yields

_r = vr ; _vr = �Bg sin � + Br _�2; _� = v�

which de�nes a ruled manifold in the ( _r; _vr; _�; _v�)-space for any r; vr; �; v�, and
we cannot conclude directly. Yet, the system is obviously equivalent to

_r = vr; _vr = �Bg sin � +Br _�2;

which clearly does not de�ne a ruled submanifold for any (r; vr; �). Hence the
system is not 
at.

3.2 In�nite dimension \
at" systems

The idea underlying equivalence and 
atness {a one-to-one correspondence be-
tween trajectories of systems{ is not restricted to control systems described by
ordinary di�erential equations. It can be adapted to delay di�erential systems
and to partial di�erential equations with boundary control. Of course, there
are many more technicalities and the picture is far from clear. Nevertheless,
this new point of view seems promising for the design of control laws. In this
section, we sketch some recent developments in this direction.

3.2.1 Delay systems

Consider for instance the simple di�erential delay system

_x1(t) = x2(t); _x2(t) = x1(t)� x2(t) + u(t� 1):

Setting y(t) := x1(t), we can clearly explicitly parameterize its trajectories by

x1(t) = y(t); x2(t) = _y(t); u(t) = �y(t+ 1) + _y(t+ 1)� y(t + 1):

In other words, y(t) := x1(t) plays the role of a\
at" output. This idea is

investigated in detail in [42], where the class of �-free systems is de�ned (�
is the delay operator). More precisely, [42] considers linear di�erential delay
systems

M (d=dt; �)w = 0
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where M is a (n�m) � n matrix with entries polynomials in d=dt and � and
w = (w1; : : : ; wn) are the system variables. Such a system is said to be �-free if
it can be related to the \free" system y = (y1; : : : ; ym) consisting of arbitrary
functions of time by

w = P (d=dt; �; ��1)y

y = Q(d=dt; �; ��1)w;

where P (resp. Q) is a n � m (resp. m � n ) matrix the entries of which are
polynomial in d=dt, � and ��1.

Many linear delay systems are �-free. For example, _x(t) = Ax(t)+Bu(t�1),
(A;B) controllable, is �-free, with the Brunovski output of _x = Ax+ Bv as a
\�-free" output.

The following systems, commonly used in process control,

zi(s) =

mX
j=1

(
K

j

i
exp(�s�j

i
)

1 + �
j

i
s

)
uj(s); i = 1; : : :p

(s Laplace variable, gains Kj

i
, delays �j

i
and time constants � j

i
between uj

and zi) are �-free [54]. Other interesting examples of �-free systems arise from
partial di�erential equations:

Example 15 (Torsion beam system). The torsion motion of a beam (�gure 1)
can be modeled in the linear elastic domain by

@
2
t
�(x; t) = @

2
x
�(x; t); x 2 [0; 1]

@x�(0; t) = u(t)

@x�(1; t) = @
2
t
�(1; t);

where �(x; t) is the torsion of the beam and u(t) the control input. From
d'Alembert's formula, �(x; t) = �(x+ t) +  (x� t), we easily deduce

2�(t; x) = _y(t+ x� 1)� _y(t� x+ 1) + y(t + x� 1) + y(t � x+ 1)

2u(t) = �y(t+ 1) + �y(t� 1)� _y(t + 1) + _y(t� 1);

where we have set y(t) := �(1; t). This proves the system is �-free with �(1; t)

as a \�-
at" output. See [43, 17] for details and an application to motion

planning.

3.2.2 Distributed parameters systems

For partial di�erential equations with boundary control and mixed systems of
partial and ordinary di�erential equations, it seems possible to describe the
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u(t)

θ(x, t)
y (t) = θ(1, t)

0

1

x

Figure 1: torsion of a 
exible beam

one-to-one correspondence via series expansion, though a sound theoretical
framework is yet to be found. We illustrate this original approach to control
design on the following two \
at" systems.

Example 16 (Heat equation). Consider the linear heat equation

@t�(x; t) = @
2
x
�(x; t); x 2 [0; 1] (24)

@x�(0; t) = 0 (25)

�(1; t) = u(t); (26)

where �(x; t) is the temperature and u(t) is the control input. We claim that

y(t) := �(0; t)

is a \
at" output. Indeed, the equation in the Laplace variable s reads

s�̂(x; s) = �̂
00(x; s) with �̂

0(0; s) = 0; �̂(1; s) = û(s)

( 0 stands for @x and ^ for the Laplace transform), and the solution is clearly

�̂(x; s) = cosh(x
p
s)û(s)= cosh(

p
s). As �̂(0; s) = û(s)= cosh(

p
s), this implies

û(s) = cosh(
p
s) ŷ(s) and �̂(x; s) = cosh(x

p
s) ŷ(s):

Since cosh
p
s =

P+1
i=0 s

i
=(2i)!, we eventually get

�(x; t) =

+1X
i=1

x
2i y

(i)(t)

(2i)!
(27)

u(t) =

+1X
i=1

y
(i)(t)

(2i)!
: (28)

In other words, whenever t 7! y(t) is an arbitrary function (i.e., a trajectory of
the trivial system y = v), t 7!

�
�(x; t); u(t)

�
de�ned by (27)-(28) is a (formal)
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trajectory of (24){(26), and vice versa. This is exactly the idea underlying our
de�nition of 
atness in section 1.3. Notice these calculations have been known
for a long time, see [75, pp. 588 and 594].

To make the statement precise, we now turn to convergence issues. On the
one hand, t 7! y(t) must be a smooth function such that

9 K;M > 0; 8i � 0; 8t 2 [t0; t1]; jy(i)(t)j �M (Ki)2i

to ensure the convergence of the series (27)-(28).
On the other hand t 7! y(t) cannot in general be analytic. Indeed, if the

system is to be steered from an initial temperature pro�le �(x; t0) = �0(x) at
time t0 to a �nal pro�le �(x; t1) = �1(x) at time t1, equation (24) implies

8t 2 [0; 1]; 8i� 0; y
(i)(t) = @

i

t
�(0; t) = @

2i
x
�(0; t);

and in particular

8i � 0; y
(i)(t0) = @

2i
x
�0(0) and y

(i)(t1) = @
2i
x
�1(1):

If for instance �0(x) = c for all x 2 [0; 1] (i.e., uniform temperature pro�le),
then y(t0) = c and y

(i)(t0) = 0 for all i � 1, which implies y(t) = c for all t
when the function is analytic. It is thus impossible to reach any �nal pro�le
but �1(x) = c for all x 2 [0; 1].

Smooth functions t 2 [t0; t1] 7! y(t) that satisfy

9 K;M > 0; 8i � 0; jy(i)(t)j �M (Ki)�i

are known as Gevrey-Roumieu functions of order � [61] (they are also closely
related to class S functions [20]). The Taylor expansion of such functions is
convergent for � � 1 and divergent for � > 1 (the larger � is, the \more
divergent" the Taylor expansion is ). Analytic functions are thus Gevrey-
Roumieu of order � 1.

In other words we need a Gevrey-Roumieu function on [t0; t1] of order > 1
but � 2, with initial and �nal Taylor expansions imposed by the initial and �nal
temperature pro�les. With such a function, we can then compute open-loop
control steering the system from one pro�le to the other by the formula (27).

For instance, we steered the system from uniform temperature 0 at t = 0
to uniform temperature 1 at t = 1 by using the function

R3 t 7! y(t) :=

8>>><
>>>:
0 if t < 0

1 if t > 1R
t

0 exp
�
�1=(� (1� � ))


�
d�R 1

0 exp
�
�1=(� (1� � ))


�
d�

if t 2 [0; 1];
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Figure 2: evolution of the temperature pro�le for t 2 [0; 1].

with 
 = 1 (this function is Gevrey-Roumieu functions of order 1 + 1=
). The
evolution of the temperature pro�le �(x; t) is displayed on �gure 2 (the Matlab
simulation is available upon request at rouchon@cas.ensmp.fr).

Similar but more involved calculations with convergent series corresponding
to Mikunsi�nski operators are used in [18] to control a 
exible rod modeled by an
Euler-Bernoulli equation. For nonlinear systems, convergence issues are more
involved and are currently under investigation. Yet, it is possible to work {at
least formally{ along the same line.

Example 17 (Flexion beam system). Consider with [30] the mixed system

�@
2
t
u(x; t) = �!

2(t)u(x; t)� EI@
4
x
u(x; t); x 2 [0; 1]

_!(t) =
�3(t)� 2!(t) <u; @tu>(t)

Id+ <u; u>(t)

with boundary conditions

u(0; t) = @xu(0; t) = 0; @
2
x
u(1; t) = �1(t); @

3
x
u(1; t) = �2(t);

where �;EI; Id are constant parameters, u(x; t) is the deformation of the beam,

!(t) is the angular velocity of the body and <f; g>(t) :=
R 1
0 �f(x; t)g(x; t)dx.

The three control inputs are �1(t), �2(t), �3(t). We claim that

y(t) :=
�
@
2
x
u(0; t); @3

x
u(0; t); !(t)

�
is a \
at" output. Indeed, !(t), �1(t), �2(t) and �3(t) can clearly be expressed
in terms of y(t) and u(x; t), which transforms the system into the equivalent
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Cauchy-Kovalevskaya form

EI@
4
x
u(x; t) = �y

2
3(t)u(x; t)� �@

2
t
u(x; t) and

8>>>><
>>>>:

u(0; t) = 0

@xu(0; t) = 0

@
2
x
u(0; t) = y1(t)

@
3
x
u(0; t) = y2(t):

Set then formally u(x; t) =
P+1

i=0 ai(t)
x
i

i! , plug this series into the above system
and identify term by term. This yields

a0 = 0; a1 = 0; a2 = y1; a3 = y2;

and the iterative relation 8i � 0; EIai+4 = �y
2
3ai � ��ai: Hence for all i � 1,

a4i = 0 a4i+2 =
�

EI
(y23a4i�2 � �a4i�2)

a4i+1 = 0 a4i+3 =
�

EI
(y23a4i�1 � �a4i�1):

There is thus a 1{1 correspondence between (formal) solutions of the system
and arbitrary mappings t 7! y(t): the system is formally 
at.

3.3 State constraints and optimal control

3.3.1 Optimal control

Consider the standard optimal control problem

min
u

J(u) =

Z
T

0
L(x(t); u(t))dt

together with _x = f(x; u), x(0) = a and x(T ) = b, for known a; b and T .
Assume that _x = f(x; u) is 
at with y = h(x; u; : : : ; u(r)) as 
at output,

x = '(y; : : : ; y(q)); u = �(y; : : : ; y(q)):

A numerical resolution of minu J(u) a priori requires a discretization of the state
space, i.e., a �nite dimensional approximation. A better way is to discretize
the 
at output space. As in section 1.4, set yi(t) =

P
N

1 Aij�j(t). The initial
and �nal conditions on x provide then initial and �nal constraints on y and
its derivatives up to order q. These constraints de�ne an a�ne sub-space V of
the vector space spanned by the the Aij's. We are thus left with the nonlinear
programming problem

min
A2V

J(A) =

Z
T

0

L('(y; : : : ; y(q)); �(y; : : : ; y(q)))dt;
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where the yi's must be replaced by
P

N

1 Aij�j(t).
This methodology is used in [50] for trajectory generation and optimal con-

trol. It should also be very useful for predictive control. The main expected
bene�t is a dramatic improvement in computing time and numerical stability.
Indeed the exact quadrature of the dynamics {corresponding here to exact dis-
cretization via well chosen input signals through the mapping �{ avoids the
usual numerical sensitivity troubles during integration of _x = f(x; u) and the
problem of satisfying x(T ) = b.

3.3.2 State constraints

In the previous section, we did not consider state constraints. We now turn
to the problem of planning a trajectory steering the state from a to b while
satisfying the constraint k(x; u; : : : ; u(p)) � 0. In the 
at output \coordinates"
this yields the following problem: �nd T > 0 and a smooth function [0; T ] 3
t 7! y(t) such that (y; : : : ; y(q)) has prescribed value at t = 0 and T and such
that 8t 2 [0; T ], K(y; : : : ; y(�))(t) � 0 for some �. When q = � = 0 this
problem, known as the piano mover problem, is already very di�cult.

Assume for simplicity sake that the initial and �nal states are equilibrium
points. Assume also there is a quasistatic motion strictly satisfying the con-
straints: there exists a path (not a trajectory) [0; 1] 3 � 7! Y (�) such that
Y (0) and Y (1) correspond to the initial and �nal point and for any � 2 [0; 1],
K(Y (�); 0; : : : ; 0) < 0. Then, there exists T > 0 and [0; T ] 3 t 7! y(t) solution
of the original problem. It su�ces to take Y (�(t=T )) where T is large enough,
and where � is a smooth increasing function [0; 1] 3 s 7! �(s) 2 [0; 1], with

�(0) = 0, �(1) = 1 and d
i
�

dsi
(0; 1) = 0 for i = 1; : : : ;max(q; �).

In [64] this method is applied to a two-input chemical reactor. In [60] the
minimum-time problem under state constraints is investigated for several me-
chanical systems. [68] considers, in the context of non holonomic systems, the
path planning problem with obstacles. Due to the nonholonomic constraints,
the above quasistatic method fails: one cannot set the y-derivative to zero since
they do not correspond to time derivatives but to arc-length derivatives. How-
ever, several numerical experiments clearly show that sorting the constraints
with respect to the order of y-derivatives plays a crucial role in the computing
performance.

3.4 Symmetries

3.4.1 Symmetry preserving 
at output

Consider the dynamics _x = f(x; u); (x; u) 2 X � U � R
n � R

m
: Accord-

ing to section 1 it generates a system (F;M); where M := X � U � R
1

m
and
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F (x; u; u1; : : : ) := (f(x; u); u1; u2; : : : ). At the heart of our notion of equiv-
alence are endogenous transformations, which map solutions of a system to
solutions of another system. We single out here the important class of trans-
formations mapping solutions of a system onto solutions of the same system:

De�nition 6. An endogenous transformation �g :M 7�!M is a symmetry of
the system (F;M) if

8� := (x; u; u1; : : : ) 2M; F (�g(�)) = D�g(�) � F (�):

More generally, we can consider a symmetry group, i.e., a collection
�
�g

�
g2G

of symmetries such that 8g1; g2 2 G;�g1
��g2

= �g1�g2 ; where (G; �) is a group.
Assume now the system is 
at. The choice of a 
at output is by no means

unique, since any endogenous transformation on a 
at output gives rise to
another 
at output.

Example 18 (The kinematic car). The system generated by

_x = u1 cos �; _y = u1 sin �; _� = u2;

admits the 3-parameter symmetry group of planar (orientation-preserving)
isometries: for all translation (a; b)0 and rotation � , the endogenous mapping
generated by

X = x cos�� y sin�+ a

Y = x sin�+ y cos�+ b

� = � + �

U
1 = u

1

U
2 = u

2

is a symmetry, since the state equations remain unchanged,

_X = U1 cos�; _Y = U1 sin�; _� = U2:

This system is 
at z := (x; y) as a 
at output. Of course, there are in�nitely
many other 
at outputs, for instance ~z := (x; y+ _x). Yet, z is obviously a more
\natural" choice than ~z, because it \respects" the symmetries of the system.
Indeed, each symmetry of the system induces a transformation on the 
at
output z �

z1

z2

�
7�!

�
Z1

Z2

�
=

�
X

Y

�
=

�
z1 cos�� z2 sin�+ a

z1 sin�+ z2 cos�+ b

�

which does not involve derivatives of z, i.e., a point transformation. This
point transformation generates an endogenous transformation (z; _z; : : : ) 7!

39



(Z; _Z; : : : ). Following [19], we say such an endogenous transformation which is
the total prolongation of a point transformation is holonomic.

On the contrary, the induced transformation on ~z�
~z1
~z2

�
7�!

�
~Z1
~Z2

�
=

�
X

Y + _X

�
=

�
~z1 cos�+ ( _~z1 � ~z2) sin�+ a

~z1 sin�+ ~z2 cos�+ ( �~z1 � _~z2) sin�+ b

�

is not a point transformation (it involves derivatives of ~z) and does not give to
a holonomic transformation.

Consider the system (F;M) admitting a symmetry �g (or a symmetry group�
�g

�
g2G

). Assume moreover the system is 
at with h as a 
at output and

denotes by 	 := (h; _h; �h; : : : ) the endogenous transformation generated by h.
We then have:

De�nition 7 (Symmetry-preserving 
at output). The 
at output h pre-
serves the symmetry �g if the composite transformation 	 ��g �	�1 is holo-
nomic.

This leads naturally to a fundamental question: assume a 
at system admits
the symmetry group

�
�g

�
g2G

. Is there a 
at output which preserves
�
�g

�
g2G

?

This question can in turn be seen as a special case of the following problem:
view a dynamics _x�f(x; u) = 0 as an underdetermined di�erential system and
assume it admits a symmetry group; can it then be reduced to a \smaller"
di�erential system? Whereas this problem has been studied for a long time
and received a positive answer in the determined case, the underdetermined
case seems to have been barely untouched [53].

3.4.2 Flat outputs as potentials and gauge degree of freedom

Symmetries and the quest for potentials are at the heart of physics. To end
the paper, we would like to show that 
atness �ts into this broader scheme.

Maxwell's equations in an empty medium imply that the magnetic �eld H
is divergent free, r �H = 0. In Euclidian coordinates (x1; x2; x3), it gives the
underdetermined partial di�erential equation

@H1

@x1
+
@H2

@x2
+
@H3

@x3
= 0

A key observation is that the solutions to this equation derive from a vector
potential H = r � A : the constraint r � H = 0 is automatically satis�ed
whatever the potential A. This potential parameterizes all the solutions of the
underdetermined system r �H = 0, see [59] for a general theory. A is a priori
not uniquely de�ned, but up to an arbitrary gradient �eld, the gauge degree
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of freedom. The symmetries of the problem indicate how to use this degree of
freedom to �x a \natural" potential.

The picture is similar for 
at systems. A 
at output is a \potential" for
the underdetermined di�erential equation _x� f(x; u) = 0. Endogenous trans-
formations on the 
at output correspond to gauge degrees of freedom. The
\natural" 
at output is determined by symmetries of the system. Hence con-
trollers designed from this 
at output can also preserve the physics.

A slightly less esoteric way to convince the reader that 
atness is an inter-
esting notion is to take a look at the following small catalog of 
at systems.

4 A catalog of 
at systems

We give here a (partial) list of 
at systems encountered in applications.

4.1 Holonomic mechanical systems

Example 19 (Fully actuated holonomic systems). The dynamics of a holonomic
system with as many independent inputs as con�guration variables is

d

dt

�
@L

@ _q

�
� @L

@q
=M (q)u+D(q; _q);

with M (q) invertible. It admits q as a 
at output {even when @
2
L

@ _q2 is singular{:
indeed, u can be expressed in function of q; _q by the computed torque formula

u =M (q)�1

�
d

dt

�
@L

@ _q

�
� @L

@q
�D(q; _q)

�
:

If q is constrained by c(q) = 0 the system remains 
at, and the 
at output
corresponds to the con�guration point in c(q) = 0.

Example 20 (Planar rigid body with forces). Consider a planar rigid body mov-
ing in a vertical plane under the in
uence of gravity and controlled by two forces
having lines of action that are �xed with respect to the body and intersect at
a single point (see �gure 3). Let (x; y) represent the horizontal and vertical
coordinates of center of mass G of the body with respect to a stationary frame,
and let � be the counterclockwise orientation of a body �xed line through the
center of mass. Takem as the mass of the body and J as the moment of inertia.
Let g � 9:8 m/sec2 represent the acceleration due to gravity.

Without loss of generality, we will assume that the lines of action for F1 and

F2 intersect the y axis of the rigid body and that F1 and F2 are perpendicular.
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y

�

Figure 3: A rigid body controlled by two body �xed forces.

The equations of motion for the system can be written as

m�x = F1 cos � � F2 sin �

m�y = F1 sin � + F2 cos � �mg

J �� = rF1:

The 
at output of this system corresponds to Huyghens center of oscillation [16]

(x� J

mr
sin �; y +

J

mr
cos �):

This example has some practical importance. The PVTOL system, the
gantry crane and the robot 2k� (see below) are of this form, as is the simpli�ed
planar ducted fan [49]. Variations of this example can be formed by changing
the number and type of the inputs [45].

Example 21 (PVTOL aircraft). A simpli�ed Vertical Take O� and Landing air-
craft moving in a vertical Plane [22] can be described by

�x = �u1 sin � + "u2 cos �

�z = u1 cos � + "u2 sin � � 1

�� = u2:

A 
at output is y = (x � " sin �; z + " cos �), see [37] more more details and a
discussion in relation with unstable zero dynamics.

Example 22 (The robot 2k� of Ecole des Mines). It is a robot arm carrying a
pendulum, see �gure 4. The control objective is to 
ip the pendulum from its
natural downward rest position to the upward position and maintains it there.
The �rst three degrees of freedom (the angles �1; �2; �3) are actuated by electric
motors, while the two degrees of freedom of the pendulum are not actuated.
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Figure 4: The robot 2k� carrying its pendulum.

The position P = (x; y; z) of the pendulum oscillation center is a 
at output.
Indeed, it is related to the position S = (a; b; c) of the suspension point by

(x� a)(�z + g) = �x(z � c)

(y � b)(�z + g) = �y(z � c)

(x� a)2 + (y � b)2 + (z � c)2 = l
2
;

where l is the distance between S and P . On the other hand the geometry of
the robot de�nes a relation (a; b; c) = T (�1; �2; �3) between the position of S
and the robot con�guration. This relation is locally invertible for almost all
con�gurations but is not globally invertible.

Example 23 (Gantry crane [16]). A direct application of Newton's laws pro-
vides the implicit equations of motion

m�x = �T sin � x = R sin � +D

m�z = �T cos � +mg z = R cos �;

where x; z; � are the con�guration variables and T is the tension in the cable.
The control inputs are the trolley position D and the cable length R. This

system is 
at, with the position (x; z) of the load as a 
at output.

Example 24 (Conventional aircraft). A conventional aircraft is 
at, provided
some small aerodynamic e�ects are neglected, with the coordinates of the center
of mass and side-slip angle as a 
at output. See [33] for a detailed study.
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Figure 5: Towed cable system and �nite link approximate model.

Example 25 (Towed cable system). Consider the dynamics of a system consist-
ing of an aircraft 
ying in a circular pattern while towing a cable with a tow
body (drogue) attached at the bottom. Under suitable conditions, the cable
reaches a relative equilibrium in which the cable maintains its shape as it ro-
tates. By choosing the parameters of the system appropriately, it is possible
to make the radius at the bottom of the cable much smaller than the radius
at the top of the cable. This is illustrated in Figure 5. The motion of the
towed cable system can be approximately represented using a �nite element
model in which segments of the cable are replaced by rigid links connected
by spherical joints. The forces acting on the segment (tension, aerodynamic
drag and gravity) are lumped and applied at the end of each rigid link. In
addition to the forces on the cable, we must also consider the forces on the
drogue and the towplane. The drogue is modeled as a sphere and essentially
acts as a mass attached to the last link of the cable, so that the forces acting
on it are included in the cable dynamics. The external forces on the drogue
again consist of gravity and aerodynamic drag. The towplane is attached to the
top of the cable and is subject to drag, gravity, and the force of the attached
cable. For simplicity, we simply model the towplane as a pure force applied at
the top of the cable. Our goal is to generate trajectories for this system that
allow operation away from relative equilibria as well as transition between one
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equilibrium point and another. Due to the high dimension of the model for the
system (128 states is typical), traditional approaches to solving this problem,
such as optimal control theory, cannot be easily applied. However, it can be
shown that this system is di�erentially 
at using the position of the bottom of
the cable as the di�erentially 
at output. Thus all feasible trajectories for the
system are characterized by the trajectory of the bottom of the cable. See [44]
for a more complete description and additional references.

We end this section with a system which is not known to be 
at for generic
parameter value but still enjoys the weaker property of being orbitally 
at [14].

Example 26 (Satellite with two controls). Consider with [4] a satellite with two
control inputs u1; u2 described by

_!1 = u1

_!2 = u2

_!3 = a!1!2

_' = !1 cos � + !3 sin �

_� = (!1 sin � � !3 cos �) tan'+ !2

_ =
(!3 cos � � !1 sin �)

cos'
;

(29)

where a = (J1�J2)=J3 (Ji are the principal moments of inertia); physical sense
imposes jaj � 1. Eliminating u1; u2 and !1; !2 by

!1 =
_' � !3 sin �

cos �
and !2 = _� + _ sin'

yields the equivalent system

_!3 = a( _� + _ sin')
_'� !3 sin �

cos �
(30)

_ =
!3 � _' sin �

cos' cos �
: (31)

But this system is in turn equivalent to

cos �
�
� cos'� (1 + a) _ _' sin'

�
+ sin �

�
�' + a _ 2 sin' cos'

�
+ _�(1� a)( _' cos � � _ sin � cos') = 0

by substituting !3 = _ cos' cos � + _' sin � in (30).
When a = 1, � can clearly be expressed in function of ';  and their deriva-

tives. We have proved that (29) is 
at with (';  ) as a 
at output. A similar
calculation can be performed when a = �1.
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Figure 6: n-trailer system (left) and 1-trailer system with kingpin hitch (right).

When jaj < 1, whether (29) is 
at is unknown. Yet, it is orbitally 
at [63].
To see that, rescale time by _� = !3; by the chain rule _x = _�x0 whatever the
variable x, where 0 denotes the derivation with respect to �. Setting then

�!1 := !1=!3; �!2 := !2=!3; �!3 := �1=a!3;

and eliminating the controls transforms (29) into

!
0

3 = �!1�!2

'
0 = �!1 cos � + sin �

�
0 = (�!1 sin � � cos �) tan'+ �!2

 
0 =

(cos � � �!1 sin �)

cos'
:

The equations are now independent of a. This implies the satellite with a 6= 1
is orbitally equivalent to the satellite with a = 1. Since it is 
at when a = 1 it
is orbitally 
at when a 6= 1, with (';  ) as an orbitally 
at output.

4.2 Nonholonomic mechanical systems

Example 27 (Kinematics generated by two nonholonomic constraints). Such sys-
tems are 
at by theorem 5 since they correspond to driftless systems with n
states and n � 2 inputs. For instance the rolling disc (p. 4), the rolling sphere
(p. 96) and the bicycle (p. 330) considered in the classical treatise on nonholo-
nomic mechanics [48] are 
at.

Example 28 (Mobile robots). Many mobile robots modeled by rolling without
sliding constraints, such as those considered in [5, 47, 74] are 
at. In particular,

the n-trailer system (�gure 6) has for 
at output the mid-point Pn of the last
trailer axle [67, 16]. The 1-trailer system with kingpin hitch is also 
at, with
a rather complicated 
at output involving elliptic integrals [66, 12], but by
theorem 4 the system is not 
at when there is more than one trailer.
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Example 29 (The rolling penny). The dynamics of this Lagrangian system sub-
mitted to a nonholonomic constraint is described by

�x = � sin' + u1 cos'

�y = �� cos' + u1 sin'

�' = u2

_x sin' = _y cos'

where x; y; ' are the con�guration variables, � is the Lagrange multiplier of
the constraint and u1; u2 are the control inputs. A 
at output is (x; y): indeed,
parameterizing time by the arclength s of the curve t 7! (x(t); y(t)) we �nd

cos' =
dx

ds
; sin' =

dy

ds
; u1 = _s; u2 = �(s) �s +

d�

ds
_s2;

where � is the curvature. These formulas remain valid even if u1 = u2 = 0.

This example can be generalized to any mechanical system subject tom 
at
nonholonomic constraints, provided there are n�m control forces independent
of the constraint forces (n the number of con�guration variables), i.e., a \fully-
actuated" nonholonomic system as in [5].

All these 
at nonholonomic systems have a controllability singularity at
rest. Yet, it is possible to \blow up" the singularity by reparameterizing time
with the arclength of the curve described by the 
at output, hence to plan and
track trajectories starting from and stopping at rest as explained in sections
1.5 and 2.4, see [16, 67, 12] for more details.

4.3 Electromechanical systems

Example 30 (DC-to-DC converter). A Pulse Width Modulation DC-to-DC con-
verter can be modeled by

_x1 = (u� 1)
x2

L
+
E

L
; _x2 = (1� u)

x1

LC
� x2

RC
;

where the duty ratio u 2 [0; 1] is the control input. The electrical stored energy

y :=
x
2
1

2C
+
x
2
2

2L
is a 
at output [69, 27].

Example 31 (Magnetic bearings). A simple 
atness-based solution to motion
planning and tracking is proposed in [32]. The control law ensures that only
one electromagnet in each actuator works at a time and permits to reduce the
number of electromagnets by a better placement of actuators.
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Example 32 (Induction motor). The standard two-phase model of the induc-
tion motor reads in complex notation (see [31] for a complete derivation)

Rsis + _ s = us  s = Lsis +Me
jn�

ir

Rrir + _ r = 0  r =Me
�jn�

is + Lrir;

where  s and is (resp.  r and ir) are the complex stator (resp. rotor) 
ux and
current, � is the rotor position and j =

p
�1. The control input is the voltage

us applied to the stator. Setting  r = �e
j�, the rotor motion is described by

J
d
2
�

dt2
=

n

Rr

�
2 _�� �L(�; _�);

where �L is the load torque.
This system is 
at with the two angles (�; �) as a 
at output [41] (see [9]

also for a related result).

4.4 Chemical systems

Example 33 (CSTRs). Many simple models of Continuous Stirred Tank Reac-
tors (CSTRs) admit 
ats outputs with a direct physical interpretation in terms
of temperatures or product concentrations [24, 1], as do closely related bio-
chemical processes [2, 11]. In [64] 
atness is used to steer a reactor model from
a steady state to another one while respecting some physical constraints.

A basic model of a CSTR with two chemical species and any number of
exothermic or endothermic reactions is

_x1 = f1(x1; x2) + g1(x1; x2)u

_x2 = f2(x1; x2) + g2(x1; x2)u;

where x1 is a concentration, x2 a temperature and u the control input (feed
ow
or heat exchange). It is obviously linearizable by static feedback, hence 
at.

When more chemical species are involved, a single-input CSTR is in general
not 
at, see [28]. Yet, the addition of another manipulated variable often
renders it 
at, see [1] for an example on a free-radical polymerization CSTR.
For instance basic model of a CSTR with three chemical species, any number
of exothermic or and two control inputs is

_x1 = f1(x) + g
1
1(x)u1 + g

2
1(x)u2

_x2 = f2(x) + g
1
2(x)u1 + g

2
2(x)u2

_x3 = f3(x) + g
1
3(x)u1 + g

2
3(x)u2;

where x1; x2 are concentrations and x3 is a temperature temperature and u1; u2
are the control inputs (feed-
ow, heat exchange, feed-composition, : : : ). Such
a system is always 
at, see section 3.1.2.
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Example 34 (Polymerization reactor). Consider with [72] the reactor

_Cm =
Cmms

�
�
�
1 + "

�1

�1 +MmCm

�
Cm

�
+ Rm(Cm; Ci; Cs; T )

_Ci = �ki(T )Ci + u2
Ciis

V
�
�
1 + "

�1

�1 +MmCm

�
Ci

�

_Cs = u2
Csis

V
+
Csms

�
�
�
1 + "

�1

�1 +MmCm

�
Cs

�

_�1 = �MmRm(Cm; Ci; Cs; T )�
�
1 + "

�1

�1 +MmCm

�
�1

�

_T = �(Cm; Ci; Cs; �1; T ) + �1Tj

_Tj = f6(T; Tj) + �4u1;

where u1; u2 are the control inputs and Cmms
, Mm, ", �; Ciis

, Csms
, Csis

, V ,
�1, �4 are constant parameters. The functions Rm, ki, � and f6 are not well-
known and derive from experimental data and semi-empirical considerations,

involving kinetic laws, heat transfer coe�cients and reaction enthalpies.
The polymerization reactor is 
at whatever the functions Rm, ki, �, f6 and

admits (Csis
Ci � Ciis

Cs; MmCm + �1) as a 
at output [65].
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