Slow /fast kinetic scheme with slow diffusion
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This short note follows [3]. We consider here slow/fast chemical reactions
with additional slow diffusions:

0
5 = ndw+v(a,c) (1)
where © = (x1,...,2,) are the concentration profiles, A = V -V, € is a small

positive parameter, n (~ ¢) is the diffusion matrix (symmetric and positive
definite) and v(z,€) corresponds to the kinetic scheme. As in [3], we assume
the following slow /fast structure for v [4]:

d
A1l for e =0, d—j = v(x,0) admits an equilibrium manifold of dimension n,
0 < ng < n, denoted by X.

A2 for all g € X, the Jacobian matrix, —

07 | (.0,
values with a strictly negative real part (the eigenvalues are counted with
their multiplicities).

admits ny = n — n; eigen-

Locally around Y, there exists a partition of x into two groups of components,
zr = (zs,xy), with dim(z,) = n, and dim(zs) = ny, such that the projection
of ¥y on the x,-coordinates is a local diffeomorphism.

Using the approximation lemma of invariant manifold, and its version for
slow /fast systems [2, theorem 5, page 32], we are looking for an asymptotic
expansion versus €,

foho—l—hl—l—...,



of an invariant slow manifold of (1) closed to g (ho, h1 , ...depend on the
profiles z5). The slow equations derived here below, and, in particular, the
slow diffusion terms, admit a rather unexpected form that has, as far as we
known, nether been derived elsewhere.

Following [2, 3], the zero order approximation hg is defined by the algebraic
equation (in the sequel, we do not recall the dependence versus ¢)

ve(zs, ho) = 0.

h is obtained by zeroing of the first order term in

Ox ¢ Oho =~ Ohy Ors
ot (81:5 o T ) =0
. . Ohg
Using the shortcut notations hg s = SRR .we have
T

(v, p — ho,svs,£)h1 = hos(Ns Az s + N5 Ahg + v5) — N5 Axs — npAhg

with

n= ( 7;7;5 7378; ) . Ahg = hoss(Vas, Vi) + ho s Az

and where the functions are evaluated at (xs, 25 = ho(zs)). Using
hO,S = 7’0;‘7}‘1})0,87
we obtain the following first order approximation of the slow dynamics:

0z
ot

= C(zs,ho)(nsAzs + ns Ahg + vs(zs, ho)) (2)
+E (s, ho)(nysAxs + 157 Aho)

where the correction matrix C' is identical to the one in [3],
_ 2 -1
C =1—vs (v} +v7s0sf)” Vfs
and F is defined by
B = vy g (v} + ps0s,0) " 0p -

When the kinetics v is in Tikhonov normal form, i.e., v = (evs,vs), we
recover (up to second order terms in €) the classical reduced model

Ox
ot

= nsAxs + N5 Ahg + vs(xs, ho), vi(zs, ho) =0.



We will consider now the case, already pointed out in [1] and considered in
[3], of affine fast fibers: the change of coordinates yielding to Tikhonov normal
form is linear. Using notation of [3, section 4, equation (18) ], (1) admits the
special structure

O - N

5 NsAxs +NsfAxy + Ass €05(xs,x5) + Asp Up(xs, x5)
or . -

a—tf = npsAxs +npAxy + Apg €0s(vs,x5) + Afp Op(s,28).

The change of coordinates

(s, 25) = (€ =5 — Asp(App) ay , xp).

leads to
8§ —1 —1
a = (775 _Aszffnfs)Ams+(nsf —Aszfoff)Axf
+H(Ass — Asy(App) "1 Ays) €ty
% = NpsAzxs +npAxy 4+ Apeets + Afypoy.

Assuming that eigenvalues of

Aff (vfyf + Asz;flUf,s)

have strictly negative real parts, then the quasi-steady-state method can be
applied and leads to the following slow system

o€ _ _

ot = (778_Aszf}nfs)Axs+(nsf_Aszfflﬁff)Awf-F...
ot (Ass - Asf(Aff)ilAfg) €1~}S

0 = .

Pulling back into the original coordinates (x5, zy) yields:

Oz, 1 - -
ot = [17A55(Aff) 1Uf,}cvf,s] ((7]5 7Aszff17]fs)AI‘s+...
U Asz};TIff)Axf + (Ass — Asf(Aff)_lAfs) 6175)
0 = f)f(ass,xf).

Let us finish with a small example derived from [3, equation (1)] by adding
slow diffusion:

0
1 = ’/]1ASC1 — klllil + ]CQIQ — Ekl‘ll‘g

5, (3)
5 = MmAxs + k121 — kaxo.



oz .
Setting a—tz to zero et neglecting 72 yields an incorrect slow model (diffusion

and kinetics)

% = 771A£L’1 — E(kkl/kg)x%

whereas reduction via the above computations provides the correct slow equa-
tion
311

(14 k1/kz) ot

= (1 + mok1/ke) Az — e(kky/ky)a.
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