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This short note follows [3]. We consider here slow/fast chemical reactions
with additional slow diffusions:

∂x

∂t
= η∆x + v(x, ε) (1)

where x = (x1, . . . , xn) are the concentration profiles, ∆ = ∇ · ∇, ε is a small
positive parameter, η (∼ ε) is the diffusion matrix (symmetric and positive
definite) and v(x, ε) corresponds to the kinetic scheme. As in [3], we assume
the following slow/fast structure for v [4]:

A1 for ε = 0,
dx

dt
= v(x, 0) admits an equilibrium manifold of dimension ns,

0 < ns < n, denoted by Σ0.

A2 for all x0 ∈ Σ0, the Jacobian matrix,
∂v

∂x

∣∣∣∣
(x0,0)

admits nf = n− ns eigen-

values with a strictly negative real part (the eigenvalues are counted with
their multiplicities).

Locally around Σ0, there exists a partition of x into two groups of components,
x = (xs, xf ), with dim(xs) = ns and dim(xf ) = nf , such that the projection
of Σ0 on the xs-coordinates is a local diffeomorphism.

Using the approximation lemma of invariant manifold, and its version for
slow/fast systems [2, theorem 5, page 32], we are looking for an asymptotic
expansion versus ε,

xf = h0 + h1 + . . . ,
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of an invariant slow manifold of (1) closed to Σ0 (h0, h1 , . . . depend on the
profiles xs). The slow equations derived here below, and, in particular, the
slow diffusion terms, admit a rather unexpected form that has, as far as we
known, nether been derived elsewhere.

Following [2, 3], the zero order approximation h0 is defined by the algebraic
equation (in the sequel, we do not recall the dependence versus ε)

vf (xs, h0) = 0.

h1 is obtained by zeroing of the first order term in

∂xf

∂t
−

(
∂h0

∂xs
+

∂h1

∂xs
+ . . .

)
∂xs

∂t
= 0.

Using the shortcut notations h0,s =
∂h0

∂xs
, . . . we have

(vf,f − h0,svs,f )h1 = h0,s(ηs∆xs + ηsf∆h0 + vs)− ηfs∆xs − ηf∆h0

with

η =
(

ηs ηsf

ηfs ηf

)
, ∆h0 = h0,ss(∇xs,∇xs) + h0,s∆xs

and where the functions are evaluated at (xs, xf = h0(xs)). Using

h0,s = −v−1
f,fvf,s,

we obtain the following first order approximation of the slow dynamics:

∂xs

∂t
= C(xs, h0)(ηs∆xs + ηsf∆h0 + vs(xs, h0))

+E(xs, h0)(ηfs∆xs + ηff∆h0)
(2)

where the correction matrix C is identical to the one in [3],

C = 1− vs,f (v2
f,f + vf,svs,f )−1vf,s

and E is defined by

E = −vs,f (v2
f,f + vf,svs,f )−1vf,f .

When the kinetics v is in Tikhonov normal form, i.e., v = (εvs, vf ), we
recover (up to second order terms in ε) the classical reduced model

∂xs

∂t
= ηs∆xs + ηsf∆h0 + vs(xs, h0), vf (xs, h0) = 0.
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We will consider now the case, already pointed out in [1] and considered in
[3], of affine fast fibers: the change of coordinates yielding to Tikhonov normal
form is linear. Using notation of [3, section 4, equation (18) ], (1) admits the
special structure

∂xs

∂t
= ηs∆xs + ηsf∆xf + Ass εṽs(xs, xf ) + Asf ṽf (xs, xf )

∂xf

∂t
= ηfs∆xs + ηf∆xf + Afs εṽs(xs, xf ) + Aff ṽf (xs, xf ).

The change of coordinates

(xs, xf ) 7→ (ξ = xs −Asf (Aff )−1xf , xf ).

leads to

∂ξ

∂t
= (ηs −AsfA−1

ff ηfs)∆xs + (ηsf −AsfA−1
ff ηff )∆xf

+(Ass −Asf (Aff )−1Afs) εṽs

∂xf

∂t
= ηfs∆xs + ηf∆xf + Afsεṽs + Aff ṽf .

Assuming that eigenvalues of

Aff

(
vf,f + AsfA−1

ff vf,s

)

have strictly negative real parts, then the quasi-steady-state method can be
applied and leads to the following slow system

∂ξ

∂t
= (ηs −AsfA−1

ff ηfs)∆xs + (ηsf −AsfA−1
ff ηff )∆xf + . . .

. . . + (Ass −Asf (Aff )−1Afs) εṽs

0 = ṽf .

Pulling back into the original coordinates (xs, xf ) yields:

∂xs

∂t
=

[
1−Ass(Aff )−1v−1

f,fvf,s

]−1 (
(ηs −AsfA−1

ff ηfs)∆xs + . . .

. . . + (ηsf −AsfA−1
ff ηff )∆xf + (Ass −Asf (Aff )−1Afs) εṽs

)

0 = ṽf (xs, xf ).

Let us finish with a small example derived from [3, equation (1)] by adding
slow diffusion:

∂x1

∂t
= η1∆x1 − k1x1 + k2x2 − εkx1x2

∂x2

∂t
= η2∆x2 + k1x1 − k2x2.

(3)
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Setting
∂x2

∂t
to zero et neglecting η2 yields an incorrect slow model (diffusion

and kinetics)
∂x1

∂t
= η1∆x1 − ε(kk1/k2)x2

1

whereas reduction via the above computations provides the correct slow equa-
tion

(1 + k1/k2)
∂x1

∂t
= (η1 + η2k1/k2)∆x1 − ε(kk1/k2)x2

1.
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