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tion.The paper is organized as follows. In section 2, webrie
y recall what is a 
at system. Section 3 deals withthe general result. In section 4, the control design forthe standard n-trailer system is sketched. Simulationsfor the car without trailer and the car with two trailersare presented.2 Flat systemsMore details can be found in [8, 9, 10]. A control sys-tem is said to be (di�erentially) 
at if the followingconditions are satis�ed:1. there exists a �nite set y = (y1; : : : ; ym) of vari-ables which are di�erentially independent, i.e.,which are not related by any di�erential equations.2. the yi's are di�erential functions of the systemvariables, i.e., are functions of the system vari-ables (state and input) and of a �nite number oftheir derivatives.3. Any system variable is a di�erential function ofthe yi's, i.e., is a function of the yi's and of a �nitenumber of their derivatives.We call y = (y1; : : : ; ym) a 
at or linearizing output.Its number of components equals the number of inde-pendent input channels.For a \classic" dynamics,_x = f(x; u); x = (x1; : : : ; xn); u = (u1; : : : ; um);(1)
atness implies the existence of a vector-valued func-tion h such thaty = h(x; u1; : : : ; u(�1)1 ; : : : ; um; : : : ; u(�m)m );1



where y = (y1; : : : ; ym). The components of x and uare, moreover, given without any integration procedureby the vector-valued functions A and B:x = A(y1; : : : ; y(�1)1 ; : : : ; ym; : : : ; y(�m)m )u = B(y1; : : : ; y(�1+1)1 ; : : : ; ym; : : : ; y(�m+1)m ):(2)The motion planning problem for (1) consists in �nd-ing a control trajectory [0; T ] 3 t ! u(t) steering thesystem from state x = p at t = 0 to the state x = q att = T . When the system is 
at, this problem is equiva-lent to �nding a 
at output trajectory [0; T ] 3 t! y(t)such thatp = A(y1(0); : : : ; y(�1)1 (0); : : : ; ym(0); : : : ; y(�m)m (0))andq = A(y1(T ); : : : ; y(�1)1 (T ); : : : ; ym(T ); : : : ; y(�m)m (T )):Since the mapping(y1; : : : ; y(�1)1 ; : : : ; ym; : : : ; y(�m)m )! A(y1; : : : ; y(�1)1 ; : : : ; ym; : : : ; y(�m)m )is locally onto, in general, the problem consists in �nd-ing a smooth trajectory t! y(t) with prescribed valuesfor some of its derivatives at time 0 and time T andsuch that[0; T ] 3 t! A(y1(t); : : : ; y(�1)1 (t); : : : ; ym(t); : : : ; y(�m)m (t))and[0; T ] 3 t!B(y1(t); : : : ; y(�1+1)1 (t); : : : ; ym(t); : : : ; y(�m+1)m (t))are well de�ned smooth functions.In [10, 17, 18], we apply this method and pro-vide a simple solution to the motion planning for sys-tems studied in [11, 21, 14, 15] and describing thenonholonomic motion of a car with n trailers. Wealso remark that natural parametrizations instead oftime parametrizations of the linearizing output curvesfy(t)j tg simplify the calculations (Fr�enet formula) andbypass singularities in (2) when _y = 0. We signi�cantlyprolonge this idea here: time-scaling is not only im-portant for e�cient computation of open-loop steeringcontrols but also can be very useful for the design oftrajectory stabilizing feedback controllers.3 Trajectory stabilizationConsider the 
at driftless system_x = mXi=1 uifi(x); x 2 Rn (3)

with yi = hi(x), i = 1; : : : ;m as 
at output (the fi'sand hi's are smooth functions and the vector �elds fiare linearly independent for all x). Then x and u aregiven by (2) with A and B de�ned on open and densesubsets of R�1+1�: : :�R�m+1 and R�1+2�: : :�R�m+2,respectively.Consider the change of parametrization t 7! �(t)with � an increasing function. The system equation(3) remains unchanged by replacing ddt by dd� and uby u _� instead of u. Thus, under such transformations,the �rst equation of (2) giving x remains unchangedwhereas the second one, giving u, is multiplied by _�.Theorem Consider (3) and assume that there exist(aji ), 1 � i � m and 1 � j � �i, such that A((aji )) = 0and the map A is a local submersion around (aji ).Then, for all z 2 Rn close to 0 and T > 0, thereexists a smooth open-loop control [0; T ] 3 t 7! u(t)steering (3) from x(0) = z, u(0) = 0, to x(T ) = 0,u(T ) = 0. There also exists a class of smooth time-varying dynamic feedbacks that stabilize the systemaround this reference trajectory in the following sense:the tracking error e(t) 2 Rn satis�es the estimation fort 2 [0; T ], ke(t)k � Mke(0)k exp(��(t)=d) where e(0)close to 0 and M is independent of e(0), d > 0 dependson the design control parameters, [0; t] 3 t 7! �(t) de-pends only on the reference trajectory and is a smooth,non negative, strictly increasing function such that_�(0) = _�(T ) = 0.Sketch of proof. Since A is onto there exists (bji )close to (aji ) such that z = A((bji )). There exist S > 0,m smooth functions, [0; S] 3 s 7! yi;c(s) such thatdjyi;cdsj (0) = bji , djyi;cdsj (S) = aji , and djyi;cdsj (s) close to(aji ) for i = 1; : : : ;m, j = 1; : : : ; �i and s 2 [0; S](take, e.g., polynomials in s). Take [0; T ] 3 t 7! �(t) 2[0; S] a smooth increasing function such that �(0) = 0,�(T ) = S and _�(0) = _�(T ) = 0. then the open-loopcontrolu(t) = _�(t) B �y1;c(�(t)); : : : ; d�1+1y1;cds�1+1 (�(t)); : : :: : : ; ym;c(�(t)); : : : ; d�m+1ym;cds�m+1 (�(t))�steers (3) from x = z, u = 0 at t = 0 to x = 0, u = 0 att = T . As for the car, the linearizing dynamic feedbackis constructed in the s-scale. The method is borrowedfrom [12]. It relies on the fact that A is a submersionaround (aji ). This leads to a smooth linearizing controlwith a linear and asymptotically stable error dynam-ics in the s-time-scale where d corresponds to the lessstable tracking pole.2
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Figure 1: the standard n-trailer system.4 The standard n-trailer sys-temsWe follow the modeling assumptions of [15]. The no-tations are summarized on �gure 1. A basic model isthe following:_x = u1 cos �_y = u1 sin �_' = u2_� = u1l tan�_�1 = u1l1 sin(� � �1)..._�n = u1ln cos(� � �1) cos(�1 � �2) : : :: : : cos(�n�2 � �n�1) sin(�n�1 � �n) (4)
where (x; y; �; �; �1 : : : ; �n) is the state, (u1; u2) isthe control and l, l1, : : : , ln are positive parameters(lengths).We know from [8] that this system is 
at with thecartesian coordinate of the last trailer (xn; yn) as 
atoutput. Following the geometric construction of [17],we consider a smooth curve C de�ned by the naturalparametrization [0; L] 3 s 7! (xc(s); yc(s)) 2 R2 (s isthe arc length). Denote by �(s) the oriented curvatureof C, �c(s) the angle of the oriented tangent to C.For T > 0 we consider a smooth real increasing func-tion [0; T ] 3 t 7! �(t) 2 [0; L] such that �(0) = 0,�(T ) = L and _�(0) = _�(T ) = 0. In [17] open-loop controls [0; T ] 3 t 7! uc(t) steering the sys-tem from a con�guration to another one are explicitlygiven. They rely on the Fr�enet relationships of planarcurve. They are based on a global di�eomorphism be-tween (x; y; '; �; �1; : : : ; �n) and (xc; yc; �c; �; : : : ; dn�dsn ),the contact structure at order n+2 of the curve C fol-lowed by (xn; yn) (the angles ', � � �1, : : : , �n�1 � �nbelonging to ]� �=2; �=2[).We just apply the previous theorem to linearize andstabilize the error dynamics with respect to the arc

length s = �(t) of C. We just sketch here the mainsteps of the control design.Set ui = vi _�(t), i = 1; 2 where vi are new controlvariables. Sincedd�xn = v1 cos �n cos(� � �1) cos(�1 � �2) : : : cos(�n�1 � �n)dd�yn = v1 sin �n cos(� � �1) cos(�1 � �2) : : : cos(�n�1 � �n)we consider the static feedback (regular since all theangles � � �1, : : : , �n�1 � �n belong to ]� �=2; �=2[)v1 = v1cos(���1) cos(�1��2)::: cos(�n�1��n)v2 = v2: (5)Then we introduce the dynamic compensator of ordern+ 2 dd� �i = �i+1 i = 1; : : : ; n+ 1dd� �n+2 = w1v1 = �1v2 = w2: (6)Then the inversion of (4,5,6) in �-scale, with (xn; yn)as output and (w1; w2) as input, leads to an invertible2�2 decoupling matrix and a regular feedback on X =(x; y; '; �; �1; : : : ; �n; �1; : : : ; �n+2),� w1w2 � = �(X ) + �(X )� uv � (7)that linearize the system dynamics with respect to the�-scale: dn+3xnd�n+3 = u; dn+3ynd�n+3 = v:Standard linear asymptotic tracking methods can beused to ensure the exponential convergence of thetracking error (xn � xc; yn � yc) to zero in the �-scale.Expressing this controller in the t-scale reveals no di�-culties and yields a smooth time-varying dynamic feed-back.For the backward motions displayed on �gure 2, onehas n = 0, l = 1: m and the three tracking poles corre-spond to the following lengths l=3:5, l=3 and l=2:5. No-tice that, after a distance of around 1m, e(0) is dividedby two and that, for t = T , e(T ) � 0. Such asymptoticstabilization strategy is interesting when the length Lof the reference trajectory C is much larger than thecar length l: typically, we have here L=l > 3.For the backward motions displayed on �gure 3, onehas n = 2, l = 2 m, l1 = 3 m, l2 = 2 m and the�ve tracking poles correspond to the following lengths2 m, 1:8 m, 1:6 m, 1:4 m, 1:2 m. As for the car, suchasymptotic stabilization strategy is interesting whenthe length L of the reference trajectory C is much largerthan the system length l + l1 + l2: typically, we havehere L=(l + l1 + l2) > 2.3
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Figure 2: the asymptotic stabilization of a backwardtrajectory for the car.5 ConclusionWe have described a stabilization method valid fordriftless 
at systems whose singularities results fromthe time parametrization. The extension of suchmethod for complex singularities is an open question.This strategy may be combined with the robust sta-bilization method proposed in [1]. This leads to ap-proximate motion planning for general trailer systemsincluding non 
at ones [13], but close to standardtrailer systems.This method can also be extended to more generalsystems than driftless ones. The above time scaling isa particular case of clock control introduced in [9].References[1] M.K. Bennani. Commande non lin�eaire de v�ehiculessur roues avec remorques. Technical Report Optionde �n d'�etude en automatique, �Ecole Polytechnique,Paris, july 1994.[2] A.M. Bloch, N.H. McClamroch, and M. Reyhanoglu.Control and stabilization of nonholonomic dynamicsystems. IEEE Trans. Automat. Control, 37:1746{1757, 1992.[3] R.W. Brockett. Asymptotic stability and feedback sta-bilization. In Di�erential Geometric Control Theory.Birkh�auser, Basel, 1983.[4] C Canudas de Wit and O.J. S�rdalen. Exponentialstabilization of mobile robots with nonholonomic con-
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Figure 3: the asymptotic stabilization of a backwardtrajectory for the standard 2-trailer system.straints. IEEE Trans. Automat. Control, 37:1791{1797, 1992.[5] B. Charlet, J. L�evine, and R. Marino. On dy-namic feedback linearization. Systems Control Letters,13:143{151, 1989.[6] J.M. Coron. Global stabilization for controllable sys-tems without drift. Math. Control Signals Systems,5:295{312, 1992.[7] J.M. Coron. Linearized control systems and applica-tions to smooth stabilization. SIAM J. Control Opti-mization, 32:358{386, 1994.[8] M. Fliess, J. L�evine, Ph. Martin, and P. Rouchon. Surles syst�emes non lin�eaires di��erentiellement plats. C.R.Acad. Sci. Paris, I{315:619{624, 1992.[9] M. Fliess, J. L�evine, Ph. Martin, and P. Rouchon.Lin�earisation par bouclage dynamique et transforma-tions de Lie-B�acklund. C.R. Acad. Sci. Paris, I-317:981{986, 1993.[10] M. Fliess, J. L�evine, Ph. Martin, and P. Rouchon.Flatness and defect of nonlinear systems: introductorytheory and examples. Internat. J. Control, to appear.[11] J.P. Laumond and T. Sim�eon. Motion planning for atwo degrees of freedom mobile with towing. In IEEEInternational Conf. on Control and Applications, 1989.[12] Ph. Martin. An intrinsic condition for regular decou-pling. Systems Control Letters, 20:383{391, 1993.[13] Ph. Martin and P. Rouchon. Systems without drift and
atness. In Proc. MTNS 93, Regensburg, Germany,August 1993.[14] S. Monaco and D. Normand-Cyrot. An introductionto motion planning under multirate digital control.4
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