Design of trajectory stabilizing feedback for driftless flat systems *
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Abstract A design method for robust stabilization of driftless flat systems around trajectories is proposed. This method

is based on time scaling, which results in controlling the clock.

It permits to follow with exponential stability

arbitrary smooth trajectories. These trajectories, which may be obtained from the the motion planning properties
of flatness, may contain and pass through steady-states. We thus obtain a stabilization design around rest points
for many nonholonomic systems. The example of the standard n-trailer system is treated in details with simulations

for n =0 and n = 2.
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1 Introduction

After the demonstration in [3] and in [20] of the impos-
sibility of a straightforward nonlinear extension of the
linear stabilizing strategies, Coron [6, 7] has recently
shown how to utilize time-varying feedback for stabiliz-
ing a very large class of nonlinear plants. The practical
design of such stabilizing laws is now giving rise to a
rapidly growing literature (see, e.g., [2, 4, 16, 19, 22]).

We here attack this problem via a somehow different
standpoint. We restrict ourselves to driftless systems
which are flat. Remember that last property, which
is related to dynamic feedback linearization [5] and is
quite often verified in practice [10, 17, 18], permits to
tackle in a most efficient way the motion planning prob-
lem. We are thus lead to consider stabilization around
a given trajectory. This question, despite its impor-
tance, has perhaps received less attention (see, never-
theless [22]).

We introduce time-scaling, which may be interpreted
as controlling the clock [9]. This tool, which seems per-
haps surprising at a first glance, permits to avoid some
singularities that are the genuine sources of the mathe-
matical and practical difficulties of nonlinear stabiliza-
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tion.

The paper is organized as follows. In section 2, we
briefly recall what is a flat system. Section 3 deals with
the general result. In section 4, the control design for
the standard n-trailer system is sketched. Simulations
for the car without trailer and the car with two trailers
are presented.

2 Flat systems

More details can be found in [8, 9, 10]. A control sys-
tem is said to be (differentially) flat if the following
conditions are satisfied:

1. there exists a finite set y = (y1,...,Ym) of vari-
ables which are differentially independent, i.e.,
which are not related by any differential equations.

2. the y;’s are differential functions of the system
variables, i.e., are functions of the system vari-
ables (state and input) and of a finite number of
their derivatives.

3. Any system variable is a differential function of
the y;’s, i.e., is a function of the y;’s and of a finite
number of their derivatives.

We call y = (y1,...,Ym) a flat or linearizing output.
Its number of components equals the number of inde-
pendent input channels.

For a “classic” dynamics,

&= f(m,u),

z=(z1,...

flatness implies the existence of a vector-valued func-
tion h such that



where y = (y1,... ,Ym). The components of z and u
are, moreover, given without any integration procedure
by the vector-valued functions A and B:

ro= A(yl‘ ygal)’i o Ymy - 7y1('7’?m)) 1
= B(yla y§a1+ )7 yYmy - - - 7yr(r?m+ ))
(2)

The motion planning problem for (1) consists in find-
ing a control trajectory [0,7] 3 ¢ — u(t) steering the
system from state z = p at t = 0 to the state z = ¢ at
t = T. When the system is flat, this problem is equiva-
lent to finding a flat output trajectory [0, T] 3 ¢t — y(t)
such that

p =AW 0.,y 0), .y (0),. ., ylem) (0))
and
a=AW(T), ... .\ D), ... ym(T),... ylom)(T)).
Since the mapping
(y17"'/y§a1)7 7ym,7y$7?m))
_)A(yli 7y§al)7"' 7ym7--- 7y7('r?m))

is locally onto, in general, the problem consists in find-
ing a smooth trajectory t — y(¢) with prescribed values
for some of its derivatives at time 0 and time T and
such that

0,T] 3¢ = Ay (®), ...,y @), .. ym(t), ..., ylom)(

and
0,T]>t—
Blyi(®), ™ @),y (®), -yl (1))

are well defined smooth functions.

In [10, 17, 18], we apply this method and pro-
vide a simple solution to the motion planning for sys-
tems studied in [11, 21, 14, 15] and describing the
nonholonomic motion of a car with n trailers. We
also remark that natural parametrizations instead of
time parametrizations of the linearizing output curves
{y(t)| t} simplify the calculations (Frénet formula) and
bypass singularities in (2) when § = 0. We significantly
prolonge this idea here: time-scaling is not only im-
portant for efficient computation of open-loop steering
controls but also can be very useful for the design of
trajectory stabilizing feedback controllers.

3 Trajectory stabilization

Consider the flat driftless system

&= wfi(x), =R
i-1

with y; = hi(z), i = 1,... ,m as flat output (the f;’s
and h;’s are smooth functions and the vector fields f;
are linearly independent for all ). Then z and u are
given by (2) with A and B defined on open and dense
subsets of R*1 1 x . . . xRo=+land R +2 x .. xR¥m+2,
respectively.

Consider the change of parametrization ¢t — o(t)
with ¢ an increasing function. The system equation
(3) remains unchanged by replacing % by % and u
by ud instead of u. Thus, under such transformations,
the first equation of (2) giving # remains unchanged
whereas the second one, giving wu, is multiplied by &.

Theorem Consider (3) and assume that there exist
(al),1<i<mand1<j <, such that A((al)) =0
and the map A is a local submersion around (a?).
Then, for all z € R™ close to 0 and T > 0, there
exists a smooth open-loop control [0,T] 3> t — wu(t)
steering (3) from z(0) = z, u(0) = 0, to =z(T) = 0,
u(T) = 0. There also exists a class of smooth time-
varying dynamic feedbacks that stabilize the system
around this reference trajectory in the following sense:
the tracking error e(t) € R™ satisfies the estimation for
€ [0,T], lle®)]] < Mle(0)]| exp(=o(t)/d) where e(0)
close to 0 and M is independent of e(0), d > 0 depends
on the design control parameters, [0,t] 3 t — o(t) de-
pends only on the reference trajectory and is a smooth,

tyyon negative, strictly increasing function such that

7(0) = 6(T) = 0.

Sketch of proof. Since A is onto there exists (bf)
close to (a?) such that z = A((bf)) There exist S > 0,
m smooth functions, [0,S] 3 s — y;.(s) such that
d]yi,c Y d]yi7c
T2 O = g
(al) fori = 1,...,m, j = 1,...,a; and s € [0, 9]
(take, e.g., polynomials in s). Take [0,T] >t o(t) €
[0, S] a smooth increasing function such that o(0) = 0,
o(T) = S and ¢(0) = 6(T) = 0. then the open-loop
control

4 diy;
(S) = al, and d—y;(s) close to
s

da1+1 .
s e (o(t)), - -

= (0(1)))

ut) = o) B(yelo®),. ..

vy Ymelo(t)), ...,

dsoem+1

steers (3) fromz =z, u=0att=0tox =0,u =0 at
t = T'. As for the car, the linearizing dynamic feedback
is constructed in the s-scale. The method is borrowed
from [12]. Tt relies on the fact that A is a submersion
around (a’). This leads to a smooth linearizing control
with a linear and asymptotically stable error dynam-
ics in the s-time-scale where d corresponds to the less
stable tracking pole. ]



Figure 1: the standard n-trailer system.

4 The standard n-trailer sys-
tems
We follow the modeling assumptions of [15]. The no-

tations are summarized on figure 1. A basic model is
the following;:

& = wup cosf

¥y = wup sinf

o = ua

f = 71 tan ¢

b = % sin(6 — 6) (4)

1

. u
6, = — cos(f —6)cos(f; —6s)...

o~

_ en)

where (z,y,¢,0,601...,0,) is the state, (ui,us) is
the control and I, Iy, ..., I, are positive parameters
(lengths).

We know from [8] that this system is flat with the
cartesian coordinate of the last trailer (z,,y,) as flat
output. Following the geometric construction of [17],
we consider a smooth curve C defined by the natural
parametrization [0,L] 3 s = (z.(s),y.(s)) € R? (s is
the arc length). Denote by k(s) the oriented curvature
of C, 6.(s) the angle of the oriented tangent to C.

For T' > 0 we consider a smooth real increasing func-
tion [0,7] 3 t — o(t) € [0,L] such that ¢(0) = 0,
o(T) = L and 6(0) = ¢(T) = 0. In [17] open-
loop controls [0,T] 2 t — wu.(t) steering the sys-
tem from a configuration to another one are explicitly
given. They rely on the Frénet relationships of planar
curve. They are based on a global diffeomorphism be-

co.co8(0p_9 —0p 1) sin(f,_1

tween (z,y,p,0,01,...,60,) and (z., y., 00, K, - - . | ZZS),
the contact structure at order n + 2 of the curve C fol-
lowed by (z,,y,) (the angles @, 8 — 61, ..., 60, 1 — 6,

belonging to | — 7 /2, 7/2][).
We just apply the previous theorem to linearize and
stabilize the error dynamics with respect to the arc

length s = o(t) of C. We just sketch here the main
steps of the control design.

Set u; = v;0(t), i = 1,2 where v; are new control
variables. Since

dia:n = vy cos 8, cos(f —01)cos(61 —602)...cos(0n—1—6y)
Jcyn = v1sinf, cos(f — 61) cos(fr —b2)...cos(6n—1 — bn)

we consider the static feedback (regular since all the
angles 8 — 6y, ..., 6,1 — 6, belong to | — 7/2,7/2[)

B
cos(0—61) cos(61—02)...cos(0,—1—0,)
Vg = 52.

v =

(5)

Then we introduce the dynamic compensator of order
n+2

digfi = &4 1=1,... ,n+1
d _
E€n+2 - w1 (6)
v o= &
Dy = ws.

Then the inversion of (4,5,6) in o-scale, with (z,,yn)
as output and (wr,ws) as input, leads to an invertible
2 x 2 decoupling matrix and a regular feedback on X' =

(m=y7@:9:91:' s :9n7€17-- . :£n+2)7
)

w1

wao
that linearize the system dynamics with respect to the
o-scale:

ST

) = a0+ 5 (

dn+3$n dn+3 Yn
do-n+3 do-n+3

Standard linear asymptotic tracking methods can be
used to ensure the exponential convergence of the
tracking error (¢, — T¢, yn — Yc) to zero in the o-scale.
Expressing this controller in the ¢-scale reveals no diffi-
culties and yields a smooth time-varying dynamic feed-
back.

For the backward motions displayed on figure 2, one
has n = 0,7 = 1. m and the three tracking poles corre-
spond to the following lengths 1/3.5,1/3 and 1/2.5. No-
tice that, after a distance of around 1 m, e(0) is divided
by two and that, for t = T, ¢(T) ~ 0. Such asymptotic
stabilization strategy is interesting when the length L
of the reference trajectory C is much larger than the
car length [: typically, we have here L/l > 3.

For the backward motions displayed on figure 3, one
hasn =2, 1 =2m, 1y =3 m, ly =2 m and the
five tracking poles correspond to the following lengths
2m, 1.8 m, 1.6 m, 1.4 m, 1.2 m. As for the car, such
asymptotic stabilization strategy is interesting when
the length L of the reference trajectory C is much larger
than the system length | + I3 + l5: typically, we have
here L/(l —+ ll + lz) > 2.

= .

=1,



initial configuration

flat output

Figure 2: the asymptotic stabilization of a backward
trajectory for the car.

5 Conclusion

We have described a stabilization method valid for
driftless flat systems whose singularities results from
the time parametrization. The extension of such
method for complex singularities is an open question.

This strategy may be combined with the robust sta-
bilization method proposed in [1]. This leads to ap-
proximate motion planning for general trailer systems
including non flat ones [13], but close to standard
trailer systems.

This method can also be extended to more general
systems than driftless ones. The above time scaling is
a particular case of clock control introduced in [9].
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