
Robust stabilization of 
at and chained systemsM.K. BENNANI� P. ROUCHON yECC95AbstractA design method for robust stabilization of 
at sys-tems, feedback equivalent to chained ones, is pro-posed. The method is based on iterations of wellchosen open-loop steering controls. Robustness ischaracterized by exponential convergence to the equi-librium for any driftless systems close to the originalone. The case of chained systems of dimension 4 istreated in details. Simulation of a car-like robot aregiven.Key words: chained systems, 
atness, exponentialstabilization, robustness, mobile robots.1 IntroductionAfter the results of Coron [5, 6, 7] showing how toutilize time-varying feedback for stabilizing nonlinearplants, the practical design of such stabilizing laws isnow giving rise to a rapidly growing literature.Many papers deal with nonholonomic control sys-tems and with the special subclass of systems inchained form with two controls (u1; u2) (see, e.g.,[2, 4, 11, 14, 15, 19]):_x1 = u1; _x2 = u2; _x3 = u1x2;_x4 = u1x3; : : : ; _xn = u1xn�1: (1)It appears since the work of Murray and Sastry [10],that many nonholonomic mechanical systems (the��Ecole des Mines de Paris, 60, Bd Saint-Michel, 75272 ParisCedex 06.yAuthor to whom correspondence should be addressed.Centre Automatique et Syst�emes, �Ecole des Mines de Paris60, Bd Saint-Michel, 75272 Paris Cedex 06, France. Tel: 33(1) 40 51 91 15. E-mail: rouchon@cas.ensmp.fr

standard n-trailers systems) are feedback equivalentto such chained systems.These chained systems are a particular subclass of
at systems [8]: y = (x1; xn) is an obvious 
at out-put; the entire state x with the control are function ofy and its derivatives up to order n� 1. This leads tosimple motion planning algorithms for such chainedsystems [12, 13].Here, we exploit this explicit trajectory parameter-ization in order to design robust stabilizing controlscheme for driftless systems that are feedback equiv-alent to (1). By robust, we mean that the control notonly stabilizes the original system but also exponen-tially stabilizes any close driftless systems obtainedvia smooth and small deformations of the two vector�elds de�ning the system. As far as we know, wepropose here the �rst stabilizing method that ensurerobustness with respect to vector �elds deformationsrepresenting modeling errors and parameters uncer-tainties. Simulations demonstrate that such controlscheme are easy to compute and can be used for prac-tical and robust stabilization of nonholonomic sys-tems.The basic idea of our stabilizing strategy is verysimple and, as in [18, 16, 17, 3], uses a kind of dicrete-time feedback. Consider a control system describedby some equations �0. Denote by [0; T ] 3 t 7!U(x0; t) a smooth open-loop control that steers, forthe nominal system �0, the state x0 at t = 0 withu = 0 to the state 0 at t = T > 0 with u = 0. If thereal system �" (" is a small parameter representingmodeling uncertainties) di�ers slightly from �0, thenthe open-loop control U leads to a �nal state that is,in general, di�erent from 0 but close to 0. Denoteby P"(x0) this �nal state. We have, by construction,P0(x0) = 0. The map P" can be seen as a \Poincar�e"1



map: if P"(0) = 0 and if P" is strictly contractingaround 0, when successive uses of the open-loop con-trol U on the perturbed system �" leads to successivestates x0, P"(x0), P"(P"(x0)) = P 2" (x0), : : : converg-ing to 0.The contribution of the paper is the following: forsystems �0 that are feedback equivalent to (1), weexplicitly construct open-loop controls [0; T ] 3 t 7!U(x0; t) such that the Poincar�e map P", associatedto any driftless system �" close to �0, is smooth ev-erywhere excepted in 0 and is a strict contractionaround 0. The dependence of U(x0; t) with respectto t can be chosen arbitrary smooth. On the con-trary the dependence of U(x0; t) with respect to x0 issmooth everywhere excepted in 0 where it is contin-uous with H�older exponents strictly less than 1. Dueto space limitation, we present here the method inspace dimension 4. This case is enough rich to catchthe generality of the method and the main steps ofthe proof for arbitrary dimension (see [1] for higherdimension).The paper is organized as follows. Section 2 isdevoted to chained system of dimension 4 where theproofs are given in details. Section 3 shows, for acar-like robot, simulations of the stabilizing controlelaborated in section 2.A preliminary version of this work can be found in[1], the report of the \stage de �n d'�etude" of M.K.Bennani at \�Ecole Polytechnique", \promotion X91".2 Chained systems of dimen-sion 4The theorem here below ensures, for chained system�0 of dimension 4, the contraction of the Poincar�emap P" around 0 when the open-loop control U sat-is�es some conditions. These conditions are veri�edby controls U explicitly given in the proposition afterthe theorem.Theorem Take T > 0. Assume that, for all x0 2R4 , there exists an open-loop control [0; T ] 3 t 7!U(x0; t) 2 R2 steering the chained system �0 (system(1) with n = 4) from x = x0 at t = 0 with u = 0, to

x = 0 at t = T with u = 0. Assume also that, forallt 2 [0; T ],jU1(t; x0)j � k1(jx01j+ jx02j+ jx03j�3 + jx04j�4)jU2(t; x0)j � k2(jx01j+ jx02j+ jx03j1��3 + jx04j1�2�4)(2)where k1, k2, �3, �4 are constant independent of x0and t, satisfying0 < �3 < 1; 0 < �4 < 1=2min(�3; �4) + 2min(1� �3; 1� 2�4) � 13min(�3; �4) + min(1� �3; 1� 2�4) � 1: (3)Assume also that the perturbed system �" is de�nedby(�") _x1 = u1 + "(f1(x; ")u1 + g1(x; ")u2)_x2 = u2 + "(f2(x; ")u1 + g2(x; ")u2)_x3 = u1x2 + "(f3(x; ")u1 + g3(x; ")u2)_x4 = u1x3 + "(f4(x; ")u1 + g4(x; ")u2)where the fi's and gi's are smooth functions.Then, for all M > 0, there exist C > 0 and � > 0such that, if kx0k �M and j"j � � then kP"(x0)k �"C kx0k, where P"(x0) = x(T ) with [0; T ] 3 t 7! x(t),the trajectory of �" with u(t) = U(x0; t) and x(0) =x0. The quantities C and � depend on M and on themaximum, over a bounded domain of R4 dependingon M , of the fi's and gi's with a �nite number oftheir x-derivatives.Simulations seems to indicate that the constraintson the exponent �3 and �4 are optimal [1]Notice that a direct analysis via standard �rstorder variations is not enough to prove this theo-rem: the dependence of U with respect to x0 is notLipschitz around 0. Notice also that it is impossi-ble to construct a steering control U(x0; t) depend-ing smoothly on t, Lipschitz in x0 and satisfyingU(x0; 0) = U(x0; T ) = 0 and U(0; t) = 0, for allt 2 [0; T ].Proof Denote by [0; T ] 3 t 7! �x(t) the trajectory of�0 with u(t) = U(x0; t) and x(0) = x0. By assump-tion, �x(T ) = 0. The integration over [0; T ] of the �rsttwo equations of �" leads tox1(T ) = " R T0 (f1(x; ")u1 + g1(x; ")u2)dtx2(T ) = " R T0 (f2(x; ")u1 + g2(x; ")u2)dt (4)2



since R T0 u1dt = �x01 and R T0 u2dt = �x02. For thethird equation, we have,x3(T )� x03 = R T0 u1x2 dt+ " R T0 (f3u1 + g3u2)dt= [�x1x2]T0 � R T0 �x1u2 dt� " R T0 �x1(f2u1 + g2u2) dt+" R T0 (f3u1 + g3u2) dt= [�x1x2]T0 � [�x1�x2]T0 + R T0 u1�x2 dt�" R T0 �x1(f2u1 + g2u2)dt+ " R T0 (f3u1 + g3u2) dt= �x30 � " R T0 �x1(f2u1 + g2u2) dt+ " R T0 (f3u1 + g3u2) dt:Thusx3(T ) = " Z T0 (�x1f2 + f3)u1 + (�x1g2 + g3)u2) dt:(5)For the fourth equation, similar computations yieldx4(T ) = " R T0 � �x212 f2 � �x1f3 + f4�u1 dt+" R T0 � �x212 g2 � �x1g3 + g4�u2 dt: (6)Relations (4,5,6) lead to the following kinds of inte-grals (i = 1; 2):Z T0 f(x)ui dt; Z T0 �x1f(x)ui dt; Z T0 (�x1)2f(x)ui dtwhere f is a smooth function. The essential part ofthe proof consists now to estimate these integrals. Infact, we have the following general estimation.Lemma For any smooth function R4�R 3 (x; ") 7!f(x; ") 2 R and (r1; r2; r3; r4) 2 N4 , there exist � > 0and D > 0 such that, if kx0k � D and j"j � �, then,�����Z T0 (�x1)r1(�x2)r2(�x3)r3(�x4)r4f(x(t); ")ui(t) dt����� � Dkx0k;for i = 1; 2. .Proof of the lemma Set a1 = min(�3; �4) anda2 = min(1 � �3; 1 � 2�4). By assumption, 0 <a1; a2 < 1, a1 + 2a2 � 1 and 3a1 + a2 � 1. We usehere Landau notation: a function I(x0) is 0(kx0k�),if exists a constant K independent of x0 such that forx0 close to 0, kI(x0)k � Kkx0k�.

Since u1 = 0(kx0ka1) and u2 = 0(kx0ka2), we have�x1 = 0(kx0ka1), �x2 = 0(kx0ka2), �x3 = 0(kx0ka1+a2),�x4 = 0(kx0k2a1+a2) and(�x1)r1(�x2)r2(�x3)r3(�x4)r4 = 0(kx0k(r1+r3+2r4)a1+(r2+r3+r4)a2):Thus the lemma estimation is not obvious for onlyspecial values of the ri's. Set n1 and n2 the largestintegers such that (n1+1)a1 < 1 and (n2+1)a2 < 1.We have to consider the following �nite cases corre-sponding to the following terms:case 1: u1; �x1u1; : : : ; (�x1)n1u1:case 2: u1�x2; u1�x1�x2; u1�x3:case 3: u2; �x2u2; : : : ; (�x2)n2u2:case 4: �x1u2; (�x1)2u2:Take the integral R T0 fu1 dt. Using u1 = _�x1, anintegration by part yieldsZ T0 f u1 dt = �x01f(x0; ")�Z T0 �x1 4Xi=1 @f@xi _xi! dt:The �rst term is O(kx0k). Its contribution is ofcorrect order. We just have to deal with the sec-ond term. Substituting the _xi's by their expres-sions obtained from �" yields terms of the formR T0 �x1h(x; ")ui dt, with i = 1; 2 and h(x; ") smoothfunction combination of �rst derivatives of f withfunctions appearing in �". Since 2x1u1 = d=dt(�x1)2and �x1u2 = d=dt(�x1�x2 � �x3), another integration bypart leads to O(kx0k) boundary terms and rest inte-grals of the form R T0 (�x1)2k(x; ")ui dt and R T0 (�x1�x2 ��x3)l(x; ")ui dt, with new smooth functions k and l.The successive terms, involving �x and u and gen-erated by such calculations, are displayed on �gure1. The terms with a black dot are good terms, i.e.0(kx0k) terms. They do not belong to the previouslist (case 1 to case 4). The three graphs of �gure 1can be be used as follows. Take, e.g., the bad termu1: we have seen here above that one integration bypart leads to �x1u1 and �x1u2. This is represented hereby two arcs starting from u1 and descending to �x1u1and �x1u2. We see from this �gure, that integrals withterms of case 2 or case 4 are, after few integrationsby part, O(kx0k). Just integrals involving terms of3
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Figure 1: the terms obtained after successive integra-tions by part; a descending line means \an integrationgives".

type (�xi)kui remain to be estimated. We haveZ T0 (�xi)kuih(x; ") dt = Z T0 (�xi)k+1uil(x; ") dt+O(kx0k):where the smooth function l involves deriva-tives of h and the equations of �". SinceR T0 (�xi)ni+1uih(x; ") dt = O(kx0k), the integral withterms belonging to set 1 and set 2 satisfy also thelemma estimation. The lemma and theorem are thusproved.Proposition Consider T > 0, the chained system(1) with n = 4 and the initial condition x0 2 R4 . For�3 2]0; 1[ and �4 2]0; 1=2[, set� = jx01j+ jx02j+ jx03j�3 + jx04j�4 :De�ne the steering control U = (U1;U2) in two steps.For t 2 [0; T2 ], setU1(x0; t) = 2(x01 +�)s0T ; U2(x0; t) = 0with � = 2tT ; s = 2�3 � 3�2; s0 = 6�(� � 1):For t 2 [T2 ; T ] : setU1(x0; t) = 2�s0T ; U2(x0; t) = �2s0(60as2 + 24bs+ 6c)Twith� = 2tT � 1; s = 3�2 � 2�3 � 1; s0 = 6�(1� �)�3 = x03 � x02(x01 +�)�4 = x04 � x03(x01 +�) + x022 (x01 +�)2a = 6 �4�2 + 3 �3� + x022 ; b = 15 �4�2 + 7 �3� + x02c = 10 �4�2 + 4 �3� + x022 :Then, the open-loop control U steers (1) from x0 att = 0 to 0 at t = T . The dependence of U with respectto t is smooth with U(x0; 0) = U(T; x0) = 0, for allx0. The dependence of U with respect to x0 is smoothexcepted in 0 where it is continuous with U(0; t) = 0,4



Figure 2: A piecewise polynomial steering trajectoryof the 
at output (x1; x4) for a chained system ofdimension 4.for all t 2 [0; T ]. Moreover there exist k1, k2, twoconstants independent of x0 2 R4 and t 2 [0; T ] suchthat estimation (2) are satis�ed.The construction of this open-loop control relieson the general motion planning method explained in[12, 13, 8] and valid for 
at systems. In the (x1; x4)plane, the 
at output space, the curve [0; T ] 3 t 7!(x1; x4) generated by this control admits two smoothparts, C1 and C2 (see �gure 2). C1, corresponding tot 2 [0; T=2], is a polynomial of degree 2, �1:x4 = �1(x1) = x04 + x03(x1 � x01) + x022 (x1 � x01)2:C2, corresponding to t 2 [T=2; T ], is the unique poly-nomial x4 = �2(x1) of degree 5 such thatd��2dx�1 (��) = d��1dx�1 (��); d��2dx�1 (0) = 0; � = 0; 1; 2:This simple geometric construction underlies theopen-loop control described in the previous proposi-tion. Notice that the \cusp" at t = T=2 is importantto guaranty the regularity with respect to x0 around0 and the continuity at 0. The detailed proof of theproposition is straightforward and left to the reader.3 Car-like robotConsider the car-like robot of �gure 3 considered forthe �rst time in [9]. The equations are as follows._x = cos � u; _y = sin � u; _� = tan' ul ; _' = v

l

Figure 3: the car and the notationwith two controls (u; v). Around 0, this system is 
at((x; y) is the 
at output) and feedback equivalent tothe chained system (1) with n = 4 via the followingchange of coordinatesx1 = x; x2 = tan'l cos3 � ; x3 = tan �; x4 = y:(7)and static feedback,u1 = cos � u; u2 = vl cos3 � cos2 ' + 3 sin � tan2 ' ul2 cos4 � :(8)For the simulation of �gure 4, we have l = 1:8 m.The feedback (8) is �rst used and (u1; u2) is com-puted according to the previous proposition with�3 = �4 = 1=4 and T = 1. To check the controlrobustness ensured by the theorem, we introduce inthe simulations the following errors: for the control lis underestimate of 20%, i.e. l = 1:5 m, and the carvelocity u is overestimated of 15%. Figure 4, showsthat, in spite of these rather large systematic errors,the convergence to 0 is achieved in practice after 4iterations, i.e. t > 4T = 4.4 ConclusionAs demonstrated here above, the possibility of robuststabilization for non 
at systems �" through the useof 
at approximations �0 prolongs a well known andwidely use method. This method consists in stabi-lizing a nonlinear systems around equilibria via their5
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Figure 4: robust stabilization of the car; error of+20% for the length l and -15% for the velocity u.

�rst order tangent approximations when it is control-lable (i.e., 
at). This paper indicates that extendinglinear controllable (or 
at) approximations to nonlin-ear 
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