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Abstract

A design method for robust stabilization of flat sys-
tems, feedback equivalent to chained ones, is pro-
posed. The method is based on iterations of well
chosen open-loop steering controls. Robustness is
characterized by exponential convergence to the equi-
librium for any driftless systems close to the original
one. The case of chained systems of dimension 4 is
treated in details. Simulation of a car-like robot are
given.
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1 Introduction

After the results of Coron [5, 6, 7] showing how to
utilize time-varying feedback for stabilizing nonlinear
plants, the practical design of such stabilizing laws is
now giving rise to a rapidly growing literature.

Many papers deal with nonholonomic control sys-
tems and with the special subclass of systems in
chained form with two controls (u1,us) (see, e.g.,
2, 4, 11, 14, 15, 19)):

T3 = u1Z2,
In = U1 Tpn—1-

d“l = Ui, d“Q = Uz,
T4 = U3, ey

(1)

It appears since the work of Murray and Sastry [10],
that many nonholonomic mechanical systems (the
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standard n-trailers systems) are feedback equivalent
to such chained systems.

These chained systems are a particular subclass of
flat systems [8]: y = (z1,x,) is an obvious flat out-
put; the entire state z with the control are function of
y and its derivatives up to order n — 1. This leads to
simple motion planning algorithms for such chained
systems [12, 13].

Here, we exploit this explicit trajectory parameter-
ization in order to design robust stabilizing control
scheme for driftless systems that are feedback equiv-
alent to (1). By robust, we mean that the control not
only stabilizes the original system but also exponen-
tially stabilizes any close driftless systems obtained
via smooth and small deformations of the two vector
fields defining the system. As far as we know, we
propose here the first stabilizing method that ensure
robustness with respect to vector fields deformations
representing modeling errors and parameters uncer-
tainties. Simulations demonstrate that such control
scheme are easy to compute and can be used for prac-
tical and robust stabilization of nonholonomic sys-
tems.

The basic idea of our stabilizing strategy is very
simple and, as in [18, 16, 17, 3], uses a kind of dicrete-
time feedback. Consider a control system described
by some equations Xj. Denote by [0,7] 3 ¢t —
U(x°,t) a smooth open-loop control that steers, for
the nominal system Y, the state z° at ¢ = 0 with
u = 0 to the state 0 at t =T > 0 with u = 0. If the
real system Y. (e is a small parameter representing
modeling uncertainties) differs slightly from ¥, then
the open-loop control U leads to a final state that is,
in general, different from 0 but close to 0. Denote
by P.(z°) this final state. We have, by construction,
Py(2) = 0. The map P- can be seen as a “Poincaré”



map: if P.(0) = 0 and if P. is strictly contracting
around 0, when successive uses of the open-loop con-
trol U on the perturbed system Y. leads to successive
states 20, P.(z%), P.(P.(2°)) = P?(z), ... converg-
ing to 0.

The contribution of the paper is the following: for
systems Yo that are feedback equivalent to (1), we
explicitly construct open-loop controls [0,7] 5 t —
U(x,t) such that the Poincaré map P., associated
to any driftless system Y. close to Xy, is smooth ev-
erywhere excepted in 0 and is a strict contraction
around 0. The dependence of U(x°,t) with respect
to ¢t can be chosen arbitrary smooth. On the con-
trary the dependence of U(x°,t) with respect to z° is
smooth everywhere excepted in 0 where it is contin-
uous with Holder exponents strictly less than 1. Due
to space limitation, we present here the method in
space dimension 4. This case is enough rich to catch
the generality of the method and the main steps of
the proof for arbitrary dimension (see [1] for higher
dimension).

The paper is organized as follows. Section 2 is
devoted to chained system of dimension 4 where the
proofs are given in details. Section 3 shows, for a
car-like robot, simulations of the stabilizing control
elaborated in section 2.

A preliminary version of this work can be found in
[1], the report of the “stage de fin d’étude” of M.K.
Bennani at “Ecole Polytechnique”, “promotion X91”.

2 Chained systems of dimen-
sion 4

The theorem here below ensures, for chained system
Yo of dimension 4, the contraction of the Poincaré
map P. around 0 when the open-loop control U sat-
isfies some conditions. These conditions are verified
by controls U explicitly given in the proposition after
the theorem.

Theorem Take T > 0. Assume that, for all 2° €
R*, there ewists an open-loop control [0,T] > t
U(x°,t) € R? steering the chained system X (system
(1) with n = 4) from x = 2° at t = 0 with u = 0, to

z=0att="T withu =0. Assume also that, forall
tel[0,T],

\L{l (t, 1170)

| < Ra(lad] 4 23] + b0 + |2
‘Z/{Q(t:mo)‘ S

ko (|| + [a3] + Jag]' o2 + [2§]1722)

(2)

where ki, ko, as, as are constant independent of x°
and t, satisfying
0<az<l, 0<ay <1/2
min(ag,aq) + 2min(1 — az, 1 — 2a4) > 1
3min(asz, ag) + min(l — a3, 1 — 2a4) > 1.

(3)

Assume also that the perturbed system X. is defined

by
&1 = w te(fi(z.e)u + gi(z,€)uz)
() To = w2 +e(fo(z,e)ur + go(x,€)uz)
Yody = wz te(fs(ze)un + gs(z,e)u)
24 = uwrzs +e(falz,e)ur + ga(x,€)ua)

where the f;’s and g;’s are smooth functions.

Then, for all M > 0, there exist C > 0 andn > 0
such that, if ||2°|| < M and |e| < n then ||P.(zY)|| <
eC ||z%], where P.(z°) = x(T) with [0,T] 3 t — x(t),
the trajectory of X. with u(t) = U(2°,t) and z(0) =
x°. The quantities C and n depend on M and on the
mazimum, over a bounded domain of R* depending
on M, of the f;’s and g;’s with a finite number of
their z-derivatives.

Simulations seems to indicate that the constraints
on the exponent a3 and a4 are optimal [1]

Notice that a direct analysis via standard first
order variations is not enough to prove this theo-
rem: the dependence of I{ with respect to z° is not
Lipschitz around 0. Notice also that it is impossi-
ble to construct a steering control U(z°,t) depend-
ing smoothly on #, Lipschitz in z° and satisfying
U°,0) = U@, T) = 0 and U(0,) = 0, for all
te[0,T].

Proof Denote by [0,T] 3 t — Z(t) the trajectory of
Yo with u(t) = U(2°,t) and z(0) = z°. By assump-
tion, Z(T") = 0. The integration over [0, T of the first
two equations of Y. leads to

e (T) = &[] (fu(x,)us + g1 (m,)uz)dt

r2(T) = Ef(] (f2(x75)ul +92($78)7‘2)dt (4)



since fOT uydt = —z9 and fOT usdt = —a9. For the
third equation, we have,

z3(T) — 2% = f ulmzdt—l—a‘f (faur + gauo) dt

= [.171.172]0 — fo Tius dt — sfo Z1(fou1 + gous) dt
+e fOT(f3U1 ~+ gsus) dt

= [’Z’ll’g]g — [151152]%1 =+ fOT ulfz dt

—c fOT Z1(four + gaus) dt + EfOT(f3U1 + gsus) dt

= —T30 — € fOT ZT1(four + gouz) dt + € fOT(f3u1 + gzuz) dt

Thus

T
z3(T) = 5/ (T1f2 + f3)ur + (Z192 + g3)uz) dt.
0
(5)
For the fourth equation, similar computations yield
T (z2 _
T) = Efo (Tlfz —T1f3 + f4) uy dt
T (%2 _
+e fo (7192 —I193 + 94) uy dt.

Relations (4,5,6) lead to the following kinds of inte-
grals (i =1,2):

/OT f(z)u; dt, /OT Z1 f(x)u; dt, /OT(%)Qf(a:)ui dt

where f is a smooth function. The essential part of
the proof consists now to estimate these integrals. In
fact, we have the following general estimation.

Lemma For any smooth function R* xR 3 (z,¢) —
f(z,e) € R and (r1,72,73,74) € N, there exist yn > 0
and D > 0 such that, if ||2°|| < D and |e| < p, then,

fori=1,2..

Proof of the lemma Set a; = min(as,ay) and
a; = min(l — a3,1 — 2a4). By assumption, 0 <
aj,as <1, a1 +2as > 1 and 3a; +as > 1. We use
here Landau notation: a function I(z?) is 0(||z°[|%),

if exists a constant K independent of 2° such that for
20 close to 0, ||[I(x°)] < K||2°]°.

Since uy = 0(Ja%]|*") and uy = 0(|j2°[|*), we have
1= 0(Jef ), 25 = 0(||0]1*), 25 = O(]|0][=+e),
24 = O(||°[22+72) and

(@0)7 @2)7 (@) (@)™ = O(Jal |74 2radort byt raes)

Thus the lemma estimation is not obvious for only
special values of the r;’s. Set n; and ns the largest

.integers such that (ny +1)a; < 1 and (n2 + 1)as < 1.

We have to consider the following finite cases corre-
sponding to the following terms:

case 1: Uy, :flul, s (:fl)”lul
case 2: U1f27 Uljﬁlim U1 73.

case 3: uo, Tola, ..., (T2)™us.
case 4: Tiuy, (Z1)%us.

Take the integral fOT fuy dt. Using u; = Z;, an
integration by part yields

/fuldt —2V (20, ¢) /a:l (Zam ) dt.

The first term is O(]|z°||). Its contribution is of
correct order. We just have to deal with the sec-
ond term. Substituting the #;’s by their expres-
sions obtained from X. yields terms of the form
fOT ZT1h(z,e)u; dt, with i = 1,2 and h(z,e) smooth
function combination of first derivatives of f with
functions appearing in X.. Since 2zyu; = d/dt(z,)?
and Tiug = d/dt(T1T2 — T3), another integration by
part leads to O(||2°||) boundary terms and rest inte-
grals of the form fOT(il)Zk(a:,a)ui dt and fOT(g’slng —
Z3)l(x,e)u; dt, with new smooth functions & and I.
The successive terms, involving  and u and gen-

T
/ (21)" (Z2)"* (Z3)" (Z4)" f (z(t), )y (t) dt| < D||m0||‘?rated by such calculations, are displayed on figure
0 1

. The terms with a black dot are good terms, i.e.
0(]|z"]]) terms. They do not belong to the previous
list (case 1 to case 4). The three graphs of figure 1
can be be used as follows. Take, e.g., the bad term
u1: we have seen here above that one integration by
part leads to Z;u; and Zius. This is represented here
by two arcs starting from u; and descending to Zjuy
and Tyus. We see from this figure, that integrals with
terms of case 2 or case 4 are, after few integrations
by part, O(||z°||). Just integrals involving terms of
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Figure 1: the terms obtained after successive integra-
tions by part; a descending line means “an integration
gives”.

X‘z?uz

type (Z;)*u; remain to be estimated. We have

T T

/ (Z:)Fuih(x, ) dt = / (Z) T il (z,€) dt+O(||2°])).
Jo Jo

where the smooth function [ involves deriva-
tives of h and the equations of X.. Since
fOT(a’:i)”i“uih(a:,a) dt = O(||z°]]), the integral with
terms belonging to set 1 and set 2 satisfy also the
lemma estimation. The lemma and theorem are thus
proved.

Proposition Consider T > 0, the chained system
(1) with n = 4 and the initial condition z° € R*. For
az €]0,1[ and a4 €]0,1/2], set

= |29] + [25] + 3] + |2§] ™.

Define the steering control U = (Uy,Us) in two steps.

For t € [0, L], set
2z + A)s'
Uy (20, 1) = 7(“; ) ly(a4) = 0
with
2t
rT==, s=21"—-37% ' = 67(r —1).
T
For t € [£.T] : set
2As' —25'(60as® + 24bs + 6¢
Ui (zo,t) = o Us(zo,t) = ( )
T T
with
=21 s=32-27%-1, & =67(1-7)

€ = a3 — z3(a] +A)
0

€ = af — o3(a] + A) + Bl + A)°

a=6%+3%8+%2, b=158 +7% +af

c=10% +453 z

Then, the open-loop controlU steers (1) from x° at
t=0to0att="T. The dependence of U with respect
to t is smooth with U(z°,0) = U(T,z°) = 0, for all
2°. The dependence of U with respect to z° is smooth
excepted in 0 where it is continuous with U(0,t) =0,
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Figure 2: A piecewise polynomial steering trajectory
of the flat output (z1,z4) for a chained system of
dimension 4.

for all t € [0,T]. Moreover there exist k1, ko, two
constants independent of z° € R' and t € [0,T] such
that estimation (2) are satisfied.

The construction of this open-loop control relies
on the general motion planning method explained in
[12, 13, 8] and valid for flat systems. In the (z1,z4)
plane, the flat output space, the curve [0,T] 5 t —
(z1,z4) generated by this control admits two smooth
parts, C; and Cy (see figure 2). C;, corresponding to
t € [0,7/2], is a polynomial of degree 2, II;:

0
x ‘
rq =T (21) = 29 + 23 (21 — 20) + 72(331 —z9)?

Co, corresponding to t € [1'/2,T1, is the unique poly-
nomial x4 = [y(x1) of degree 5 such that
dvTl, d’11, d’ 1,
da? (_A) = dz? dz?
xy Y Y

(=A), (0) =0,
This simple geometric construction underlies the
open-loop control described in the previous proposi-
tion. Notice that the “cusp” at ¢ = T'/2 is important
to guaranty the regularity with respect to 2° around
0 and the continuity at 0. The detailed proof of the
proposition is straightforward and left to the reader.

3 Car-like robot

Consider the car-like robot of figure 3 considered for
the first time in [9]. The equations are as follows.

£ =cosf u, ¢ =sinb u, (9.:tang0%7 p=v

Y \/

Figure 3: the car and the notation

with two controls (u, v). Around 0, this system is flat
((z,y) is the flat output) and feedback equivalent to
the chained system (1) with n = 4 via the following
change of coordinates

tan ¢
Ty =T, XTy= ——71y x3=tanf, xz4=2y.
1 ) 2 I C053 0 ) 3 ) 4 Yy
(7)
and static feedback,
P v 3sinftan® ¢ u
uy =cosf u, uy =
! T T TcosPfeos? o 12 cost 6

(8)

For the simulation of figure 4, we have | = 1.8 m.
The feedback (8) is first used and (ui,us) is com-
puted according to the previous proposition with
as = a4 = 1/4 and T = 1. To check the control

v =0, 1,2robustness ensured by the theorem, we introduce in

the simulations the following errors: for the control /
is underestimate of 20%, i.e. | = 1.5 m, and the car
velocity u is overestimated of 15%. Figure 4, shows
that, in spite of these rather large systematic errors,
the convergence to 0 is achieved in practice after 4
iterations, i.e. t > 471 = 4.

4 Conclusion

As demonstrated here above, the possibility of robust
stabilization for non flat systems Y. through the use
of flat approximations ¥ prolongs a well known and
widely use method. This method consists in stabi-
lizing a nonlinear systems around equilibria via their



first order tangent approximations when it is control-
lable (i.e., flat). This paper indicates that extending
linear controllable (or flat) approximations to nonlin-
ear flat approximations can be interesting.
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