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We address the following question. Consider a sub-manifold of an affine
space, defined by its equations F = 0: does there exist a finite characterization
of ruled sub-manifolds in terms of derivatives of F via algebraic inequalities
and/or equalities ? This question is related to an open problem in control
theory: the finite characterization of flat systems [2] and, more generally, of
systems linearizable via dynamic feedback [1]. This note has been motivated by
interesting discussions and electronic mails with François Labourie. It presents a
characterization of analytic ruled surfaces of R3: the second and third derivatives
of F satisfy one algebraic inequality and one algebraic equality.

Main result

Theorem Consider a surface Σ of R3 defined by x3 = f(x1, x2) where f : R2 →
R is analytic. The surface Σ is ruled if, and only if, for all x ∈ R2, the two
following conditions are satisfied:

– C1: det(D2f) ≤ 0.

– C2: resultant of
{
D2f [X, X], D3f [X, X, X]

}
= 0.

where X = (X1, X2)T are formal variables,

D2f [X, X] =
2∑

i,j=1

fijXiXj , D3f [X, X, X] =
2∑

i,j,k=1

fijkXiXjXk

with fij =
∂2f

∂xi∂xj
and fijk =

∂3f

∂xi∂xj∂xk
, for i, j, k = 1, 2.

Resultant calculations for two polynomials can be found in [7, page 84].
The resultant of D2f [X,X] and D3f [X, X, X] is a real polynomial in the fij ’s
and fijk’s, homogeneous of degree 3 in the fij ’s and homogeneous of degree
2 in the fijk’s. This resultant is equal to zero, if, and only if, the equations
D2f [X, X] = 0 and D3f [X,X, X] = 0 admit a non trivial common solution
X = a ∈ C2/{0} (see [8] for more details).
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Proof

According to [4, proof of theorem 2], C1 and C2 are clearly necessary. We will
prove now that these conditions are sufficient. Assume that C1 and C2 hold.

Case 1

Assume that det(D2f) ≡ 0. When D2f ≡ 0, Σ is an affine space and thus is
ruled. Assume additionally that D2f 6= 0. Since f is analytic, for almost every
x ∈ R2 (excepted a countable set of isolated points) D2f(x) is of rank 1.

Consider x ∈ R2 such that rank D2f(x) = 1. Then there exists (a1(x), a2(x)) ∈
R2/{0} such that,

D2f(x)
(

a1(x)
a2(x)

)
= 0

where, moreover, x → a(x) is analytic and defined locally around x (a(x) belongs
to the kernel of the linear operator D2f(x) that depends analytically on x and
is of rank 1 around x). We will see that for k ≥ 2,

Dkf(x)




(
a1(x)
a2(x)

)
, . . . ,

(
a1(x)
a2(x)

)

︸ ︷︷ ︸
k−1 times

,

(
X1

X2

)

 = 0. (1)

The derivation with respect to x of the identity,

D2f(x)
[(

a1(x)
a2(x)

)
,

(
X1

X2

)]
= 0

leads to

D3f(x)
[(

a1(x)
a2(x)

)
,

(
X1

X2

)
,

(
Y1

Y2

)]
+ D2f(x)

[(
Da1(x) · Y
Da2(x) · Y

)
,

(
X1

X2

)]
= 0

where Y = (Y1, Y2) corresponds to formal variables independent of X. By
taking X1 = a1(x) and X2 = a2(x), we obtain (1) for k = 3. An additional
derivation leads to (1) for k = 4 , . . .. It appears clearly that (1) can be proved
by induction on k via successive derivations. For all k ≥ 2, (1) implies that
Dkf(x)[a(x), . . . , a(x)] = 0.

When rank D2f(x) = 1, there exists a straight line passing through (x, f(x))
and included in Σ: its direction is given by the vector (a(x), Df(x)[a(x)]) 6= 0.
(the analytic function R 3 λ → f(x + λa(x)) is linear since all its derivatives of
order ≥ 2 are equal to 0 for λ = 0).

By density and compacity arguments, one can prove that, even if x is one
of the isolated points where D2f(x) = 0 , there exists a straight line passing
through (x, f(x)) and contained in Σ. It suffices to consider a series (xn)n≥0

converging to x such that D2f(xn) 6= 0 (density). Up to an extraction of a con-
vergent sub-series, the corresponding series of directions (an)n≥0 with ‖an‖ = 1
converges to a 6= 0 (compacity of S1). Then, (a, Df(x)[a]) gives the direction
of a straight line included in Σ and passing through x.
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Case 2

Assume that det(D2f) 6= 0. Since f is analytic, for almost every x ∈ R2 (up to
a countable set of isolated points) det(D2f)(x) < 0.

Consider x such that det(D2f)(x) < 0. We have the following decomposition

D2f [X,X] = M(X) N(X) (2)

where the homogeneous polynomials of degree 1, M(X) and N(X), correspond
to independent linear forms with real coefficients that are analytical functions
of x. For Q(X), a polynomial those coefficients are C1 functions of x, we denote
by Q′(X, Y ) the polynomial obtained via derivation with respect to x:

Q′(X, Y ) def=
∂

∂x
(Q(X)) · Y

(as X, Y = (Y1, Y2)T corresponds to formal variables).
By C2, D3f [X, X,X] admits a common non zero root with D2f [X, X].

Thus, D3f [X, X,X] can be divided by M or N (M and N are of degree 1), says
M for example. This gives

D3f [X,X, X] = A3(X)M(X)

where A3(X) is an homogeneous polynomial of degree 2. Derivation of (2) with
respect to x gives:

D3f [X, X, Y ] = M ′(X, Y )N(X) + M(X)N ′(X, Y ).

This implies that M ′(X,X) becomes 0 when M(X) becomes 0. Since the degree
of M is equal to 1, we have necessarily M ′(X, X) = B(X)M(X) where B(X)
is of degree 1 (in this special case, the exponent of Hilbert’s “Nullstellenstatz”
equals 1).

We have obtained

D3f [X,X, X] = A3(X) M(X), M ′(X,X) = B(X)M(X).

Derivation with respect to x leads to

D4f [X, X,X, X] = A′3(X, X) M(X) + A3(X)M ′(X, X)

= (A′3(X, X) + A3(X)B(X)) M(X) = A4(X)M(X).

By continuing this process, we have, for k ≥ 3,

Dkf [X, . . . , X] = Ak(X)M(X)

where Ak(X) = A′k−1(X, X) + Ak−1(X)B(X) is an homogeneous polynomial
of degree k − 1. Take a(x) ∈ R2/{0} such that M(a(x)). Then, for all k ≥ 2,
Dkf(x)[a(x), . . . , a(x)] = 0.
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It results that, when det(D2f)(x) < 0, the straight line passing through
(x, f(x)) with direction (a(x), Df(x)[a(x)]) belongs to Σ.

Similarly to case 1, one can proved that, even if x is one of the isolated
points where det(D2f) becomes 0, there exists a straight line passing through
(x, f(x)) and contained in Σ.

We feel that this result can be extended to obtain semi algebraic charac-
terization of ruled sub-manifolds. The tricks introduced during the proof rely
on some, probably already existing, mathematical developments. Extensions to
C∞ functions f seem also possible but will certainly require several technical
precisions that would complicate the presentation.

1 Control implications

In [4], it is proved that, if the control system

ż = f(z, u)

is flat or linearizable via dynamic feedback, then, for each z, the projection onto
the affine space of ż of the sub-manifold {(ż, u)) | (ż = f(z, u)} is a ruled sub-
manifold (see also [3, 5]). This means that, when z = (z1, z2, z3), u = (u1, u2)
and 




ż1 = u1

ż2 = u2

ż3 = f(z, u1, u2),
(3)

the surface Σz of R3 defined by the equation x3 = f(z, x1, x2) is ruled, for all z.
For an analytic control system of form (3), flatness implies that Σz is ruled.

According to the theorem here above and the resultant form after Sylvester, we
have the following semi-algebraic characterization: for all u and z,

(f12)2 − f11f22 ≥ 0 and

∣∣∣∣∣∣∣∣∣∣

f11 2f12 f22 0 0
0 f11 2f12 f22 0
0 0 f11 2f12 f22

f111 3f112 3f122 f222 0
0 f111 3f112 3f122 f222

∣∣∣∣∣∣∣∣∣∣

= 0 (4)

where fij =
∂2f

∂ui∂uj
, fijk =

∂3f

∂ui∂uj∂uk
for i, j, k = 1, 2.

We feel that there must exist a characterization of flatness in finite terms
(semi-algebraic set in a suitable jet-space). For (3), conditions (4) are neces-
sary flatness conditions. Clearly, they are not sufficient since they do not imply
controllability (take f = 0). If one completes (4) with controllability condi-
tions such as, for example, the strong accessibility ones [6], does one obtain a
necessary and sufficient flatness condition ? This question is still open.
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