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Abstract

The qualitative behavior of the dynamics of an adiabatic 
ash with constant volumes

and pressure is studied. If the phase equilibria are thermodynamically stable, the ordinary

di�erential balance equations describing the dynamics can be interpreted as a gradient

system on a Riemannian manifold where the metric derives from the Hessian matrices of

the entropies and where the potential is the entropy production. When the feed remains

constant, such a geometric interpretation insures asymptotic stability and proves the con-

vergence without sustained oscillations to the steady-state where the entropy production

is minimum.

1 Introduction

The dynamics of an adiabatic 
ash with constant volumes and pressure, analyzed in this pa-

per, is a problem we addressed in the more general framework of the behavior of distillation

processes. The main question deals with the asymptotic behavior, and so the stability, of such

processes. One of the �rst major results is due to Rosenbrock (Rosenbrock, 1962) : he proved

that the equations describing non ideal, binary, constant molar over
ow continuous distillation

columns with non theoretical plates (he introduced a so-called Murphree eÆciency) and non

negligible vapor holdup, has a unique globally asymptotically stable steady-state.

For multi-component multistage columns, most simulation studies (Gallun and Holland,

1982) indicate asymptotic stability. Nevertheless, some simulation studies relative to azeotropic

distillation report the existence of multiple and possibly unstable steady-states (Magnussen et

al, 1979; Prokopakis and Seider, 1983; Widalgo et al, 1989). It seems that Rosenbrock's result

can not be extended to non binary distillation.

In this paper, we focus on the particular sub-problem of one stage distillation. We prove

that, for an adiabatic 
ash with perfect holdup and pressure regulations, every steady-state
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is asymptotically stable without any restrictive assumption concerning the thermodynamics

except that the phase equilibria are thermodynamically stable. This shows that, for one stage

distillation, steady-state instability means hydraulic or thermodynamic instability. This char-

acterization of the 
ash dynamics has been addressed �rstly in Rouchon's thesis, 1990 and has

been fully developed in Cre�'s thesis, 1992.

Our analysis relies on a geometric interpretation: the dynamics of an adiabatic 
ash with

constant volumes and pressure and where the phase equilibria are thermodynamically stable,

are described by a gradient system on a Riemannian manifold. The potential is then the entropy

production (Glansdor� and Prigogine, 1971). Our derivation of the metric on the Riemannian

manifold is in the spirit of the metric representation of equilibrium thermodynamics due to

Weinhold (Weinhold, 1974) but is slightly di�erent.

The paper content is as follows. We begin by some preliminaries relative to the formulation

of phase equilibria relationships and thermodynamic stability conditions. Then we present the

modeling di�erential-algebraic system and derive an equivalent ordinary di�erential system.

Finally, the Riemannian structure and the gradient interpretation of the dynamics are described.

In the conclusion, we sketch some open problems and explain why our analysis cannot be

directly applied to multistage distillation columns.

2 Thermodynamic preliminaries

This section is devoted to an equivalent but rather unusual formulation of the thermodynamic

equilibrium relationships that well suits our purpose.

We denote, for a mixture of c components, S the entropy, N = (N1; : : : ; Nc) the mole

quantities, H the enthalpy, � the volume, P the pressure, T the temperature and �i the

chemical of component i. Since the pressure is considered as a parameter in the sequel, an

adapted set of independent variables is H, N and P . Thus, S is considered as a function of H,

N and P and satis�es the di�erential relation

TdS = dH �

cX
i=1

�idNi � �dP: (1)

Consider now a closed system of c components which is maintained at a pressure P and

which does not receive neither heat nor mass from the exterior. The second principle of the

thermodynamics implies that the system tends towards an equilibrium state where the entropy

is maximum under the constraints of constant enthalpy and mass holdups, respectively H

and N . Denote p the number of possible phases. The thermodynamic equilibrium state is

given by the solution of the optimization problem

max
H1; N1; : : : ;Hp; Np

P
p

j=1H
j = H;

P
p

j=1N
j = N

 
pX

j=1

S
j(Hj

; N
j
; P )

!

where the superscript j is relative to phase j. When the phase j is not present at the equilibrium,

N
j and H

j are equal to 0. If all the p possible phases are present at the equilibrium, we have
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the equality of the �rst derivatives of the Sj:

@S
j

@Hj
=

@S
k

@Hk
and

@S
j

@N j
=

@S
k

@Nk

(2)

for every j and k in f1; : : : ; pg. These equilibrium conditions are equivalent to the classical

ones (equality of temperatures and chemical potentials for all the phases).

The equilibrium equations (2) with the conservation constraints H =
P

H
j and N =

P
N

j

do not insure that the entropy is maximum. They only mean that its �rst variation, ÆS, equals

zero. If its second variation, Æ2S, is negative, the extremum is a (local) maximum. With

the stability conditions on each phase j, such suÆcient conditions on Æ
2
S, are called stability

conditions. In order to avoid any confusion with other stability conditions, they will be called

thermodynamic stability conditions. They are:

D
2
S
j
� 0 and D

2
S
j +D

2
S
k
< 0 (3)

for all phases j and k (j 6= k) and where D
2
S
j denotes the Hessian matrix of the entropy

S
j with respect to the extensive variables (N j

; H
j). Notice that D2

S
j
� 0 results from the

stability condition of phase j.

In the sequel, we consider only liquid-vapor equilibria. The liquid (resp. vapor) phase will

be denoted with the superscript l (resp. v). We state the following assumption (thermodynamic

stability):

TS: the liquid-vapor equilibria are thermodynamically stable :

D
2
S
l
� 0; D

2
S
v
� 0 and D

2
S
l +D

2
S
v
< 0;

the ranks of D2
S
l and D2

S
v are equal to c.

Since the dependence of Sj with respect to Hj and N
j is homogeneous of degree one, we

have the Euler identities (see the appendix), often called the Gibbs-Duhem relations :

S
j(Hj

; N
j
; P ) = DS

j(Hj
; N

j
; P ) � (Hj

; N
j)

0 = D
2
S
j(Hj

; N
j
; P ) � (Hj

; N
j)

(4)

where DSj and D2
S
j denote, respectively, the �rst and second derivatives of Sj with respect to

the extensive variables (Hj
; N

j) (j = l; v) and where the dot \�" corresponds to the evaluation

of linear operators. Notice that the rank condition included in TS means that the concavity of

S
j is strict excepted in the direction of (Hj

; N
j).

For the azeotropic mixtures (the liquid and vapor have the same molar composition), as-

sumption TS holds true in general since the dependence with respect to the enthalpies H l

and H
v of Sl and S

v are considered. For critical conditions (the liquid and the vapor become

identical), D2
S
l +D

2
S
v is no more positive de�nite and TS is not satis�ed.
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vapor

liquid

Figure 1: an adiabatic 
ash drum where the pressure and the phase volumes are constant.

3 Modeling

3.1 The modeling di�erential-algebraic system

Consider the adiabatic 
ash drum displayed on �gure 1. Assume that :

{ the pressure, liquid and vapor volumes are constant (perfect pressure and level regula-

tors) ;

{ the liquid and vapor phases are perfectly mixed and at thermodynamic equilibrium ;

{ the thermodynamic equilibria satisfy TS at each time.

The dynamic behavior of this system is derived from the component and energy balance di�er-

ential equations and from the equilibrium and holdup algebraic equations:8>>>>>>>><
>>>>>>>>:

dR
l

dt
+
dR

v

dt
= F � L� V

R
l =

�
l(Rl)

�l(L)
L =

�
l

�l(L)
L

R
v =

�
v(Rv)

�v(V )
V =

�
v

�v(V )
V

DS
l(Rl) = DS

v(Rv)

(5)

where

{ F = (F1; : : : ; Fc; FHf ) corresponds to the component and enthalpy in
ows (c is the num-

ber of components) ;

{ L = (L1; : : : ; Lc; LHl) (resp. V = (V1; : : : ; Vc; VHv)) corresponds to the liquid out
ow

(resp. vapor out
ow) ;
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{ R
l = (Rl

1; : : : ; R
l

c
; RHl) (resp. R

v = (Rv

1; : : : ; R
v

c
; RHv)) corresponds to the component

and enthalpy holdups of the liquid phase (resp. vapor phase) ;

{ S
l (resp. Sv) is the liquid (resp. vapor) entropy function. DSl (resp. DSv) denotes the

�rst derivative of Sl (resp. Sv) with respect to Rl (resp. Rv);

{ �
l (resp. �

v) is the liquid (resp. vapor) volume function (see previous section, equa-

tion (1)); �l(L) (resp. �v(V )) corresponds to the liquid (resp. vapor) volume 
ow;

{ �
l (resp. �v) is the liquid (resp. vapor) volume which is assumed constant.

The second (resp. third) equation of (5) insures simultaneously that

{ the liquid (resp. vapor) holdup has the same composition than the liquid (resp. vapor)


ow leaving the 
ash drum ;

{ the liquid (resp. vapor) holdup is constant.

In (5), we have not recalled the dependence with respect to the pressure for Sl, Sv, �l and �
v

since it is assumed constant. Notice that the number of unknown variables (Rl, Rv, L et V ),

4(c+1), is equal to the number of equations. Notice also that, because of homogeneity, we can

consider independently �l(Rl) and �
l(L), �v(Rv) and �

v(V ).

3.2 Transformation into an ordinary di�erential system

For sake of clarity, the dependence of the di�erentials with respect to Rl and Rv is recalled only

when necessary. Denote � l(L) =
�
l

�l(L)
and � v(V ) =

�
v

�v(V )
the resident times in the liquid and

the vapor. We have Rl = �
l(L) L, Rv = �

v(V ) V .

The �rst diÆculty comes from the implicit character of (5). Such a system is called an

di�erential algebraic system. One can give a measure of its implicit character through the

notion of index, which here equals 2 (Sincovec et al, 1981 {for linear systems{; Fliess, Lvine

and Rouchon 1992 {for general implicit systems{).

The modeling system (5) can be rewritten explicitly as indicated by the following lemma.

Lemma 1. The solutions of (5) coincide with the solutions of the ordinary di�erential system8>>><
>>>:

dR
l

dt
=

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
v
�

�
F �

R
l

� l
�

R
v

� v

�
dR

v

dt
=

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l
�

�
F �

R
l

� l
�

R
v

� v

� (6)

with 8>>><
>>>:

1

� l
=

D�
l
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
v
� F

�
l

1

� v
=

D�
v
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l
� F

�
v

:

(7)
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and initial conditions (Rl

0; R
v

0) satisfying

DS
l(Rl

0) = DS
v(Rv

0); �
l(Rl

0) = �
l and �

v(Rv

0) = �
v
:

Proof According to 5, we have

D
2
S
l(Rl) �

dR
l

dt
= D

2
S
v(Rv) �

dR
v

dt
:

Assumption TS implies that D2
S
l +D

2
S
v is regular. Thus8>><

>>:
dR

l

dt
=

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
v
�

dR

dt

dR
v

dt
=

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l
�

dR

dt

where R = R
l +R

v and
dR

dt
= F � L� V = F �

R
l

� l
�

R
v

� v
.

It remains to express � l and �
v as functions of Rl, Rv, �l, �v and F . Let us detail the compu-

tation of � l. Since the liquid and vapor volumes are constant, we have

D�
l
�

dR
l

dt
= 0;

that is

D�
l
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
v
� (F �

R
l

� l
�

R
v

� v
) = 0:

The Gibbs-Duhem relations imply D2
S
v
�R

v = 0, so

1

� l
=
D�

l
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
v
� F

D�l � [D2Sl +D2Sv]
�1
�D2Sv

�Rl

Similarly,
�
D

2
S
l +D

2
S
v
�
�R

l = D
2
S
v
�R

l, that is�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
v
�R

l = R
l

As

D�
l
�R

l = �
l(Rl) = �

l
;

we obtain (7) for
1

� l
.

To conclude, we verify that DSl(Rl)�DS
v(Rv), �l(Rl) and �v(Rv) are �rst integrals of (6), so

that :

{ if the liquid and vapor phases are initially at thermodynamic equilibrium, then, for all

subsequent times, they are at thermodynamic equilibrium: DSl(Rl

0) = DS
v(Rv

0) implies

DS
l(Rl

t
) = DS

v(Rv

t
) for all t � 0;

{ the liquid and vapor volumes remain constant along every trajectory : �l(Rl

t
) = �

l(Rl

0)

and �
v(Rv

t
) = �

v(Rv

0) for all t � 0.
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4 The gradient system

As displayed on �gure 2, we will prove that the dynamical system described by (5) is a gradient

system on a Riemannian manifold (see the appendix)

4.1 The Riemannian structure

The following construction is in the spirit of the metric formulation of the equilibrium ther-

modynamics that has been proposed by Weinhold (Weinhold, 1974) . However, for our pur-

pose, we do not consider directly the Gibbs space of the entropy, mole quantities and vol-

ume. The basic space, where our equilibrium manifold is embedded, is the Cartesian prod-

uct ]0;+1[ c+1
�]0;+1[ c+1 of the liquid holdup space with the vapor holdup space.

Consider the sub-manifold � of ]0;+1[ c+1
�]0;+1[ c+1 de�ned by the following equations:

� =
�
M = (Rl

; R
v) 2]0;1[ c+1

�]0;1[ c+1
; such that:

DS
l(Rl) = DS

v(Rv); �l(Rl) = �
l and �

v(Rv) = �
v
:
	 :

Notice that the equations de�ning � are independent, that is to say that the (c+ 3)� 2(c+ 1)

Jacobian matrix 0
@ D

2
S
l
�D

2
S
v

D�
l 0

0 D�
v

1
A

has full rank c+3. This results directly from the Gibbs-Duhem relations (4) and assumptionTS.

The tangent space at M 2 �, T�M , can be identi�ed to the sub-space of the vectors

(�l
; �

v) 2 R
c+1

� R
c+1 such that

D
2
S
l
� �

l = D
2
S
v
� �

v
; D�

l
� �

l = 0 and D�
v
� �

v = 0;

where the operators D2
S
l, D2

S
v, D�l and D�v are evaluated at M .

For each M 2 �, we consider the quadratic form

QM : T�M �! R

(�l
; �

v) �! QM(�l
; �

v) = �
t
�
l
�D

2
S
l
� �

l
�

t
�
v
�D

2
S
v
� �

v
(8)

where t denotes transposition and where D2
S
l and D2

S
v are the Hessian matrices of Sl and Sv

evaluated at point M = (Rl
; R

v).

Lemma 2. For each M 2 �, QM de�nes an Euclidian structure on T�M . Otherwise stated,

(�; Q) is a Riemannian manifold.

Proof Clearly, QM is non-negative (assumption TS). It remains to be proved that QM is

non-degenerate. Consider (�l
; �

v) 2 T�M such that QM(�l
; �

v) = 0. Then, t
�
l
�D

2
S
l
� �

l = 0

and t
�
v
�D

2
S
v
� �

v = 0. Assumption TS implies that �l is proportional to Rl and �
v to Rv.

But D�l � �l = 0 and D�l �Rl = �
l
> 0. Thus �l = 0. Similarly, �v = 0.
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4.2 The dynamics derive from a potential

equations

metric

space of liquid and
vapor holdups

Figure 2: the dynamic behavior of an adiabatic 
ash is described by a gradient system on the

equilibrium Riemannian manifold � the potential of which is the entropy production W .

4.2.1 The entropy production

The entropy holdup S is given by

S = S
l(Rl) + S

v(Rv):

The results that Prigogine and Glansdor� (Glansdor� and Prigogine, 1971; Prigogine, 1961) have

obtained for dissipative systems can be directly applied here: the entropy production

W =
dS

dt
� (Sf

� S
l
� S

v);

is non negative (Sf is the entropy 
ow of the feed, S l = S
l(L) (resp. Sv = S

v(V )) is the liquid

(resp. vapor) entropy out
ow). As shown in Rouchon's thesis (Rouchon 1990) , this can be

directly proved from the modeling system (5). We have

dS

dt
= DS

l
�

dR
l

dt
+DS

v
�

dR
v

dt
:

Since DSl = DS
v and

d(Rl +R
v)

dt
= F � L� V , we obtain

dS

dt
= DS

l
� F �DS

l
� L�DS

v
� V:

But, by homogeneity, S l = DS
l
� L and Sv = DS

v
� V . Thus

W = DS
l
� F � S

f
: (9)
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Consider now the 
ows F l and F v associated to the liquid and vapor 
ows corresponding to a

steady-state. They are solutions of the optimization problem:

max
F

l
; F

v

F
l + F

v = F

�
S
l(F l) + S

v(F v)
�
:

Replacing F by F l + F
v and using the homogeneity of Sl and Sv, we obtain

W =
�
DS

l(L)�DS
l(F l)

�
� F

l + (DSv(V )�DS
v(F v)) � F v + S

l(F l) + S
v(F v)� Sf

:

To go further, we need the following result: if � is a real concave and homogeneous function

of degree 1 depending on x 2]0;1[n such that the rank of
@
2
�

@x2
equals n � 1, then, for all

a 2]0;+1[, we have min
x2]0;+1[n

��
@�

@x

�
a

x� �(x)

�
= 0:

Assumption TS and the previous result give�
DS

l(L)�DS
l(F l)

�
� F

l
� 0 and (DSv(V )�DS

v(F v)) � F v
� 0:

The de�nitions of F l and F
v imply

S
l(F l) + S

v(F v)� Sf
� 0:

This proves that the entropy production W , given by (9), is always non-negative. Moreover, it

is minimum at the equilibrium.

At the exception of the constant term S
l(F l) + S

v(F v) � S
f , the entropy production is in

the standard form

W =
X
�

J�X�;

introduced by Prigogine and Glansdor� and where the terms J� are the 
ows associated to the

generalized thermodynamic forces X�. Here, the 
ow terms are F l and F v and the generalized

thermodynamic forces are DSl(L)�DS
l(F l) and DS

v(V )�DS
v(F V ).

The universal evolution criterion of Glansdor� and Prigogine says that the evolution of

every macroscopic dissipative system whose entropy production is given by
P

�
J�X� satis�es

the fundamental inequality X
�

J�
dX�

dt
� 0:

For our macroscopic system, one directly derives the stability when the feed F remains constant:

since the 
ow terms F l and F
v are constant,

dW

dt
� 0. Moreover, it is easily proved that

dW

dt
= 0 if and only if

dR

dt
= 0. Otherwise stated, W is a Lyapunov function (see for example

Arnold, 1974) and the asymptotic stability is insured. This stability analysis can be enriched

by showing that the dynamics derive from a potential, which is a stronger property than the

existence of a Lyapunov function.
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4.2.2 The gradient system

Theorem 1. The dynamical system described by (5) derives from the potential (the entropy

production)

W = DS
l
� F � S

f

on the Riemannian manifold (�; Q):

dM

dt
= �rW

where r denotes the gradient operator associated to the metric Q and M = (Rl
; R

v) is the

current point on �.

This result implies that :

{ if the feed F remains constant, the potential W satis�es

dW

dt
= �QM (rW ) � 0:

It is (locally) minimal at every steady-state. Thus, every steady-state is locally asymp-

totically stable.

{ around every steady-state, all the eigenvalues are real and negative: in local coordinates

on �, the jacobian matrix of the system equals �AB, where A and B are matrices

representing positive de�nite quadratic forms (A is the inverse of the metric matrix and

B is the Hessian matrix of the potential W ). This jacobian matrix is diagonalizable with

real negative eigenvalues; this derives from a classic result on regular matrices pencils

(Gantmacher, 1966).

Proof We have to prove that the coordinates of the gradient of W in the vector space R c+1
�

R
c+1 are given by the right-hand side of (6). Otherwise stated, according to the de�nition of

the gradient, if we �nd (gl; gv) 2 T�M satisfying, for all (�l
; �

v) 2 T�M ,

�
t
�
l
�D

2
S
l
� g

l
�

t
�
v
�D

2
S
v
� g

v = �DW � (�l
; �

v)

= �
t
�
t
�D

2
S
l
� F = �

t
�
v
�D

2
S
v
� F;

(10)

then necessarily (gl; gv) are the components of rW in the vector space R c+1
�R

c+1 containing

T�M .

According to 1, we state

g
l =

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
v
�

�
F �

R
l

� l
�

R
v

� v

�

g
v =

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l
�

�
F �

R
l

� l
�

R
v

� v

�
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and show that gl et gv belong to T�M . We have

D
2
S
l
� g

l = D
2
S
v
� g

v
:

This results from

D
2
S
l
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
v = D

2
S
l
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
v

+D2
S
l
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l

�D
2
S
l
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l

= D
2
S
l
�D

2
S
l
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l

= D
2
S
l
�D

2
S
l
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l

+D2
S
v
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l

�D
2
S
v
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l

= D
2
S
v
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l
;

that is

D
2
S
l
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
v = D

2
S
v
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l
:

Relations (7) together with the Gibbs-Duhem relations D2
S
l
� R

l = 0 and D
2
S
v
� R

v = 0

imply that

D�
l
� g

l = 0 and D�
v
� g

v = 0:

Consequently, (gl; gv) 2 T�M .

Now we take (�l
; �

v) 2 T�M . Remembering D2
S
l
� �

l = D
2
S
v
� �

v, we have

�
t
�
l
�D

2
S
l
� g

l
�

t
�
v
�D

2
S
v
� g

v = �
t
�
l
�D

2
S
l
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
v
� F

�
t
�
v
�D

2
S
v
�

�
D

2
S
l +D

2
S
v
�
�1
�D

2
S
l
� F

= �
t
�
l
�D

2
S
l
� F

= �
t
�
v
�D

2
S
v
� F

= �DW � (�l
; �

v)

The (gl; gv), satisfying (10) for every tangent vector (�l
; �

v), are the components of rW in

R
c+1

� R
c+1 .

5 Conclusion

The above analysis can be done for an isothermal 
ash drum. The entropy function S must

be replaced by the Gibbs energy function G. Similarly, the introduction of more than two

phase does not require any substantial modi�cation. The problem is far more complex when

additional stages are considered: this is due to the fact that, contrarily to the single stage

case, the entropy production is not minimum at the steady-state and, consequently, cannot

be a Lyapunov function. As related in the introduction, several numerical studies seem to
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indicate the existence of unstable steady-states for multistage distillation. In the light of the

present study, it appears interesting to complete such simulations by investigating separately

the thermodynamic and hydraulic stability. This would be the beginning of an answer to the

following question: does there exist, for continuous distillation columns, unstable steady-states

when the hydraulic e�ects are fast and asymptotically stable (constant pressures and volumes)

and when, on each stage, the phase equilibria are thermodynamically stable?

Notations

j = fl; vg liquid and vapor phases superscripts

c number of components in the mixture

F = (F1; : : : ; Fc; FHf ) 
ash component and enthalpy in
ows (mol/s and J/s)

(gl; gv) components of the gradient of the potential W (mol/s and J/s)

H
j enthalpy function of phase j (J)

L = (L1; : : : ; Lc; LHl) 
ash component and enthalpy liquid out
ow (mol/s and J/s)

N
j = (N

j

1 ; : : : ; N
j

c
) number of mole quantities of phase j (mol)

P equilibrium pressure (Pa)

QM metric on T�M (J/K/mol2 and1/K/J)

R
j = (R

j

1; : : : ; R
j

c
; RHj ) 
ash component and enthalpy holdup for phase j (mol and J)

S
j entropy of phase j (J/K)

S
f entropy 
ow of the feed (J/K/s)

S
l liquid entropy out
ow (J/K/s)

S
v vapor entropy out
ow (J/K/s)

T equilibrium temperature (K)

V = (V1; : : : ; Vc; VHv)) 
ash component and enthalpy vapor out
ow (mol/s and J/s)

W entropy production (potential) (J/K/s)

Greek symbols

�l; �v elements of T�M (mol and J)

�
j

i
chemical potential of component i in phase j (J/mol)

� equilibrium Riemannian manifold

�
j resident time in phase j (s)

T�M tangent space at M 2 �

�
j volume function of phase j (m3)

�
j 
ash volume of phase j (assumed constant) (m3)

subscript 0 refers to initial conditions
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A Mathematical background

A.1 Euler identities for homogeneous functions of degree 1

The entropy S is an homogeneous function of degree 1, with respect to the extensive vari-

ables H et N : its successive derivatives obey Euler identities. Let f be a function of x 2 R
n ,

homogeneous of degree one. that is f(�x) = j�jf(x). Then, its �rst and second derivatives

obey:

Df(x):x = f(x); Df(�x) = Df(x);

D
2
f(x):(x; ) = 0; j�jD2

f(�x) = D
2
f(x):

A.2 Riemannian manifold and gradient systems

A detailed presentation of Riemannian geometry can be found in Boothby's book (Boothby,

1975). An elementary introduction to gradient systems is sketched in the book of Hirsch and

Smale, page 199 (Hirsch and Smale, 1974). We here recall the de�nition of the objects used in

this paper. Our presentation can be made more rigorous if necessary. Consider �, a manifold

of dimension n. DenoteM the current point on � and T�M , of dimension n, the tangent vector

space to � at M . A Riemannian metric Q is characterized by an application � 3M ! QM ,

where QM is a positive de�nite quadratic form on T�M . Geometrically,
p
QM(u) is the length

of the tangent vector u 2 T�M . QM de�nes on T�M a unique scalar product denoted < ; >M ,

such that < u; u >M= QM(u) for every u 2 T�M .

The gradient of the real function W on � is the unique vector �eld

� 3M !rW (M) 2 T�M

satisfying

8u 2 T�M ; < rW (M); u >M = LuW (M);

where LuW is the Lie derivative ofW with respect to u. LuW corresponds to the �rst variation

of W in the tangent direction u at M . To every vector �eld X ! X(M) corresponds a

di�erential system dM=dt = X(M). This system is called gradient system if, and only if,

the vector �eld X is equal to the opposite of the gradient of a real function W : X = �rW .

W is called the potential of the system.
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