
          

Flatness and motion planning : the car with n trailers. ∗

P. ROUCHON† M. FLIESS‡ J. LÉVINE§ P. MARTIN¶

Abstract A solution of the motion planning without obstacles for the nonholonomic system describing a car with n trailers
is proposed. This solution relies basically on the fact that the system is flat with the cartesian coordinates of the last
trailer as linearizing output. The Frnet formulas are used to simplify the calculation. The 2-trailers case is treated in
details and illustrated through parking simulations.
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1 Introduction

In [6, 5, 7, 8] a new point of view on the full lineariza-
tion problem via dynamic feedback [1] is proposed by
introducing the notion of flatness and linearizing out-
put. The aim of this paper is to show that such a
standpoint can be very useful for motion planning.

Roughly speaking, a control system is said to be (dif-
ferentially) flat if the following conditions are satisfied:

1. there exists a finite set y = (y1, . . . , ym) of variables
which are differentially independent, i.e., which
are not related by any differential equations.

2. the yi’s are differential functions of the system
variables, i.e., are functions of the system vari-
ables (state, input, . . .) and of a finite number of
their derivatives.

3. Any system variable is a differential function of
the yi’s, i.e., is a function of the yi’s and of a finite
number of their derivatives.

We call y = (y1, . . . , ym) a flat or linearizing output.
Its number of components equals the number of inde-
pendent input channels.

Notice however that the concept of flatness, which
can be made quite precise via the language of differen-
tial algebra [6, 5, 7, 8], is best defined by not distin-
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guishing between input, state, output and other vari-
ables.

For a “classic” dynamics,

ẋ = f(x, u), x = (x1, . . . , xn), u = (u1, . . . , um),
(1)

flatness implies the existence of a vector-valued func-
tion h such that

y = h(x, u1, . . . , u
(β1)
1 , . . . , um, . . . , u

(βm)
m ),

where y = (y1, . . . , ym). The components of x and u
are, moreover, given without any integration procedure
by the vector-valued functions A and B:

x = A(y1, . . . , y
(α1)
1 , . . . , ym, . . . , y

(αm)
m )

u = B(y1, . . . , y
(α1+1)
1 , . . . , ym, . . . , y

(αm+1)
m ).

(2)

The motion planning problem for (1) consists in find-
ing the control [0, T ] � t → u(t) steering the system
from state x = p at t = 0 to the state x = q at t = T .
When the system is flat, this problem is equivalent to
find [0, T ] � t→ y(t) such that

p = A(y1(0), . . . , y
(α1)
1 (0), . . . , ym(0), . . . , y(αm)

m (0))

and

q = A(y1(T ), . . . , y
(α1)
1 (T ), . . . , ym(T ), . . . , y(αm)

m (T )).

Since the mapping

(y1, . . . , y
(α1)
1 , . . . , ym, . . . , y

(αm)
m )

→ A(y1, . . . , y
(α1)
1 , . . . , ym, . . . , y

(αm)
m )

is onto, in general, the problem consists in finding a
smooth function t → y(t) with prescribed values for
some of its derivatives at time 0 and time T and such
that

[0, T ] � t→ A(y1(t), . . . , y
(α1)
1 (t), . . . , ym(t), . . . , y(αm)

m (t))
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and

[0, T ] � t→
B(y1(t), . . . , y

(α1+1)
1 (t), . . . , ym(t), . . . , y

(αm+1)
m (t))

are well defined smooth functions.
In this paper, we apply the method sketched here

above to a class of systems studied in [13, 19, 15, 16]
and describing the nonholonomic motion of a car with
n trailers.

In section 2, we recall the basic state equations of this
system and show that it is flat with the cartesian coor-
dinates of the last trailer as linearizing output.In sec-
tion 3, a geometric interpretation of the rolling without
slipping relations is given. This allows us to simplify
calculations and to bypass singularities via a natural
parametrization and the Frnet formulas. A simple so-
lution is then sketched for the general case when the
number of trailers is arbitrary (see [8] for the complete
proof). In section 4, detailed calculations and parking
simulations are given for the 2-trailers case. In section
5, we give some comments on singularity and also some
hints to take obstacles into account.

2 The system equations and flat-

ness

We follow the modeling assumptions of [16]. The no-
tations are summarized on figure 1. A basic model is
the following :


ẋ0 = cos(θ0) u1

ẏ0 = sin(θ0) u1

φ̇ = u2

θ̇0 =
1

d0
tan(φ) u1

for i = 1, . . . , n

θ̇i =
1

di

(
i−1∏
j=1

cos(θj−1 − θj)
)

sin(θi−1 − θi) u1

(3)
where (x0, y0, φ, θ0, . . . , θn) ∈ R

2 × (S1)n+2 is the state,
(u1, u2) is the control and d0, d1, . . ., dn are positive
parameters (lengths). Notice that, by using tan(θi/2)
instead of θi and tan(φ/2) instead of φ, the equations
become algebraic. The differential algebraic setting [4,
5] can thus be directly applied to this system.

In [6], we sketch the following result.

Proposition 1 The car with n trailers described by
(3) is a flat system. The linearizing output corresponds
to the cartesian coordinates of the point Pn, the middle
of the wheels axle of the last trailer :

y =

(
x0 −

∑n
i=1 cos(θi)di

y0 −
∑n

i=1 sin(θi)di

)
.

xn

θ0
yn θ1

d1

P0

P1
φ

θn-1

Pn

Pn-1

dn

θn

d0 P-1

Figure 1: the kinematic car with n trailers

Flatness implies that, for generic states, the rank of
the Lie algebra generated by the two vector fields as-
sociated to the control variables u1 and u2 is full (see
[7]): this system is thus controllable around almost any
state. In [11], it is proved that, for all states, the rank
of this Lie algebra is full.

Proof Denote by (xi, yi) the cartesian coordinates of
Pi, the middle of the wheels axle of trailer i:

xi = x0 −
∑i

j=1 cos(θj)dj
yi = y0 −

∑i
j=1 sin(θj)dj.

A straightforward calculation shows that tan(θi) =
ẏi
ẋi

.

for i = 0, . . . , n. Since xi = xi+1 + di+1 cos(θi+1) and
yi = yi+1 + di+1 sin(θi+1) for i = 0, . . . , n − 1, θn,
xn−1, yn−1, θn−1, . . ., θ1, x0, y0) and θ0 are functions
of (xn, yn) and its derivatives up to the order n + 1.
Since u1 = ẋ0/ cos(θ0), d0θ̇0/u1 = tan(φ) and u2 = φ̇,
the entire state and the control are functions of the
output (xn, yn) and its derivatives up to order n+ 3.

Clearly the calculations sketched above lead to func-
tions having singularities when, e.g., the derivatives ẋi
become zero. In the next section, we shall see that
this kind of singularities can be ignored. We will see,
in section 5, that the control trajectories constructed
below respect necessarily these angular constraints.

3 The basic geometric construc-

tion and the Frnet formula

Throughout this section, we assume that the angles
θi − θi−1 (i = 1, . . . , n) and φ belong to ] − π/2, π/2[.
This corresponds to a natural physical limitation (the
impossibility of the trailer i to be in front of trailer
i− 1).

Proposition 1 means that the trajectory of the entire
system can be derived (without integration) from the
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θn-1

θn

θn

θn-1

Cn-1

Cn

Figure 2: the geometric interpretation of the rolling
without slipping condition for the last trailer n.

trajectory of the point Pn. Assume that Pn follows the
smooth curve Cn. The rolling without slipping condi-
tions imply that the velocity of Pn, which is tangent to
Cn, is colinear to the direction of the straight line pass-
ing through Pn and Pn−1. Denote by τn the tangent
vector of length 1 to the curve Cn at Pn which is equal

to
→

PnPn−1 /dn. One can choose a natural parametriza-
tion of Cn, sn → Pn(sn) (sn is the arc length), such

that τn =
dPn
dsn

. Denote by κn the signed curvature of

Cn (function of sn). It is defined by the Frnet formulas
(see [3, page 51])

dτn
dsn

= κn(sn)νn,
dνn
dsn

= −κn(sn)τn

where νn is the normal vector to Cn such that (τn, νn)
admits a positive orientation. Then, as displayed on
figure 2, we have

Pn−1 = Pn + dnτn.

Thus the curve Cn−1 generated by Pn−1, is given
through the parametrization sn (not natural in gen-
eral)

sn → Pn−1(sn) = Pn(sn) + dnτn(sn).

This parametrization is regular since the vector
dPn−1

dsn
is always different from zero: its length is equal to√

1 + d2
nκ

2
n. Thus

tan(θn−1 − θn) = dnκn (4)

and the arc length of Cn−1, sn−1, is given by dsn−1 =

√
1 + d2

nκ
2
n dsn. Additional calculations give the cur-

vature κn−1 of Cn−1:

κn−1 =
1√

1 + d2
nκ

2
n

(
κn +

dn
1 + d2

nκ
2
n

dκn
dsn

)
. (5)

With one derivation, we have obtained, without
any singularity, the curve Cn−1 with the natural
parametrization sn−1 → Pn−1(sn−1).

The same method can be utilized for deriving Cn−2

from Cn−1. By iterating this process, we see that the
curve Ci generated by Pi (i = −1, . . . , n− 1) is derived
from the curve Cn via (n − i) differentiations with re-
spect to sn. We have sketched the proof of the following
result (more details are given in [8]).

Proposition 2 Consider the car with n trailers of fig-
ure 1 the motion of which is described by (3). Assume
that the curve Cn followed by Pn is smooth and admits a
natural parametrization sn → Pn(sn). Then, the state

(x0, y0, φ, θ0, . . . , θn) is a smooth function of Pn,
dPn
dsn

,

κn (signed curvature of Cn),
dκn
dsn

, . . .,
dnκn
dsnn

, i.e., the

state (x0, y0, φ, θ0, . . . , θn) is then a smooth function of
sn.

According to proposition 2, it suffices to express sn
as a time function sn = σ(t), where t → σ(t) is C1, to
obtain the state dependence with respect to time. The
first control is given by

u1(t) =(
cos(θ0(σ(t))) dx0

dsn
(σ(t)) + sin(θ0(σ(t))) dy0

dsn
(σ(t))

)
σ̇(t)

and the second one by

u2(t) =
dφ

dsn
(σ(t)) σ̇(t).

Via this method, we always calculate control trajecto-
ries that are, at least, C0. Notice that the parametriza-
tion of Cn with respect to t is not necessarily everywhere
regular but this has no consequence in our problem.

The geometric construction of figure 2 can also be
found in [10] where it serves for a car with a single
trailer: the time t is replaced by an arc length s; a
linear approximation of the differential equation in s is
considered around the configurations θn−θn−1 ≈ . . . ≈
θ1 − θ0 ≈ φ ≈ 0; the parking of a slightly different
system with one trailer is analyzed.

4 The car with 2 trailers

We now restrict to the particular case n = 2. We show
how the previous analysis can be employed to solve
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Figure 3: parking the car with 2-trailers from A to B
via C.

the parking problem. The simulations of figures 3 and
4 have been written in MATLAB.

The car and its trailers start from A with orientation
as displayed on figure 3. We want to find a path that
steers the system to B. We consider the point C and
the two curves CAC and CBC of figure 3 defined by their
natural parametrizations [0, LAC ] � s → PAC(s) and
[0, LBC ] � s → PBC(s), respectively: PAC(0) = A,
PAC(LAC) = C, PBC(0) = B and PBC(LBC) = C.
The curvatures are denoted by κAC and κBC .

These two curves are followed by the point P2 from
A to B via C. Thus according to (4) and (5), the initial

and final configurations in A and B impose
drκAC

dsr
(0) =

0 and
drκBC

dsr
(0) = 0 for r = 0, 1, 2. Moreover the

contact of t CAC and CBC at C must be of order ≥ 4:
drκAC

dsr
(LAC) = 0 and

drκBC

dsr
(LBC) = 0 for r = 0, 1, 2.

It is straightforward to construct curves satisfying such
conditions (take, e.g., polynomial curves of degree ≤
9).

From proposition 2, we know that if the point P2

follows CAC and CBC as displayed on figure 3, then the
initial and final states will be as desired. Take a C1

function [0, T ] � t→ s(t) ∈ [0, LAC ] such that s(0) = 0,
s(T ) = LAC and ṡ(0) = ṡ(T ) = 0. This leads to smooth
control trajectories [0, T ] � t → u1(t) ≥ 0 and [0, T ] �
t→ u2(t) steering the system from A at time t = 0 to C
at time t = T . Similarly, [T, 2T ] � t → s(t) ∈ [0, LBC ]
such that s(T ) = LBC , s(2T ) = 0 and ṡ(T ) = ṡ(2T ) =
0 leads to control trajectories [T, 2T ] � t → u1(t) ≤ 0
and [T, 2T ] � t→ u2(t) steering the system from C to
B. We obtain the motions displayed on figure 4.

Let us detail the calculation of the control trajecto-
ries for the motion from A to C. Similar calculations
can be done for the motion from C to B. Assume
that C2 = CAC is given via the regular parametriza-
tion, y = f(x) ((x, y) are the cartesian coordinates).

o

o

o

o
o

o
o o o o o o

o
o

o
o

o
o o o o o o oooooooooooooooooooooo

A

B

C

begin

end

Figure 4: the successive motions of the car with 2-
trailers.

Denote by si the arc length of curve Ci, i = 0, 1, 2.
Then ds2 =

√
1 + (df/dx)2 dx and the curvature of C2

is given by

κ2 =
d2f/dx2

(1 + (df/dx)2)3/2
.

According to (5),

κ1 =
1√

1 + d2
2κ

2
2

(
κ2 +

d2

1 + d2
2κ

2
2

dκ2

ds2

)

and ds1 =
√

1 + d2
2κ

2
2 ds2. Similarly,

κ0 =
1√

1 + d2
1κ

2
1

(
κ1 +

d1

1 + d2
1κ

2
1

dκ1

ds1

)

and ds0 =
√

1 + d2
1κ

2
1 ds1. Thus u1 is given explicitly

by

u1 =
ds0
dt

=
√

1 + d2
1κ

2
1

√
1 + d2

2κ
2
2

√
1 + (df/dx)2 ẋ(t)

where [0, T ] � t → x(t) is any increasing
smooth time function such that (x(0), f(x(0))) (resp.
(x(T ), f(x(T )))) are the coordinates of A (resp. C)
and ẋ(0) = ẋ(T ) = 0. Since tan(φ) = d0κ0, we get

u2 =
dφ

dt
=

d0

1 + d2
0κ

2
0

dκ0

ds0
u1

5 Remarks

The relative position of the car with respect to the
trailer is defined by θ1 − θ0 and is directly related to
the curvature κ1 of C1 by

tan(θ0 − θ1) = d1κ1.

The angle θ0 − θ1 always remains in ]−π/2, π/2[. This
property is general: all the trajectories obtained via a
smooth curve Cn are such that θi−1 − θi (i = 1, . . . , n)
and φ always remain in ] − π/2, π/2[.
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When θ0−θ1 = −π/2 or π/2 the curve C1 is no longer
twice differentiable (infinite curvature). This corre-
sponds to a true singularity. For arbitrary n, the singu-
larities that cannot be canceled by this geometric con-
struction appear when, for at least one i ∈ {1, . . . , n},
θi−1 − θi = −π/2 or π/2 or when φ = −π/2 or π/2.

In this paper, we are not actually concerned with
obstacles. The fact that the internal configuration de-
pends only on the curvature results from the general
following property: a plane curve is entirely defined
(up to rotation and translation) by its curvature. For
the n-trailer case, the angles θn− θn−1, . . ., θ1 − θ0 and
φ describing the relative configuration of the system
are only functions of κn and its first n-derivatives with
respect to sn.

Consequently, limitations due to obstacles can be ex-
pressed up to a translation (defined by Pn) and a ro-

tation (defined by the tangent direction
dPn
dsn

) via κn

and its first n-derivatives. Such considerations can be
of some help in finding a curve Cn avoiding collisions.
More details on obstacle avoidance can be found in [12]
where a car without trailer is considered.

6 Conclusion

The concept of flatness, which has been illustrated by
this example of motion planning, may be utilized in
many industrial applications, such as the crane [9], air-
craft control [2, 14] and chemical reactors [18, 17].
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