Flatness and motion planning : the car with n trailers.
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Abstract A solution of the motion planning without obstacles for the nonholonomic system describing a car with n trailers
is proposed. This solution relies basically on the fact that the system is flat with the cartesian coordinates of the last
trailer as linearizing output. The Frnet formulas are used to simplify the calculation. The 2-trailers case is treated in

details and illustrated through parking simulations.
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1 Introduction

In [6, 5, 7, 8] a new point of view on the full lineariza-
tion problem via dynamic feedback [1] is proposed by
introducing the notion of flatness and linearizing out-
put. The aim of this paper is to show that such a
standpoint can be very useful for motion planning.
Roughly speaking, a control system is said to be (dif-
ferentially) flat if the following conditions are satisfied:

1. there exists a finite set y = (y1, ..., ym) of variables
which are differentially independent, i.e., which
are not related by any differential equations.

2. the y;’s are differential functions of the system
variables, i.e., are functions of the system vari-
ables (state, input, ...) and of a finite number of
their derivatives.

3. Any system variable is a differential function of
the y;’s, i.e., is a function of the y;’s and of a finite
number of their derivatives.

We call y = (y1,...,ym) a flat or linearizing output.
Its number of components equals the number of inde-
pendent input channels.

Notice however that the concept of flatness, which
can be made quite precise via the language of differen-
tial algebra [6, 5, 7, 8], is best defined by not distin-
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guishing between input, state, output and other vari-
ables.
For a “classic” dynamics,
i':f($,u), -7u’m)7
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flatness implies the existence of a vector-valued func-
tion h such that

u=(ug,..
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where y = (y1,...,Ym). The components of z and u
are, moreover, given without any integration procedure
by the vector-valued functions A and B:

r = A(yh...,yim),...,ymw..,y,(,?’”)) @)
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The motion planning problem for (1) consists in find-
ing the control [0,T] > ¢ — u(t) steering the system
from state z = p at t = 0 to the state z =g at t =T.
When the system is flat, this problem is equivalent to
find [0,7T] 5 t — y(¢) such that

p=Ai(0),....1™(0), ..., ym(0),....y(0))
and
q= A(yl(T)7 ceey ygal)(T)a o ayM(T)’ s ,y,(:j"’)(T))
Since the mapping
(yh s ygal)a e Ymy e e yfr?,”))
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is onto, in general, the problem consists in finding a
smooth function ¢ — y(¢) with prescribed values for
some of its derivatives at time 0 and time 7" and such
that
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are well defined smooth functions.

In this paper, we apply the method sketched here
above to a class of systems studied in [13, 19, 15, 16]
and describing the nonholonomic motion of a car with
n trailers.

In section 2, we recall the basic state equations of this
system and show that it is flat with the cartesian coor-
dinates of the last trailer as linearizing output.In sec-
tion 3, a geometric interpretation of the rolling without
slipping relations is given. This allows us to simplify
calculations and to bypass singularities via a natural
parametrization and the Frnet formulas. A simple so-
lution is then sketched for the general case when the
number of trailers is arbitrary (see [8] for the complete
proof). In section 4, detailed calculations and parking
simulations are given for the 2-trailers case. In section
5, we give some comments on singularity and also some
hints to take obstacles into account.

Ly (8))

2 The system equations and flat-
ness
We follow the modeling assumptions of [16]. The no-

tations are summarized on figure 1. A basic model is
the following :

i?o = COS(QQ) Ul
y() = Sil’l(a()) Ul
é = U2
: 1
0y = 0 tan(¢) us

0

fori=1,...,n

. 1 i—1
92* = d_7 (H COS(QJ',1 — 9,)) sin(9i,1 — 9!) Uuy

3)
where (z9, Y0, ®, 0o, . .., 0,) € R? x (S1)"*2 is the state,
(u1,u9) is the control and dy, di, ..., d, are positive
parameters (lengths). Notice that, by using tan(6;/2)
instead of #; and tan(¢/2) instead of ¢, the equations
become algebraic. The differential algebraic setting [4,
5] can thus be directly applied to this system.

In [6], we sketch the following result.

Proposition 1 The car with n trailers described by
(3) is a flat system. The linearizing output corresponds
to the cartesian coordinates of the point P,, the middle
of the wheels axle of the last trailer :

_ ( xo — >y cos(0;)d; )
y= Yo — Z?:l sm(@z)dl ’

Figure 1: the kinematic car with n trailers

Flatness implies that, for generic states, the rank of
the Lie algebra generated by the two vector fields as-
sociated to the control variables u; and uy is full (see
[7]): this system is thus controllable around almost any
state. In [11], it is proved that, for all states, the rank
of this Lie algebra is full.

Proof Denote by (x;,y;) the cartesian coordinates of
P;, the middle of the wheels axle of trailer i:

r;, = To— lezl COS(@j)dJ‘
Yi = Yo — ) 8in(0;)d;.
A straightforward calculation shows that tan(§;) = %
for i = 0,...,n. Since x; = w41 + diy1 cos(biy1) arfd
Yi = Yi+1 + d7;+1 sin(@,;H) for i = O,...,n - 1, 071,7
Tn-1y, Yn—1, On-1, -, 01, To, Yo) and 6y are functions
of (,,ys) and its derivatives up to the order n + 1.
Since u; = g/ cos(fy), doég/ul = tan(¢) and uy = b,
the entire state and the control are functions of the
output (x,,y,) and its derivatives up to order n+ 3. m
Clearly the calculations sketched above lead to func-
tions having singularities when, e.g., the derivatives ;
become zero. In the next section, we shall see that
this kind of singularities can be ignored. We will see,
in section 5, that the control trajectories constructed
below respect necessarily these angular constraints.

3 The basic geometric construc-
tion and the Frnet formula

Throughout this section, we assume that the angles
0;— 0,1 (i=1,...,n) and ¢ belong to | — 7/2,7/2].
This corresponds to a natural physical limitation (the
impossibility of the trailer ¢ to be in front of trailer
i—1).

Proposition 1 means that the trajectory of the entire
system can be derived (without integration) from the



Figure 2: the geometric interpretation of the rolling
without slipping condition for the last trailer n.

trajectory of the point P,. Assume that P, follows the
smooth curve C,,. The rolling without slipping condi-
tions imply that the velocity of P,, which is tangent to
Cy, is colinear to the direction of the straight line pass-
ing through P, and P,_;. Denote by 7, the tangent
vector of length 1 to the curve C, at P, which is equal

to P,P,_1 /d,. One can choose a natural parametriza-
tion of Cp, s, — P,(sy) (s, is the arc length), such

n

d
that 7, =
at 7, Is

C,, (function gf Sn). It is defined by the Frnet formulas
(see [3, page 51])

. Denote by «, the signed curvature of

dr,
ds,

v _
ds,

= Kn(sn)l/nv _Kn(sn)Tn

where v, is the normal vector to C, such that (7,,v,)
admits a positive orientation. Then, as displayed on
figure 2, we have

Pnfl = —Pn + dnTn~

Thus the curve C,_; generated by P, i, is given
through the parametrization s, (not natural in gen-
eral)

Sp — nfl(sn) = Pn(sn) + dnTn(Sn)-

n—1

This parametrization is regular since the vector
Sn
is always different from zero: its length is equal to

V14 d2k2. Thus
tan(0,-1 — 0,,) = d,k,

(4)

and the arc length of C,_1, s,_1, is given by ds,—1 =

1+ d2k2 ds,. Additional calculations give the cur-

vature k,_1 of C,,_1:
dk,
). o

1 dn
. —
' 1+ d2k2 ( L+ diry dsy

With one derivation, we have obtained, without
any singularity, the curve C,_; with the natural
parametrization s,_1 — P,_1(8,-1)-

The same method can be utilized for deriving C,_»
from C,_;. By iterating this process, we see that the
curve C; generated by P; (i = —1,...,n — 1) is derived
from the curve C, via (n — i) differentiations with re-
spect to s,. We have sketched the proof of the following
result (more details are given in [8]).

Proposition 2 Consider the car with n trailers of fig-
ure 1 the motion of which is described by (3). Assume
that the curve C, followed by P, is smooth and admits a
natural parametrization s, — P,(s,). Then, the state

dP,
(%0, Y0, P, 00, - - -, 0,) is a smooth function of P, d—”,
Sn,
dk d"k
Ky (signed curvature of C,), —, ..., " ie., the
n (sig n) dsy, dsm

state (xo, yo, @, 0o, - - ., 0y) is then a smooth function of

Sp.

According to proposition 2, it suffices to express s,
as a time function s, = o(t), where t — o(t) is C', to
obtain the state dependence with respect to time. The
first control is given by

uy (t) =
(cos(B(o (1)) 22 (0 (1)) + sin(Bo (o (1)) (1)) (1)

and the second one by

_ 9

un(t) = ds

(a(t)) &(t).
Via this method, we always calculate control trajecto-
ries that are, at least, C?. Notice that the parametriza-
tion of C,, with respect to ¢ is not necessarily everywhere
regular but this has no consequence in our problem.
The geometric construction of figure 2 can also be
found in [10] where it serves for a car with a single
trailer: the time ¢ is replaced by an arc length s; a
linear approximation of the differential equation in s is
considered around the configurations 6, —60,,_1 ~ ... ~
0y — 0y =~ ¢ = 0; the parking of a slightly different
system with one trailer is analyzed.

4 The car with 2 trailers

We now restrict to the particular case n = 2. We show
how the previous analysis can be employed to solve



Figure 3: parking the car with 2-trailers from A to B
via C.

the parking problem. The simulations of figures 3 and
4 have been written in MATLAB.

The car and its trailers start from A with orientation
as displayed on figure 3. We want to find a path that
steers the system to B. We consider the point C' and
the two curves CA¢ and CB¢ of figure 3 defined by their
natural parametrizations [0, LA¢] 3 s — P4Y(s) and
[0, LPC] 5 s — PBY(s), respectively: PAC(0) = A,
PAC(LAY) = C, PBC(0) = B and PBC(LBC) = C.
The curvatures are denoted by x4¢ and 5.

These two curves are followed by the point P, from
A to B via C. Thus according to (4) and (5), the initial

r, AC
and final configurations in A and B impose d,ir (0) =
dTK)BC 5
0 and (0) = 0 for r = 0, 1, 2. Moreover the

contact of t CAC and CB% at C must be of order > 4:
drKIAC r .BC

. ——(L%% =0forr=0, 1, 2.
It is straightforward to construct curves satisfying such
conditions (take, e.g., polynomial curves of degree <
9).

From proposition 2, we know that if the point P,
follows CA¢ and CP¢ as displayed on figure 3, then the
initial and final states will be as desired. Take a C*
function [0,7] 3 t — s(t) € [0, L] such that s(0) = 0,
s(T) = LA¢ and $(0) = $(T") = 0. This leads to smooth
control trajectories [0,7] 3t — wuy(¢t) > 0 and [0,7] >
t — ua(t) steering the system from A at time ¢ = 0 to C
at time ¢t = T. Similarly, [T,27] >t — s(t) € [0, LPC]
such that s(T) = LPY, s(2T) = 0 and §(T) = $(27) =
0 leads to control trajectories [T,2T] 3t — uy(t) <0
and [T, 2T] 5 t — ua(t) steering the system from C' to
B. We obtain the motions displayed on figure 4.

Let us detail the calculation of the control trajecto-
ries for the motion from A to C. Similar calculations
can be done for the motion from C' to B. Assume
that Co = CAC is given via the regular parametriza-
tion, y = f(x) ((x,y) are the cartesian coordinates).

the successive motions of the car with 2-

Figure 4:
trailers.

Denote by s; the arc length of curve C;, « = 0,1,2.
Then dsy = /1 + (df /dz)? dx and the curvature of Cy

is given by
d*f /da?
(1 + (df /dzx)?)3/2

Ro =
According to (5),

+ dg dKQ
1+ d2k2 dsy

1
Kl = —F/——
1 \/71+d§m§<

and ds; = /1 + d3k3 dss. Similarly,
1 d1 dl’il
o= —, /1 4+ d2K2 Lt 1+ k2 ds,
1+ dl’%l + aiky dsy
and dsy = /1 + d?xk? ds;. Thus u; is given explicitly
by

—@—\/1—&—%&1 \/1+d2i€2

where [0,7] > t — x(t) is any increasing
smooth time function such that (z(0), f(x(0))) (resp.
(x(T), f(x(T)))) are the coordinates of A (resp. C)

+ (df /dx)? (1)

and ¢(0) = z(T) = 0. Since tan(¢) = dykg, we get
w @ d() d/i()
2T T 1+ @k dso ¢
5 Remarks

The relative position of the car with respect to the
trailer is defined by 6, — 6y and is directly related to
the curvature k; of C; by

tan(Go — 91) = dllﬁ.

The angle §) — 0, always remains in | — /2, 7/2[. This
property is general: all the trajectories obtained via a
smooth curve C, are such that §;,_; —6; (i =1,...,n)
and ¢ always remain in | — /2, 7/2].



When 6y—60;, = —7/2 or 7/2 the curve C; is no longer
twice differentiable (infinite curvature). This corre-
sponds to a true singularity. For arbitrary n, the singu-
larities that cannot be canceled by this geometric con-
struction appear when, for at least one ¢ € {1,...,n},
0;—1 —6; = —m/2 or w/2 or when ¢ = —7/2 or 7/2.

In this paper, we are not actually concerned with
obstacles. The fact that the internal configuration de-
pends only on the curvature results from the general
following property: a plane curve is entirely defined
(up to rotation and translation) by its curvature. For
the n-trailer case, the angles 6, — 6,1, ..., 8; — 6y and
¢ describing the relative configuration of the system
are only functions of k, and its first n-derivatives with
respect to s,.

Consequently, limitations due to obstacles can be ex-
pressed up to a translation (defined by P,) and a ro-

n .
) via Ky,
. . . . .871
and its first n-derivatives. Such considerations can be

of some help in finding a curve C, avoiding collisions.
More details on obstacle avoidance can be found in [12]
where a car without trailer is considered.

tation (defined by the tangent direction

6 Conclusion

The concept of flatness, which has been illustrated by
this example of motion planning, may be utilized in
many industrial applications, such as the crane [9], air-
craft control [2, 14] and chemical reactors [18, 17].
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