Flatness, motion planning and trailer systems*
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Abstract

A solution of the motion planning without obstacles for the standard
n-trailer system is proposed. This solution relies basically on the fact
that the system is flat with the Cartesian coordinates of the last trailer
as alinearizing output. The Frénet formulae are used to simplify the
calculations and permit to deal with angle constraints. The genera
1-trailer system, where the trailer is not directly hitched to the car at
the center of therear axle, isalso flat. The geometric construction used
for the standard 1-trailer system can be extended to this more realistic
system. MATLAB simulationsillustrate this method.

1 Introduction

In[5, 6,7, 4,8, 9] anew point of view on the full linearization
problem via dynamic feedback [3] is proposed by introducing
the notion of flatness and linearizing output. The aim of this
paper is to show that such a standpoint can be very useful for
motion planning.

Roughly speaking, a control system is said to be (differen-
tially) flat if the following conditions are satisfied:

1. thereexistsafinitesety = (yi, ..., Ym) Of variableswhich
are differentially independent, i.e., not related by any dif-
ferential equations.

2. the y;’s are differential functions of the system variables,
i.e., arefunctions of the system variables (state, input, . . .)
and of afinite number of their derivatives.

3. Any system variable is a differential function of the y;'s,
i.e., isafunction of the y;’s and of afinite number of their
derivatives.
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Wecaly = (y1, ..., Ym) aflatorlinearizing output. 1tsnumber
of components equals the number of independent input chan-
nels.

Notice however that the concept of flatness, which can be
made quite precise via the language of differential algebra [5,
6, 7, 4] and of differential geometry [8, 9], is best defined by not
distinguishing between input, state, output and other variables.

For a“classic” dynamics,

Xx=fx,u), X=(Xq,... D

flatnessimpliesthe existence of avector-valued function h such
that

, %), U= (Ug,...,Un),

(B1)
1 -

y=h(x,us,...,u T T

wherey = (y1, ..., Ym). Thecomponentsof x andu are, more-
over, given without any integration procedure by the vector-
valued functions A and B:

X = AGL Y YY) @
u = B(yl,...’yiafr)’”_’ym’_._’yr(gval)).

The motion planning problem for (1) consists in finding the
control [0, T] > t — u(t) steering the system from the state
Xx=pat=0tothestatex = qatt = T. When the system
isflat, this problem is equivalent to finding [0, T] > t — y(t)
such that

p=AN0), ..., %0, ..., ym(0), ..., Y™ (0))
and
g =AWT), ... YT YT, L Yem (T)).
Since the mapping
(yl,...,yf”),...,ym,...,yr(gm))
— AL S Y Y e YEm)

is onto, in general, the problem consists in finding a smooth
functiont — y(t) with prescribed valuesfor some of itsderiva-
tivesat time 0 and time T and such that

[0, T]3t— A, ..., Y\, ..., Ym(D), ..., Yo (1))
and
[0,T]>t -
B(yi(), -, YY), ., YD), -, et (1))



are well defined smooth functions.

This paper addressesthe standard n-trailer system considered
by many authors(seg, e.g., [22, 24,17, 21, 16] and thereferences
herein) and the general n-trailer system that, as far aswe know,
has never been considered in details. The general n-trailer sys-
tem is more redlistic and differs from the standard one by the
fact that trailer i + 1ishitched totraileri — 1 not directly at the
center of itsrear axle, but at a certain distance of this point (see,
e.g., figure5).

Section 2 completes [19] where parking simulations were
presented. The standard n-trailer system is shown to be flat.
The Cartesian coordinates of the last trailer give the linearizing
output. The natural parameterization of the curve followed by
the last trailer and the Frénet formulas are introduced. They
lead to a simple geometric construction underlying proposition
2 and provide a global and constructive solution of the motion
planning problem.

In section 3, the general 1-trailer system is considered. This
system is flat but the construction of the linearizing output is
much more involved and relies on [15, 14] where an old result
of E. Cartan [2] isused. Nevertheless, the geometric construc-
tion used for the standard 1-trailer system can be extended to the
general one and proposition 4 gives a global answer to the mo-
tion planning. Asin [19], detailed calculations and MATLAB
simulations are given.

2 Thestandard n-trailer system

The notations are summarized on figure 1. The model is the
following :

Xo = C€0S(6p) Ug
Yo = sin(fo) Uy
p = W
. 1
b = @ tan(p) ug ©
o
fori=1,...,n
: 1=
6 = T (l_[ cos(6;—1 — 6 )) sin(@i—1 — 6) Uz
| j=1

where (Xo, Yo, ¢, 60, ...,6,) € R? x (SH"?2 is the state,
(uy, Up) isthe control and dy, d, .. ., d, are positive lengths.
In [6],the following proposition was proved.

Proposition 1 The car with n trailers described by (3) is a
flat system. A linearizing output corresponds to the Cartesian
coordinates of the point P, the middle of the wheels axle of the
last trailer :

v=(

Xo — Yy C0oS(6; ) )
Yo— Y i sin@)d -

Figure 1: the standard n-trailer system is flat with linearizing
output P,’s coordinates.

In [19] was also hinted that the computations of the explicit
form (2) are strongly simplified by the Frénet formula and a
geometric construction. Here we complete proposition 2 of
[19] by a more precise one where natural physical constraints
(the impossibility of the trailer i to be in front of trailer i — 1)
are explicitly satisfied.

Proposition 2 Consider (3) and two different state-space
configurationss p = (%o, Y. @.60,...,.6,) and p =
(X0: Yo. @ 00, - ... 0n). Assume that the angles 6,_; — 6;,
i 1,...,n, ¢, 60i_1—6;,i =1,....n, and g belong to
] —m/2, w/2[. Then, there exists a smooth open-loop control
[0, T] 2t — (ug(t), ux(t)) steering the systemfrom p at time O
topattimeT > 0, suchthattheangles6;_1—6;,i =1,...,n,
ande (i =1,...,n)awaysremainin] — 7 /2, 7/2[ and such
that (uy(t), ux(t)) =0fort =0, T.

The detailed proof is given here below. It is constructive and
gives explicitly (uy(t), uz(t)). The basic ideas and formula are
asfollows. Denoteby C; thecurvefollowedby P,i =0, ...,n.
Asdisplayed on figure 2, the point B, _; belongs to the tangent
to G at P, and at the fixed distance d; from P;:

P_1=P +dr

with 7; the unitary tangent vector to Ci. Deriving this relation
with respect to s, the arc length of C;, leadsto

d
——Po1=r1 +dikiv
ds

where v; is the unitary vector orthogonal to 7; and «; is the
. d ) N
curvature of ;. Since E P, _1 gives the tangent direction to

Ci_1, we have
tan(Gi_1 — 6;) = dixj.

Proposition 2 relies on the following technical and construc-
tive lemma.



Figure 2: The geometric interpretation of the rolling without
dlipping conditions for the standard n-trailer system.

Lemma Consider a trajectory of (3) such that the curve C,
followed by P, is smooth with the natural parameterization
[0,Ln] 2 59 = Pa(sh): sh = 0 (resp. s, = Ly) corresponds
to the starting point (resp. end point); L is the length of C,.
Assume also that for s, = 0,61 — 6 (i = 1,...,n)and ¢
belongto] — 7 /2, #/2[. Then,

(i) forals, €[0,Ln],6-1—6; (i =1,...,n)and ¢ belong
to] —n/2,7/2[.

(i) thecurvesC; and C followed by P, and Q are smooth (i =
0,1,...,n).

(iii) tan(Gi_1 — 6;) = dix; (i = 1,...,n) and tany = doxo,
where k; and o are the curvatures of C; and Co, respec-
tively;

(iv) thecurvaturex; canbeexpressed asa smooth function of «,
and of itsfirst n—i derivativeswith respect to s,; moreover
the mapping (which isindependent of s,)

Kn

dicn in
ds, Kn-1

. — .
d”'/cn K.o
ds]

isa global diffeomorphismfrom R+ to R+,

Proof of thelemma Asdisplayed on figure 2, the point P,_;
belongs to the tangent to C; at P, and at the fixed distance di
from P,. By assumption t, = ‘é; admits the good orientation:
Pn-1 = P, + dntn (Wedo not have P,_1; = P, — dyzn). Thus

Ch_1 isgiven by the parameterization s, — P, + dn, Whichis

regular since ‘ dg’gl = /1+ d2«2. A natural parameteriza-

tions,_; — P,_1isgiven by

dsi-1 = /1+ d2c2 ds,.

The unitary tangent vector, t,_1, iSgiven by

1/ 1+ d%K% Th—1 = Tn + dnKn Vn,

where vy, isthe oriented normal to C,. The angle 6,_1 — 65 is
the angle between 7, and t,_1. Thustan(6,_1 — 6) = dnkn.
Since ky, is aways finite and 6,_1 — 6, belongs] — 7 /2, /2|
fors, = 0, 6,_1 — 6, cannot escapesfrom] — /2, /2| for any
S, € [0, Lp]. Theoriented normal to C,_1, vn_1, iSgiven by

1/ 1+ dr%Kr% Vh—1 = _dnKn Tn + Vn,

andthesigned curvaturexy,_; of C,,_1 is, after somecalculations,

(4)

1 i dn dKn (5)
Kn—-1 = K — .
T Tr e \ " 1+ dae ds,

Since6,_1 — 6, remainsin] — /2, /2], the unitary tangent
vector t,_1 hasthegooddirection,i.e.,, P,_o = Py_1+dq_17h_1.
The analysis can be continued for P,_5, ..., Pp and Q. This
proves (i), (ii) and (iii).

Assertion (iv) comesfromthefollowingformuladerived from
B)and (@) (i =1,...,n):

(6)

Ki-1=

1 ( 4 di dKi )
y
Jiidaz N 1+dA ds
] I

where s_1 isthe natural parameterization of C; _; defined by

ds_1=/1+d%?ds. (7)

Consequently, «;j isan algebraic function of «, anditsfirstn —i
derivatives with respect to s,. Moreover, the dependence with

n—I

Kn . . .
respect to as islinear viathe term
di-&-l dn dn_iKn
(AL+d? w2 %2 7 (140232 dsy

The map of assertion (iv) has a triangular structure with a di-
agonal dependence that is linear and aways invertible: itisa
global diffeomorphism. -

Proof of proposition 2 Denote by (X, ¥n) and (Xn, ¥,) the
Cartesian coordinatesof P, and P, theinitial andfinal positions
of P,. There aways exists a smooth planar curve C, with a
natural parameterization s, — P ($,) satisfying the following
constraints:

— P,(0) = P, and Py(L,) = P, for some L, > 0.



Figure 3: the general 1-trailer system is flat with linearizing
point P (L and K are defined by (10) and (12)).

— the direction of tangent at P, (resp. Pp) is given by the
angle 6, (resp. 6y);

— thefirst n derivatives of the signed curvature «, at points
P, and P, have prescribed values.

According to (iii) and (iv) of the above lemma, the initial and
final values of theangles(i = 1,...,n) 6;_1 — 6; and ¢ define
entirely the initial and final first n derivatives of . It suffices
now to choose a smooth function [0, T] 3 t — $,(t) € [0, L]
such that $,(0) = 0, $(T) = Lp and $,(0) = % (L) = 0,
to obtain the desired control trgjectory via the relations (the
notations are those of the above lemma):

n
(1_[ JV1+ dizKiZ) $
i=1
n do dKO
l_[ 1 + diZKiZ T 422 Ael
i=1 1+ dgkg dso

3 Thegeneral 1-trailer system

SH=Uu

uz

This nonholonomic system is displayed on figure 3: here the
trailer is not directly hitched to the car at the center of the rear
axle, but moreredlistically at adistancea of thispoint. Thetwo
controls are the driving velocity u; of the car rear wheels, and
the steering velocity u, of the car front wheels. The kinematic
equations are as follows (notations are given on figure 3):

X = COSu Uj
y = shau
= U
. 1 (8)
a = I—tangoul
g = }<§tan cos(a — B) — sin( —ﬁ)) u
T p\] e * !

where (X, y) are the Cartesian coordinates of point A. Parame-
tersl, a and b are positive lengths. The casea < Oissimilar to

a > 0and isnot treated here.

In [15], this system was shown to be flat. This result was
inspired by [2]. This paper is aso connected to [16, 25], where
Goursat normal formsand chained systemsare constructed: itis
not difficult to prove that driftless systemswhich, up to changes
of coordinatesand static or dynamic endogenous feedbacks, can
be put into chained forms, are necessarily flat.

Wejust give herethe geometric construction and the anal og of
propositions 1 and 2. Notice that, contrarily to (3), the explicit
derivation of the linearizing output is far from being obvious.

Proposition 3 System (8) isflat. A possible linearizing output
y= (Y1, Y2) is
bsng —asina
Va2 4+ b? — 2abcos(a — B)
acosa — bcosp
/a2 + b2 — 2abcos(o — B)
9)

Y1 =X+bcosg+ Lo —B)

Ya=y+bsng+La—p)

with

2r+a—p CcoSo

do  (10)

L —pB)=ab /

@=p P v/a2 + b? — 2abcoso
Geometrically (y1, y») are the Cartesian coordinates of P (see
figure 3).

Consider now the real function
['(8) = cosé v/a2 + b2 — 2abcoss — L(8) sins. Routine cal-
culations show that there existsauniquered y € [0, 7/2] such
that

F'y)=0 and Vée€]y,2r —y[ T'S) <O. (11)

Whena =0, y = /2 and P coincides with B.

Proposition 4 Consider (8) and two different state-space con-
figurationss p = (X, V,¢.&, 8) and p = (X, V.9, a, B).
Assume that the angles @ — 8 and @ — B (resp. ¢ and
) belongto ]y — 2n, —y[ (resp. 1 — n/2,7/2[) (y is de-
fined by (11)). Then, there exists a smooth open-loop control
[0, T] ot — (uy(t), ux(t)) steering the system from p at time
OtopattimeT > 0, suchthat theanglea — 8 (resp. ¢) always
remainsin]y — 2r, —y[ (resp. ] — /2, =/2[) and such that
(Ug(t), ux(®)) =0fort =0, T.

Sketch of the proof The arguments are very similar to those
used for proposition 2. The computations are slightly more
complex. We use the Frénet formulas for the curve P followed
by the linearizing point P and the geometric construction of
figure 3.

The unitary tangent vector t to P is colinear to AB. The
curvature x isafunctionof § = 27 + o — B:

siné

K=K () = .
coss v/a2 + b? — 2abcoss — L(8) sins

12




the geometric
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Figure4: example of backward motionsfor the general 1-trailer
system (8) withl =1m,a=15m,b=25mand T = 15s.

Thefunction K isan increasing diffeomorphism from ]y, 27 —
y[toRand D isgivenby D = P — L (8)v wherev istheunitary
normal vector to P. Thismeansthat (x, y, «, 8) isafunction of
(P, 1, k). The steering angle ¢ depends on x and d« /ds where
sisthearclength on P. We have aglobal diffeomorphismfrom
X, Y,a,2r+a—pB,¢) € R2x Stx]y, 2n —y[x]—7m/2, /2]
to (P, 7, «, dK/dS)esz St x R2, .

Thefact that (o« — 8) and ¢ depend only on («, dk«/ds) results
directly from the invariance of the problem with respect to the
group of planar Euclidian transformations. Such physical and
symmetry considerations are often used here for simplifying
the calculations and deriving the coordinates of the linearizing
point P.

Thisgeometric construction can beeasily used for solving the
steering problem of the general 1-trailer system. Asin[19], a
simple steering program can be directly deduced from such de-

Figure 5: the general 2-trailer system is not flat.

velopments. The MATLAB simulationsof figure4 illustratethe
interest of flatness combined with such geometric constructions.

4 Concluding remarks

The concept of flatness, which hasbeenillustrated by these non-
holonomic systems, may be utilized in many industrial applica
tions, such as the crane [10], aircraft control [13] and chemical
reactors [20, 18]. Nevertheless, all systems are not flat. Using
the flatness characterization given in [15], one can prove that
the general 2-trailer system of figure 5 and the plate-ball system
considered in [12] are not flat: their defects [7, 4] are equal to
one. These two nonflat systems are closely related to a class of
nonlinear second order Monge eguations studied in [11].

The multi-steering trailer systems considered in [1, 26, 23]
are also flat: the flat output is then obtained by adding to the
Cartesian coordinates of thelast trailer, the angles of thetrailers
that are directly steered. This generalization is quite natural in
view of the geometric construction of figure 2.

Notice finally that, if we add to the general 2-trailer system
of figure 5 anew control that steers directly the last trailer, the
system becomes flat: the linearizing output is then formed of
the point P with the angle of the last trailer. Thisfact explains
probabily why multi-steering trailer systems are encountered in
practice.
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