
                    

Flatness, motion planning and trailer systems∗

Pierre Rouchon† Michel Fliess‡ Jean Lévine§ Philippe Martin¶

Abstract

A solution of the motion planning without obstacles for the standard
n-trailer system is proposed. This solution relies basically on the fact
that the system is flat with the Cartesian coordinates of the last trailer
as a linearizing output. The Frénet formulae are used to simplify the
calculations and permit to deal with angle constraints. The general
1-trailer system, where the trailer is not directly hitched to the car at
the center of the rear axle, is also flat. The geometric construction used
for the standard 1-trailer system can be extended to this more realistic
system. MATLAB simulations illustrate this method.

1 Introduction

In [5, 6, 7, 4, 8, 9] a new point of view on the full linearization
problem via dynamic feedback [3] is proposed by introducing
the notion of flatness and linearizing output. The aim of this
paper is to show that such a standpoint can be very useful for
motion planning.

Roughly speaking, a control system is said to be (differen-
tially) flat if the following conditions are satisfied:

1. there exists a finite set y = (y1, . . . , ym) of variables which
are differentially independent, i.e., not related by any dif-
ferential equations.

2. the yi ’s are differential functions of the system variables,
i.e., are functions of the system variables (state, input, . . .)
and of a finite number of their derivatives.

3. Any system variable is a differential function of the yi ’s,
i.e., is a function of the yi ’s and of a finite number of their
derivatives.
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¶Centre Automatique et Systèmes, École des Mines de Paris, 35, rue Saint-
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We call y = (y1, . . . , ym) a flat or linearizing output. Its number
of components equals the number of independent input chan-
nels.

Notice however that the concept of flatness, which can be
made quite precise via the language of differential algebra [5,
6, 7, 4] and of differential geometry [8, 9], is best defined by not
distinguishing between input, state, output and other variables.

For a “classic” dynamics,

ẋ = f (x, u), x = (x1, . . . , xn), u = (u1, . . . , um), (1)

flatness implies the existence of a vector-valued function h such
that

y = h(x, u1, . . . , u(β1)

1 , . . . , um, . . . , u(βm )
m ),

where y = (y1, . . . , ym). The components of x and u are, more-
over, given without any integration procedure by the vector-
valued functions A and B:

x = A(y1, . . . , y(α1)
1 , . . . , ym, . . . , y(αm )

m )

u = B(y1, . . . , y(α1+1)
1 , . . . , ym, . . . , y(αm+1)

m ).
(2)

The motion planning problem for (1) consists in finding the
control [0, T ] � t → u(t) steering the system from the state
x = p at t = 0 to the state x = q at t = T . When the system
is flat, this problem is equivalent to finding [0, T ] � t → y(t)
such that

p = A(y1(0), . . . , y(α1)
1 (0), . . . , ym(0), . . . , y(αm )

m (0))

and

q = A(y1(T ), . . . , y(α1)
1 (T ), . . . , ym(T ), . . . , y(αm )

m (T )).

Since the mapping

(y1, . . . , y(α1)
1 , . . . , ym, . . . , y(αm )

m )

→ A(y1, . . . , y(α1)
1 , . . . , ym, . . . , y(αm )

m )

is onto, in general, the problem consists in finding a smooth
function t → y(t) with prescribed values for some of its deriva-
tives at time 0 and time T and such that

[0, T ] � t → A(y1(t), . . . , y(α1)
1 (t), . . . , ym(t), . . . , y(αm )

m (t))

and

[0, T ] � t →
B(y1(t), . . . , y(α1+1)

1 (t), . . . , ym(t), . . . , y(αm+1)
m (t))
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are well defined smooth functions.

This paper addresses the standard n-trailer system considered
by many authors (see, e.g., [22, 24, 17, 21, 16] and the references
herein) and the general n-trailer system that, as far as we know,
has never been considered in details. The general n-trailer sys-
tem is more realistic and differs from the standard one by the
fact that trailer i + 1 is hitched to trailer i − 1 not directly at the
center of its rear axle, but at a certain distance of this point (see,
e.g., figure 5).

Section 2 completes [19] where parking simulations were
presented. The standard n-trailer system is shown to be flat.
The Cartesian coordinates of the last trailer give the linearizing
output. The natural parameterization of the curve followed by
the last trailer and the Frénet formulas are introduced. They
lead to a simple geometric construction underlying proposition
2 and provide a global and constructive solution of the motion
planning problem.

In section 3, the general 1-trailer system is considered. This
system is flat but the construction of the linearizing output is
much more involved and relies on [15, 14] where an old result
of E. Cartan [2] is used. Nevertheless, the geometric construc-
tion used for the standard 1-trailer system can be extended to the
general one and proposition 4 gives a global answer to the mo-
tion planning. As in [19], detailed calculations and MATLAB
simulations are given.

2 The standard n-trailer system

The notations are summarized on figure 1. The model is the
following :

ẋ0 = cos(θ0) u1

ẏ0 = sin(θ0) u1

ϕ̇ = u2

θ̇0 = 1

d0
tan(ϕ) u1

for i = 1, . . . , n

θ̇i = 1

di

(
i−1∏
j=1

cos(θj−1 − θj )

)
sin(θi−1 − θi ) u1

(3)

where (x0, y0, ϕ, θ0, . . . , θn) ∈ R
2 × (S1)n+2 is the state,

(u1, u2) is the control and d0, d1, . . ., dn are positive lengths.
In [6],the following proposition was proved.

Proposition 1 The car with n trailers described by (3) is a
flat system. A linearizing output corresponds to the Cartesian
coordinates of the point Pn, the middle of the wheels axle of the
last trailer :

y =
(

x0 − ∑n
i=1 cos(θi )di

y0 − ∑n
i=1 sin(θi )di

)
.

xn

0
yn 1

d1

P0

P1

n-1

Pn

Pn-1

dn

n

d0 P-1

Figure 1: the standard n-trailer system is flat with linearizing
output Pn’s coordinates.

In [19] was also hinted that the computations of the explicit
form (2) are strongly simplified by the Frénet formula and a
geometric construction. Here we complete proposition 2 of
[19] by a more precise one where natural physical constraints
(the impossibility of the trailer i to be in front of trailer i − 1)
are explicitly satisfied.

Proposition 2 Consider (3) and two different state-space
configurations: p̃ = (x̃0, ỹ0, ϕ̃, θ̃0, . . . , θ̃n) and p =
(x0, y0, ϕ, θ0, . . . , θn). Assume that the angles θ̃i−1 − θ̃i ,
i = 1, . . . , n, ϕ̃, θ i−1 − θ i , i = 1, . . . , n, and ϕ belong to
] − π/2, π/2[. Then, there exists a smooth open-loop control
[0, T ] � t → (u1(t), u2(t)) steering the system from p̃ at time 0
to p at time T > 0, such that the angles θi−1 − θi , i = 1, . . . , n,
and ϕ (i = 1, . . . , n) always remain in ] − π/2, π/2[ and such
that (u1(t), u2(t)) = 0 for t = 0, T .

The detailed proof is given here below. It is constructive and
gives explicitly (u1(t), u2(t)). The basic ideas and formula are
as follows. Denote by Ci the curve followed by Pi , i = 0, . . . , n.
As displayed on figure 2, the point Pi−1 belongs to the tangent
to Ci at Pi and at the fixed distance di from Pi :

Pi−1 = Pi + diτi

with τi the unitary tangent vector to Ci . Deriving this relation
with respect to si , the arc length of Ci , leads to

d

dsi
Pi−1 = τi + diκiνi

where νi is the unitary vector orthogonal to τi and κi is the

curvature of Ci . Since
d

dsi
Pi−1 gives the tangent direction to

Ci−1, we have

tan(θi−1 − θi ) = diκi .

Proposition 2 relies on the following technical and construc-
tive lemma.
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Figure 2: The geometric interpretation of the rolling without
slipping conditions for the standard n-trailer system.

Lemma Consider a trajectory of (3) such that the curve Cn

followed by Pn is smooth with the natural parameterization
[0, Ln] � sn → Pn(sn): sn = 0 (resp. sn = Ln) corresponds
to the starting point (resp. end point); Ln is the length of Cn.
Assume also that for sn = 0, θi−1 − θi (i = 1, . . . , n) and ϕ

belong to ] − π/2, π/2[. Then,

(i) for all sn ∈ [0, Ln], θi−1 − θi (i = 1, . . . , n) and ϕ belong
to ] − π/2, π/2[.

(ii) the curves Ci and C followed by Pi and Q are smooth (i =
0, 1, . . . , n).

(iii) tan(θi−1 − θi ) = diκi (i = 1, . . . , n) and tan ϕ = d0κ0,
where κi and κ0 are the curvatures of Ci and C0, respec-
tively;

(iv) the curvature κi can be expressed as a smooth function of κn

and of its first n−i derivatives with respect to sn; moreover
the mapping (which is independent of sn)



κn
dκn

dsn
...

dnκn

dsn
n




−→




κn

κn−1
...

κ0




is a global diffeomorphism from R
n+1 to R

n+1.

Proof of the lemma As displayed on figure 2, the point Pi−1

belongs to the tangent to Ci at Pi and at the fixed distance di

from Pi . By assumption τn = d Pn
dsn

admits the good orientation:
Pn−1 = Pn + dnτn (we do not have Pn−1 = Pn − dnτn). Thus
Cn−1 is given by the parameterization sn → Pn + dnτn which is

regular since
∥∥∥ d Pn−1

dsn

∥∥∥ = √
1 + d2

nκ2
n . A natural parameteriza-

tion sn−1 → Pn−1 is given by

dsn−1 =
√

1 + d2
nκ2

n dsn. (4)

The unitary tangent vector, τn−1, is given by√
1 + d2

nκ2
n τn−1 = τn + dnκn νn,

where νn is the oriented normal to Cn . The angle θn−1 − θn is
the angle between τn and τn−1. Thus tan(θn−1 − θn) = dnκn .
Since κn is always finite and θn−1 − θn belongs ] − π/2, π/2[
for sn = 0, θn−1 −θn cannot escapes from ]−π/2, π/2[ for any
sn ∈ [0, Ln]. The oriented normal to Cn−1, νn−1, is given by√

1 + d2
nκ2

n νn−1 = −dnκn τn + νn,

and the signed curvature κn−1 of Cn−1 is, after some calculations,

κn−1 = 1√
1 + d2

nκ2
n

(
κn + dn

1 + d2
nκ2

n

dκn

dsn

)
. (5)

Since θn−1 − θn remains in ] −π/2, π/2[, the unitary tangent
vector τn−1 has the good direction, i.e., Pn−2 = Pn−1+dn−1τn−1.
The analysis can be continued for Pn−2, . . ., P0 and Q. This
proves (i), (ii) and (iii).

Assertion (iv) comes from the following formula derived from
(5) and (4) (i = 1, . . . , n):

κi−1 = 1√
1 + d2

i κ2
i

(
κi + di

1 + d2
i κ2

i

dκi

dsi

)
(6)

where si−1 is the natural parameterization of Ci−1 defined by

dsi−1 =
√

1 + d2
i κ2

i dsi . (7)

Consequently, κi is an algebraic function of κn and its first n − i
derivatives with respect to sn . Moreover, the dependence with

respect to
dn−iκn

dsn−i
n

is linear via the term

di+1

(1 + d2
i+1κ

2
i+1)

3/2
. . .

dn

(1 + d2
nκ2

n )3/2

dn−iκn

dsn−i
n

The map of assertion (iv) has a triangular structure with a di-
agonal dependence that is linear and always invertible: it is a
global diffeomorphism.

Proof of proposition 2 Denote by (x̃n, ỹn) and (xn, yn) the
Cartesian coordinates of P̃n and Pn , the initial and final positions
of Pn . There always exists a smooth planar curve Cn with a
natural parameterization sn → Pn(sn) satisfying the following
constraints:

– Pn(0) = P̃n and Pn(Ln) = Pn for some Ln > 0.
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Figure 3: the general 1-trailer system is flat with linearizing
point P (L and K are defined by (10) and (12)).

– the direction of tangent at P̃n (resp. Pn) is given by the
angle θ̃n (resp. θn);

– the first n derivatives of the signed curvature κn at points
P̃n and Pn have prescribed values.

According to (iii) and (iv) of the above lemma, the initial and
final values of the angles (i = 1, . . . , n) θi−1 − θi and ϕ define
entirely the initial and final first n derivatives of κn . It suffices
now to choose a smooth function [0, T ] � t → sn(t) ∈ [0, Ln]
such that sn(0) = 0, sn(T ) = Ln and ṡn(0) = ṡn(Ln) = 0,
to obtain the desired control trajectory via the relations (the
notations are those of the above lemma):


ṡ0 = u1 =
(

n∏
i=1

√
1 + d2

i κ2
i

)
ṡn

u2 =
(

n∏
i=1

√
1 + d2

i κ2
i

)
d0

1 + d2
0κ2

0

dκ0

ds0
ṡn.

3 The general 1-trailer system

This nonholonomic system is displayed on figure 3: here the
trailer is not directly hitched to the car at the center of the rear
axle, but more realistically at a distance a of this point. The two
controls are the driving velocity u1 of the car rear wheels, and
the steering velocity u2 of the car front wheels. The kinematic
equations are as follows (notations are given on figure 3):

ẋ = cos α u1

ẏ = sin α u1

ϕ̇ = u2

α̇ = 1

l
tan ϕ u1

β̇ = 1

b

(a

l
tan ϕ cos(α − β) − sin(α − β)

)
u1

(8)

where (x, y) are the Cartesian coordinates of point A. Parame-
ters l, a and b are positive lengths. The case a < 0 is similar to

a > 0 and is not treated here.
In [15], this system was shown to be flat. This result was

inspired by [2]. This paper is also connected to [16, 25], where
Goursat normal forms and chained systems are constructed: it is
not difficult to prove that driftless systems which, up to changes
of coordinates and static or dynamic endogenous feedbacks, can
be put into chained forms, are necessarily flat.

We just give here the geometric construction and the analog of
propositions 1 and 2. Notice that, contrarily to (3), the explicit
derivation of the linearizing output is far from being obvious.

Proposition 3 System (8) is flat. A possible linearizing output
y = (y1, y2) is

y1 = x + b cos β + L(α − β)
b sin β − a sin α√

a2 + b2 − 2ab cos(α − β)

y2 = y + b sin β + L(α − β)
a cos α − b cos β√

a2 + b2 − 2ab cos(α − β)
(9)

with

L(α − β) = ab
∫ 2π+α−β

π

cos σ√
a2 + b2 − 2ab cos σ

dσ (10)

Geometrically (y1, y2) are the Cartesian coordinates of P (see
figure 3).

Consider now the real function
�(δ) = cos δ

√
a2 + b2 − 2ab cos δ − L(δ) sin δ. Routine cal-

culations show that there exists a unique real γ ∈ [0, π/2] such
that

�(γ ) = 0 and ∀δ ∈]γ, 2π − γ [ �(δ) < 0. (11)

When a = 0, γ = π/2 and P coincides with B.

Proposition 4 Consider (8) and two different state-space con-
figurations: p̃ = (x̃, ỹ, ϕ̃, α̃, β̃) and p = (x, y, ϕ, α, β).
Assume that the angles α̃ − β̃ and α − β (resp. ϕ̃ and
ϕ) belong to ]γ − 2π, −γ [ (resp. ] − π/2, π/2[) (γ is de-
fined by (11)). Then, there exists a smooth open-loop control
[0, T ] � t → (u1(t), u2(t)) steering the system from p̃ at time
0 to p at time T > 0, such that the angle α−β (resp. ϕ) always
remains in ]γ − 2π, −γ [ (resp. ] − π/2, π/2[) and such that
(u1(t), u2(t)) = 0 for t = 0, T .

Sketch of the proof The arguments are very similar to those
used for proposition 2. The computations are slightly more
complex. We use the Frénet formulas for the curve P followed
by the linearizing point P and the geometric construction of
figure 3.

The unitary tangent vector τ to P is colinear to AB. The
curvature κ is a function of δ = 2π + α − β:

κ = K (δ) = sin δ

cos δ
√

a2 + b2 − 2ab cos δ − L(δ) sin δ
. (12)
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Figure 4: example of backward motions for the general 1-trailer
system (8) with l = 1 m, a = 1.5 m, b = 2.5 m and T = 15 s.

The function K is an increasing diffeomorphism from ]γ, 2π −
γ [ to R and D is given by D = P − L(δ)ν where ν is the unitary
normal vector to P . This means that (x, y, α, β) is a function of
(P, τ, κ). The steering angle ϕ depends on κ and dκ/ds where
s is the arc length on P . We have a global diffeomorphism from
(x, y, α, 2π +α−β, ϕ) ∈ R

2 ×S1×]γ, 2π −γ [×]−π/2, π/2[
to (P, τ, κ, dκ/ds) ∈ R

2 × S1 × R
2.

The fact that (α−β) and ϕ depend only on (κ, dκ/ds) results
directly from the invariance of the problem with respect to the
group of planar Euclidian transformations. Such physical and
symmetry considerations are often used here for simplifying
the calculations and deriving the coordinates of the linearizing
point P .

This geometric construction can be easily used for solving the
steering problem of the general 1-trailer system. As in [19], a
simple steering program can be directly deduced from such de-

P

B

A

C

Figure 5: the general 2-trailer system is not flat.

velopments. The MATLAB simulations of figure 4 illustrate the
interest of flatness combined with such geometric constructions.

4 Concluding remarks

The concept of flatness, which has been illustrated by these non-
holonomic systems, may be utilized in many industrial applica-
tions, such as the crane [10], aircraft control [13] and chemical
reactors [20, 18]. Nevertheless, all systems are not flat. Using
the flatness characterization given in [15], one can prove that
the general 2-trailer system of figure 5 and the plate-ball system
considered in [12] are not flat: their defects [7, 4] are equal to
one. These two nonflat systems are closely related to a class of
nonlinear second order Monge equations studied in [11].

The multi-steering trailer systems considered in [1, 26, 23]
are also flat: the flat output is then obtained by adding to the
Cartesian coordinates of the last trailer, the angles of the trailers
that are directly steered. This generalization is quite natural in
view of the geometric construction of figure 2.

Notice finally that, if we add to the general 2-trailer system
of figure 5 a new control that steers directly the last trailer, the
system becomes flat: the linearizing output is then formed of
the point P with the angle of the last trailer. This fact explains
probabily why multi-steering trailer systems are encountered in
practice.
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[4] M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Flatness and
defect of nonlinear systems: introductory theory and examples.
submitted.
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[11] D. Hilbert. Über den Begriff der Klasse von Differentialgle-
ichungen. Math. Ann., 73:95–108, 1912. also in Gesammelte
Abhandlungen, vol. III, pp. 81–93, Chelsea, New York, 1965.

[12] V. Jurdjevic. The geometry of the plate-ball problem. to appear.
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