
KRONECKER’S CANONICAL FORMS FOR NONLINEAR

IMPLICIT DIFFERENTIAL SYSTEMS

P. Rouchon∗ M. Fliess† J. Lévine ‡
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Abstract: The structure algorithm provides an extension to nonlinear systems of the Kronecker canonical forms
relative to linear constant-coefficient implicit differential systems. A connection with the index problem is
sketched in the conclusion.
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1 Introduction

The structure of linear constant-coefficient systems

A
dx

dt
+ Bx = e(t), (1)

where A and B are real square matrices of order n, x
is the n-tuple of unknown variables, e(t) is an n-tuple
of smooth time functions, is rather well known.

In [14], Sincovec et al. introduce the notion of in-
dex for (1) by using the Kronecker canonical form of
matrix pencils [8]. If the matrix pencil λA+B is regu-
lar1, there exist P and Q, two regular square matrices
of dimension n, and an integer p, between 0 and n,
such that

PAQ =
(

1p 0
0 E

)
and PBQ =

(
R 0
0 1n−p

)

(2)
where 1p and 1n−p are the identity matrices of order p
and n−p, respectively, E is a square nilpotent matrix
of order n− p and R a square matrix of order p ; the
nilpotency index of the matrix E is called the index
(see [9, 1, 6, 7]).

This means that, with a linear change of coordi-
nates and linear combinations of the equations, (1)
becomes {

dy
dt = Ry + f(t)

E dz
dt = z + g(t)

(3)

where Q−1x = (y, z)′ and Pe(t) = (f(t), g(t))′. This
system is generally called the Kronecker canonical
form of (1).

We show here (see also [12]) that the structure al-
gorithm [15, 11] provides a natural extension of this
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‡École des Mines de Paris, Centre Automatique et
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1λA+B is said to be regular if, and only if, the polynomial
det(λA + B) in the complex varaible λ is different from zero.

particular form to implicit nonlinear systems

F

(
dx

dt
, x, e(t)

)
= 0 (4)

where F = (F1, . . . , Fn)′ is an n-tuple of analytic
functions of their arguments on some open connec-
ted domain, e = (e1, . . . , en)′ is an n-tuple of known
analytic time functions, and x = (x1, . . . , xn)′ is an
n-tuple of unknown time functions. Such nonlinear
canonical forms are generic : we do not address the
problems of singularities ; as for the structure algo-
rithm, the rank of all the Jacobian matrices are assu-
med constant.

The paper is organized as follows. In section 2 we
recall the structure algorithm and its suitable version
due to Li and Feng [11]. In section 3, the nonlinear
Kronecker canonical form is established. In conclu-
sion, we sketch some connection with the index [7, 6].

2 Inversion

Consider the square system dx
dt = f(x, u, t), y =

h(x, u, t). the state vector x belongs to an open
connected domain of Rn ; u, the control vector, be-
longs to an open connected domain of Rm ; y ∈ Rm

is the the output vector ; f and h are analytic func-
tions of their arguemts. The inversion of such sys-
tems has been studied by many authors in control
theory. It consists in finding the control u(t) when
the output y(t) is a known smooth time function.
In this section, we only refer to the structure algo-
rithm [15] and to a paper of Li and Feng [11] where
the control variables appear nonlinearly. For linear
systems, Silverman [13] establishes a necessary and
sufficent condition for the existence and unicity of
u(t). This condition is constructive and based on an
elimination principle. Hirschorn [10], Singh [15] and
Descusse and Moog [2] use this elimination principle
and propose inversion algorithms for nonlinear sys-
tems where f and h are nonlinear functions of x and
linear functions of u. Li and Feng [11] use the same
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elimination principle for inverting systems where f
and h are arbitrary analytic functions.

2.1 Algorithm

For simplicity’s sake, we have eliminated all the
restrictions relative to singularities. We assume, once
for all, that the ranks of all the Jacobian matrices are
constant. Consider

(S)





dx
dt = f(x, u, t)

0 = h(x, u, t)

Our purpose is to calculate x(t) and u(t). The inver-
sion algorithm is then as follows.

Step k = 0 Denote by h0(x, u, t) the function
h(x, u, t). If x(t) and u(t) are solutions of the inver-
sion problem, then, for all time t, h0(x(t), u(t), t) = 0.

Step k ≥ 0 Assume we know the analytic func-
tion hk(x, u, t) (dim hk = m) such that, if x(t)
and u(t) are solution of the inversion problem, then
hk(x(t), u(t), t) ≡ 0.

Denote by µk the rank of hk with respect to u, i.e.
the rank of the Jacobian matrix ∂hk

∂u . If we permute
the rows of hk, we may assume that its first µk rows,
hk = (h1

k, . . . , hµk

k )′, are such that the rank of ∂hk

∂u
is maximum and equal to µk. Consequently, the last
m−µk rows, h̃k = (hµk+1

k , . . . , hm
k )′, of hk depend on

u only through hk : there exists an analytic function
Φk(x, t, ) such that h̃k(x, u, t) = Φk(x, t, hk(x, u, t)).
hk+1 is then defined by

hk+1(x, u, t) =

(
hk(x, u, t)(

∂Φk

∂x

)
(x,t,0)

f(x, u) +
(

∂Φk

∂t

)
(x,t,0)

)
.

Notice that

d

dt
[Φk(x, t, 0)] =

(
∂Φk

∂x

)

(x,t,0)

f(x, u)+
(

∂Φk

∂t

)

(x,t,0)

is equal to d
dt

[
h̃k(x, u, t)

]
, when hk(x(t), u(t), t) = 0

for all t. This implies that, if x(t) and u(t) are solution
of the inversion problem, then hk+1(x(t), u(t), t) = 0.
We impose additionally that the first µk rows of hk+1

coincide with the ones of hk.

2.2 Algorithmic analysis

The µk’s constitute a nondecreasing series of inte-
gers less or equal to m. One can prove [3] that this
series does not depend on the arbitrary choices that
we impose at each step of the algorithm. The µk cor-
respond to structural invariants attached to the sys-
tem. Clearly, the µk are constant for k large enough.
The following definition2 is thus natural.

2[11], definition 2.

Definition 1. If there exists k ≥ 0 such that µk = m,
then the relative order α of (S) is the smallest integer
k such that µk = m. If, for all k ≥ 0, µk < m, then
the relative order α of (S) is equal to +∞.

One has also the following result3 :

Lemma 1. If the relative order α of (S) is finite,
then α ≤ n and the rank of the Jacobian matrix

∂

∂x




Φ0(x, t, 0)
...

Φα−1(x, t, 0)




is equal to the number of its rows,
∑α

k=0(m− µk).

The stationary value of the µk’s is the differential
output rank of the system (S) [4, 3]. If this output
rank is equal to m, then the system is invertible4 : the
relative order α of (S) is then finite and the square
algebraic system hα(x, u, t) = 0 provides u as a func-
tion of x and t.

If the output rank is less than m, the system is not
invertible : the relative order α of (S) is infinite and,
generically, (S) has no solution.

3 Canonical form

In the following theorem, we have replaced
F

(
dx
dt , x, e(t)

)
by F

(
dx
dt , x, t

)
for clarity’s sake.

Theorem 1. Consider the square nonlinear implicit
system depending on the time t, (Σ) : F

(
dx
dt , x, t

)
=

0, where F is an analytic function of its arguments
and x belongs to an open connected domain of Rn.
Assume that the relative order α (definition 1) of

(Σe)

{
dx
dt = u

0 = F (u, x, t)

is finite. Then, there exist, locally, a change of va-
riables on x, ξ = Ξ(x, t),5 depending on t, and
a local diffeomorphism Π( dξ

dt ,ξ,t)(F ) depending on(
dξ
dt , ξ, t

)
such that : ξ is made of α + 1 groups

of components ξ = (ξ1, . . . , ξα, ζ)′ with dim(ξ1) ≥
dim(ξ2), . . . ,≥ dim(ξα) ; Π( dξ

dt ,ξ,t)(0) = 0 for all dξ
dt ,

ξ and t ; Π( dξ
dt ,ξ,t)

(
F

(
∂Ξ−1

∂ξ
dξ
dt + ∂Ξ−1

∂t , Ξ−1(ξ, t), t
))

is equal to



ξ1

ξ2 − φ1

(
ξ, t, dξ1

dt

)

ξ3 − φ2

(
ξ, t, dξ1

dt , dξ2
dt

)

...
ξα − φα−1

(
ξ, t, dξ1

dt , . . . , dξα−1
dt

)

dζ
dt − Ω

(
ζ, t, dξ1

dt , . . . , dξα

dt

)




;

3[11], theorem 1 and lemma 4.
4For square systems there is no difference between left and

right invertibility.
5In the theorem proof, we show how the function Ξ is ex-

plicitly given by the structure algorithm.



the functions φk and Ω are analytic ; each function φk

vanishes when (dξ1
dt , . . . , dξk

dt ) becomes zero ; the rank
of φk with respect to dξk

dt is maximum.

In the coordinates ξ, (Σ) yields :

(Σc)





ξ1 = 0
ξ2 = φ1

(
ξ, t, dξ1

dt

)

ξ3 = φ2

(
ξ, t, dξ1

dt , dξ2
dt

)

...
ξα = φα−1

(
ξ, t, dξ1

dt , . . . , dξα−1
dt

)

dζ
dt = Ω

(
ζ, t, dξ1

dt , . . . , dξα

dt

)
.

When F is linear with respect to dx
dt and x and in-

dependant of t, F (dx
dt , x, t) = Adx

dt + Bx − e(t), (Σc)
corresponds to the Kronecker’s canonical form (3) :
Ξ = Q, Π = P and the nilpotent operator E corres-
ponds to




dξ1
dt
...

dξα

dt


 −→




0
φ1

(
ξ, dξ1

dt

)

...
φα−1

(
ξ, dξ1

dt , . . . , dξα−1
dt

)




.

Thus, the coordinates ξ can be called canonical co-
ordinates, and the system (Σc) the canonical form of
(Σ) associated to the canonical coordinates ξ. Notice
that, as in the linear case, such canonical coordinates
are not unique.

Proof of theorem 1 We only describe in details
the passage to (Σc). The obtention of the equation
diffeomorphism Π( dξ

dt ,ξ,t)( ) is then straightforward : it
is just the translation, into a more mathematical sta-
tement, of sentences like “the system becomes equi-
valent to” that are used here below.

Since α < +∞, lemma 1 holds. Consequently,
we can complete the functions Φ0(x, t, 0), . . . ,
Φα−1(x, t, 0) with a function Ψ(x) such that

x −→




ξ1 = Φ0(x, t, 0)
...

ξα = Φα−1(x, t, 0)
ζ = Ψ(x)




is a local diffeomorphism. Denote by ξ =
(ξ1, . . . , ξα, ζ)′ = Ξ(x, t) (dim(ξk) = n − µk−1 and
dim ζ = n −∑α

k=1(n − µk−1)). hk(x, ẋ, t) is denoted
by hk(ξ, ξ̇, t), Φk(x, t, ) is denoted by Φk(ξ, t, ) with
ξ = Ξ(x, t) and ξ̇ = ∂Ξ

∂x ẋ + ∂Ξ
∂t .

By construction, the first µ0 rows of h1 correspond
to h0. Consequently

h1(ξ, ξ̇, t) =
(

h0(ξ, ξ̇, t)
ξ̇1

)
=




h0(ξ, ξ̇, t)
ξ̇1
˙̃
ξ1




with h1(ξ, ξ̇, t) =

(
h0(ξ, ξ̇, t)

ξ̇1

)
, ˙̃

ξ1 =

Φ1(ξ, t, (h0(ξ, t, ξ̇), ξ̇1)′). ξ1 is made of two groups of
components, ξ1 = (ξ1, ξ̃1)′ of dimensions, respecti-
vely, µ1 − µ0 and n− µ1.

Similarly, each ξk is made of two groups of com-
ponents, ξk = (ξk, ξ̃k)′ of dimensions µk − µk−1 and
n− µk. By construction,

hk(ξ, ξ̇, t) =
(

hk−1(ξ, ξ̇, t)
ξ̇k

)
=




hk(ξ, ξ̇, t)
ξ̇k
˙̃
ξk




with hk(ξ, ξ̇, t) =

(
hk−1(ξ, ξ̇, t)

ξ̇k

)
, ˙̃

ξk =

Φk(ξ, t, (hk(ξ, ξ̇, t), ξ̇k)′).
Since µα = n, we have

hα(ξ, ξ̇, t) = hα(ξ, ξ̇, t) =




h0(ξ, ξ̇, t)
ξ̇1
...

ξ̇α




.

The rank of hα with respect to ξ̇ =
(ξ̇1,

˙̃
ξ1, ξ̇2,

˙̃
ξ2, . . . , ξ̇α−1,

˙̃
ξα−1, ξ̇α, ζ̇)′ is equal to

n and dim(hα) = n. Necessarily, the rank of
the Jacobian matrix ∂h0

∂
�

˙̃
ξ1,...,

˙̃
ξα−1,ζ̇

� is equal to

n − ∑α
k=1(µk − µk−1) = µ0. But the dimension of

the vector ( ˙̃
ξ1, . . . ,

˙̃
ξα−1, ζ̇) is equal to

α−1∑

k=1

(n− µk) + n−
α∑

k=1

(n− µk−1) = µ0.

Consequently, ∂h0

∂
�

˙̃
ξ1,...,

˙̃
ξα−1,ζ̇

� is square and invertible.

Thus, locally, h0(ξ, ξ̇, t) = 0 can be written explicitly
with respect to ( ˙̃

ξ1, . . . ,
˙̃
ξα−1, ζ̇) :





˙̃
ξ1 = θ2(ξ, t, ξ̇1, . . . , ξ̇α)

...
˙̃
ξα−1 = θα(ξ, t, ξ̇1, . . . , ξ̇α)

ζ̇ = Θ(ξ, t, ξ̇1, . . . , ξ̇α).

(5)

One has : ˙̃
ξk = Φk(ξ, t, (h0(ξ, ξ̇, t)), ξ̇1, . . . , ξ̇k)′). Since

h0(ξ, ξ̇, t) = 0, we have for k = 2, . . . , α

θk(ξ, t, ξ̇1, . . . , ξ̇α) = Φk−1(ξ, t, (0, ξ̇1, . . . , ξ̇k)′).

Since

h(ξ, ξ̇, t) = h0(ξ, ξ̇, t) =
(

h0(ξ, ξ̇, t)
Φ0(ξ, t, h0(ξ, ξ̇, t))

)
,

h(ξ, ξ̇, t) = 0 is equivalent to
{

h0(ξ, ξ̇, t) = 0
Φ0(ξ, t, 0) = 0.



With (5), the change of variables x → ξ tranforms
the system (Σ) into





ξ1 = 0
˙̃
ξ1 = Φ1(ξ, t, (0, ξ̇1)′)

...
˙̃
ξα−1 = Φα−1(ξ, t, (0, ξ̇1, . . . , ξ̇α−1)′)

ζ̇ = Θ(ξ, t, ξ̇1, . . . , ξ̇α),

with Θ an analytic function. It suffices to take

φk(ξ, t, ξ̇1, . . . , ξ̇k) = ˙̃
ξk+ξk+1−Φk(ξ, t, (0, ξ̇1, . . . , ξ̇k)′)

and to remark that, locally, (ξ1, . . . , ξα) is a function
of (ξ̇1, . . . , ξ̇α−1), in order to obtain the canonical form
(Σc).

4 Concluding remarks

In [6], we give a general algebraic definition of the
index for nonlinear systems of form (4) through their
linear tangent time-varying systems and non commu-
tative extension of Laplace techniques. One can ea-
sily prove that the index is bounded above by the
relative order α of the extended system dx

dt = u,
0 = F (u, x, e(t)) and is equal to α when ∂F

∂e is
invertible. In [7] state-variable representation of li-
near time-varying implicit system are given. Simi-
larly, such nonlinear Kronecker canonical forms pro-
vide generalized state-space form representation [5] of
the implicit system (4). In [12], it is shown how such
canonical forms can be used to analyze the conver-
gence of numerical resolution algorithms.
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