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Abstract

It is proved that, contrarily to the 2-D case, the sufficient Arnol’d stability
criterion for steady-state solutions of the incompressible Euler equations is never
satisfied when 3-D perturbations are considered.

Suggested running title: On Arnol’d stability criterion
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1 Introduction

Arnol’d 1965 proposes a sufficient nonlinear stability criterion for smooth stationary solu-
tions of the Euler equations. In particular, he applies his criterion to parallel shear flows,
proves the local nonlinear stability with respect to 2-D perturbations when the velocity
profile has no inflexion point and obtains in a more rigorous way the well known Rayleigh
theorem.

However, Arnol’d 1966 (page 349, second paragraph) notices that, likely, there does
not exist stationary flow satisfying his criterion for 3-D perturbations. In this paper, we
prove effectively that, for every smooth stationary flow, this sufficient stability criterion
is not satisfied when 3-D perturbations are considered.

All the calculations require a regularity condition that is assumed in this paper :
the time and space dependences of the velocity and pressure are smooth (at least, twice
continuously differentiable C2).

Recently, Vallis et al. 1989 propose a method to obtain steady-state flows that are
solution of the Euler equations and that satisfy automatically Arnol’d stability criterion.
The result below proves that such method cannot be applied to the 3-D case and must
be used only for 2-D flows. Otherwise stated, the answer to the open problem concerning
the 3-D stability of non zero stationary flows cannot be deduced from this criterion.

We recall first the sufficient stability criterion elaborated by Arnol’d and secondly we
show that it is never satisfied for 3-D pertubations.

2 The stability criterion

2.1 The Euler equations

Let D be a domain of the Euclidian space IR3 bounded by the fixed surface ∂D as displayed
on figure 1; let ~v be the velocity field of an ideal fluid (incompressible, density equal to 1,
exterior to a non-potential mass force field) which fills the domain D. Let p be the
pressure.

Under such assumptions the fluid motions are described by the Euler equations,

∂~v

∂t
+ (~v · ∇)~v = −∇p (1)

equivalent to the Bernoulli equations,

∂~v

∂t
= ~v × ~r −∇λ, with ~r = ∇× ~v and λ = p + ~v2/2. (2)

The velocity field ~v satisfies ∇·~v = 0 in D and ~v ·~n = 0 on ∂D where ~n is a vector normal
to ∂D.
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Figure 1: typical 3-D bounded fluid domain.

Using the identity

∇× (~a×~b) = [~a,~b] + (∇ ·~b)~a− (∇ · ~a)~b

where [~a,~b] denotes the Lie bracket of the vector fields ~a and ~b, we obtain the vorticity
equation

∂~r

∂t
= [~v, ~r]. (3)

2.2 Arnol’d’s study

A summary of several Arnol’d’s results on the hydrodynamics of perfect fluid can be found
in the appendix 2 of his book “Mathematical Methods of Classical Mechanics” (1976).
Here, we consider only one result, published in 1965, that is very accessible to non-
mathematicians.

Arnol’d 1965 proves that a steady-state flow, solution of the above Euler equation (1),
is an extremal of the kinetic energy

E = 1/2
∫ ∫ ∫

D
~v2d%

in comparison with equivortical velocity fields1.

1Definition 3.1 in Arnol’d 1965 : two vector fields ~v and ~v′, such that ∇ · ~v = ∇ · ~v′ = 0 on D and
~v · ~n = ~v′ · ~n = 0 on ∂D, are equivortical fields if and only if there exists a smooth volume preserving
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More precisely, Arnol’d (1965)

– uses perturbation mappings of the form gt = exp(t ~f) (~f is a vector field on D of
zero divergence and tangent to ∂D) ;

– proves that the resulting equivortical perturbation δ~v of the velocity ~v is given by

δ~v = t ~f × ~v +
t2

2
~f × [~f, ~r] +∇α + O(t3)

where the real function α is such that δ~v is of zero divergence and is tangent to ∂D ;

– shows that, for stationary flow ~v, δE = O(t2) if δ~v = t(~f × ~v +∇α) + O(t2) ;

– computes, around a stationary flow ~v, the second variation δ2E associated to per-
turbation mappings of the form gt = exp(t ~f),

2 δ2E(t ~f) = t2
∫ ∫ ∫

D

(
(~f × ~r +∇α)2 + (~v × ~f) · [~f, ~r]

)
d% + O(t3) (4)

where the real function α is chosen such that ~f × ~r +∇α is of zero divergence and
tangent to ∂D.

Since for every solution of the Euler equation, the velocity vector fields at two different
times are isovortical vector fields (Helmotz’s theorem on the conservation of circulation),
Arnol’d (1965) uses this extremal property to investigate the nonlinear stability of steady-
state solutions: if the extremum is a true minimum or a true maximum then the steady-
state flow is stable, i.e. a small change in the initial velocity induces only a small change
in the velocity field for all times2.

Arnol’d (1965) notices that he was unable to find a steady-state flow v such that

δ2E(~f) is of fixed sign for every 3-D perturbations parametrized by ~f .

mapping g of the domain D into itself such that
∮

γ

~v · ~dl =
∮

g(γ)

~v′ · ~dl

for every closed contour γ included in D; this means that the mapping g transforms ∇× ~v into ∇× ~v′,
i.e.

(∇× ~v′)g(M) = DgM (∇× ~v)M

for all point M in D and where DgM denotes the differential of g with respect to the 3 spaces coordinates
evaluated at M .

2Arnol’d (1976) (appendix 2, page 330, theroem 8) precises that, to be valid, such a sufficient stabil-
ity criterion requires a regularity condition. This regurality condition tells that every small isovortical
perturbation of ~v derives from a perturbation mapping of the form gt = exp(t ~f). This means that one
can parametrize all infinitesimal isovortical perturbations δ~v by vector fields ~f .
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3 Limitation of the criterion

Theorem 1 Consider a non zero steady-state solution ~v of the Euler equation for the
3-D bounded domain D. Then there exists vector fields ~f+ and ~f− on D such that

∇ · ~f+ = 0 and ∇ · ~f− = 0 on D,
~f+ · ~n = 0 and ~f− · ~n = 0 on ∂D,

δ2E(~f+) > 0 and δ2E(~f−) < 0

where δ2E is given by (4). Otherwise stated, the equivortical extremum ~v of E is always
a saddle point.

The main idea of the proof

The construction of such vector fields ~f = ~f+ or ~f− basically relies on a regularity
idea: ~f can be small whereas its derivatives may be large. In other words, examples of
suitable perturbation ~f are associated to localized eddies of small kinetic energy and high
enstrophy.

More precisely, consider the two terms of the integral giving δ2E(~f). The first one

(~f × ~r +∇α)2 is always positive and depends only on ~f . Consequently, if ~f = O(ε) (ε is

a small positive scalar), (~f × ~r +∇α)2 = O(ε2). For the second term (~v× ~f) · [~f, ~r] , it is

different: if ~f = O(ε) and D~f = O(1) then3 (~v × ~f) · [~f, ~r] = O(ε). Such a difference of
order in ε explains why the second term whose sign may be chosen negative, can dominate
the first term which is always non negative.

For the detailed proof, we consider two cases:

1. the velocity field is not always proportional to the vorticity field;

2. the velocity field is always proportional to the vorticity field.

Proof when ~v × (∇× ~v) 6= 0

Consider a point O interior to D such that ~v and ~r = ∇ × ~v are independent. To build
~f+ and ~f−, we need suitable space coordinates denoted (x, y, z).

They are given by lemma 1. In such local coordinates, the expression of δ2E(~f)

becomes more simple for vector fields ~f that are equal to zero outside a small neighbour-
hood Ω of O in D.

As displayed on figure 2, such vector fields ~f can be written as follows:

~f = λ~v + µ~r + ν ~w

3D~f denotes the derivative of ~f with respect to the three space coordinates.
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Figure 2: local expression of the perturbation ~f around O.

where λ, µ and ν are functions of the local space coordinates (x, y, z) on Ω, equal to zero

outside Ω and where ~v = ~ex, ~r = ~ey and ~w = ~ez. The condition ∇· ~f = 0 is then equivalent
to

∂λ

∂x
+

∂µ

∂y
+

∂ν

∂z
= 0

because the ~v, ~r, and ~w are zero divergence vector fields. The boundary condition ~f ·~n = 0
on ∂D is automatically satisfied since ~f = 0 on D − Ω.

We have
[~f, ~r] = λ[~v, ~r] + µ[~r, ~r] + ν[~w,~r]

+(∇λ · ~r)~v + (∇µ · ~r)~r + (∇ν · ~r)~w

=
∂λ

∂y
~v +

∂µ

∂y
~r +

∂ν

∂y
~w

and

(~v × ~f) · [~f, ~r] =

(
µ

∂ν

∂y
− ν

∂µ

∂y

)
det(~v, ~r, ~w).

Thus4

2δ2E(~f) =
∫ ∫ ∫

D
(~f × ~r +∇α)2d% +

∫ ∫ ∫

Ω

(
µ

∂ν

∂y
− ν

∂µ

∂y

)
det(~v, ~r, ~w) dxdydz (5)

where α is chosen such that (∇α) · ~n = 0 on ∂D and ∇ ·
(
~f × ~r

)
+ ∆α = 0 on D.

Consider an arbitary constant k (its sign will be chosen in the sequel) and the asso-

ciated components (F1, F2, F3) of the vector field ~F given by lemma 2 herebelow. Take

4We can scale the coordinate z such that, in Ω, the Euclidian volume element d% (that is proportional
to dxdydz with a constant coefficient) is identically equal to dxdydz.
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ε > 0 a small scalar and state

λ = εF1(x/ε, y/ε, z/ε),
µ = εF2(x/ε, y/ε, z/ε),
ν = εF3(x/ε, y/ε, z/ε).

Clearly, the resulting ~f is zero outside an ε neighbourhood Ωε of O and satisfies ∇· ~f = 0.5

A straightforward computation shows that

∫ ∫ ∫

Ωε

(
µ

∂ν

∂y
− ν

∂µ

∂y

)
det(~v, ~r, ~w) dxdydz = k det(~vO, ~rO, ~wO) ε4 + O(ε5). (6)

We have
∫ ∫ ∫

D
(~f × ~r +∇α)2d% =

∫ ∫ ∫

D
(∇α)2d% +

∫ ∫ ∫

Ωε

2 det(~f, ~r,∇α) dxdydz +
∫ ∫ ∫

Ωε

(~f × ~r)2dxdydz.

Since
(∇α)2 = ∇ · (α∇α)− α∆α

and, by construction of α,
∆α = −∇ · (~f × ~r),

we obtain
(∇α)2 = ∇ · (α∇α + α~f × ~r)− det(~f, ~r,∇α).

Using ∇α · ~n = 0 and ~f = 0 on ∂D, we have
∫ ∫ ∫

D
(∇α)2d% = −

∫ ∫ ∫

Ωε

det(~f, ~r,∇α) dxdydz

and thus
∫ ∫ ∫

D
(~f × ~r +∇α)2d% =

∫ ∫ ∫

Ωε

(~f × ~r)2 dxdydz −
∫ ∫ ∫

D
(∇α)2dxdydz.

Consequently
∫ ∫ ∫

D
(~f × ~r +∇α)2d% ≤

∫ ∫ ∫

Ωε

(~f × ~r)2 dxdydz = O(ε5) (7)

The substitution of relations (6) and (7) into equation (5) gives

2δ2E(~f) = k det(~vO, ~rO, ~wO) ε4 + O(ε5).

By choosing the sign of k and ε small enough, δ2E(~f) becomes positive or negative.

5Notice that the vector field ~F constructed in the proof of lemma 2 and which gives after scaling the
perturbation vector field ~f , has no obvious symmetry (see figure 4 where ~ex1 is proportional to ~v, ~ex2 to
~r and ~ex3 to ~w). The resulting equivortical perturbation is three-dimensional.
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Proof when ~v × (∇× ~v) ≡ 0

This case differs only slightly from the previous one. Lemma 1 is replaced by lemma 3.
A vector field ~f of zero divergence that is zero far from O can be expressed as

~f = λ~v + ν1 ~w1 + ν2 ~w2

where

– λ, ν1 and ν2 are functions of (x, z1, z2) null far from (x = 0, z1 = 0, z2 = 0) and
satisfying

∂λ

∂x
+

∂ν1

∂z1

+
∂ν2

∂z2

= 0;

– ~ex = ~v, ~ez1 = ~w1 and ~ez2 = ~w2.

Around O, we can state ~r = ∇ × ~v = ξ~v where ξ is a real function. A simple
computation gives

(~v × ~f) · [~f, ~r] = ξ

(
ν1

∂ν2

∂x
− ν2

∂ν1

∂x

)
det(~v, ~w1, ~w2).

Consequently

2 δ2E(~f) =
∫ ∫ ∫

D
(ξ ~f × ~v +∇α)2d% +

∫ ∫ ∫

Ω
ξ

(
ν1

∂ν2

∂x
− ν2

∂ν1

∂x

)
det(~v, ~w1, ~w2) dxdz1dz2.

Lemma 4 provides, after scaling, the desired vector fields ~f+ and ~f−.
Notice that, since the domain D is bounded and closed, there exists a point O interior

to D such that ~v and ~r = ξ~v are non zero at this point. The reason is the following: if such
point O does not exist, the velocity field ~v derives necessarily from a scalar potential.Thus
~v must be identically equal to zero since ~v · ~n = 0 on ∂D which is an orientable, compact
surface of IR3 without boundary.

4 Four technical lemmas

During the proof of theorem 1, we use the following lemmas.

Lemma 1 Denote O a point interior to D where the stationary velocity field ~v and its
vorticity field ~r = ∇ × ~v are independent. Then there exists local coordinates (x, y, z)
around O, such that

~ex = ~v and ~ey = ~r

and such that ∇·~ez = 0 where the basis (~ex, ~ey, ~ez) derives from the local coordinates (x, y, z)

of a point M near O through the differential relationship ~dM = ~exdx + ~eydy + ~ezdz.
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yd%(0, 0, ẑ)

d%(x, 0, ẑ)
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Figure 3: since φ~v and φ~r are volume preserving diffeomorphisms, ∇ · ~eẑ depends only on
ẑ.

Proof of lemma 1 The existence of local coordinates (x, y, z) such that ~v = ~ex and
~r = ~ey is a classical result of differential geometry and results from [~v, ~r] = 0 (the vorticity
equation (3) at the steady-state). The fact that one can choose the third coordinate z
such that ∇ · ~ez = 0 is not so classic and is possible here because ∇ · ~v = 0 and ∇ · ~r = 0.

(x, y, z) are constructed as follows. Denote φ~v
s = exp(s~v) (resp. φ~r

s = exp(s~r)) the flow
of the vector field ~v (resp. ~r). Denote ~wO a vector such that (~vO, ~rO, ~wO) is a basis of IR3.
Clearly

(x, y, ẑ) −→ φ~v
x(φ

~r
y(O + ẑ ~wO))

is a local diffeomorphism from a neighbourhood of (0, 0, 0) into a neighbourhood of O
in D. Because [~v, ~r] = 0, φ~v

x ◦φ~r
y = φ~r

y ◦φ~v
x. This implies that ~v = ~ex and ~r = ~ey. Denoting

~eẑ = ~eẑ, we will see that ∇ · ~eẑ which is a function of (x, y, ẑ) depends only on ẑ.
Geometrically, ∇ · ~eẑ is equal to the relative variation of the volume element under

its transport by the flow φ~eẑ
s = exp(s~eẑ) of ~eẑ. As displayed on figure 3, the transport of

a volume element d%(x, y, ẑ) from the point of local coordinates (x, y, ẑ) to the point of
local coordinates (x, y, ẑ + ∆ẑ) by the mapping φ~eẑ

∆ẑ can be decomposed as follows:

d%(x, y, ẑ)
φ~v
−x−→ d%(0, y, ẑ)

φ~r
−y−→ d%(0, 0, ẑ) . . .

. . .
φ

~eẑ
∆ẑ−→ d%(0, 0, ẑ + ∆ẑ)

φ~v
x−→ d%(x, 0, ẑ + ∆ẑ)

φ~r
y−→ d%(x, y, ẑ + ∆ẑ).

Because ∇ · ~v = 0 and ∇ · ~r = 0, φ~v and φ~r induce volume preserving mappings.
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Consequently
d%(x, y, ẑ) = d%(0, y, ẑ) = d%(0, 0, ẑ)

and
d%(x, y, ẑ + ∆ẑ) = d%(0, y, ẑ + ∆ẑ) = d%(0, 0, ẑ + ∆ẑ).

Thus, ∇ · ~eẑ is only a function of ẑ denoted a(ẑ). If we change the coordinate ẑ into

z =
∫ ẑ

0
exp

(∫ ẑ1

0
a(ẑ2)dẑ2

)
dẑ1

keeping x and y unchanged, we finally obtain ∇ · ~ez = 0.

Lemma 2 For every real k, there exists a vector field ~F in the Euclidian space IR3 such
that

– ∇ · ~F = 0,

– ~F = 0 outside the unit sphere B(O, 1),

–
∫ ∫ ∫

B(O,1)

(
F2

∂F3

∂x2

− F3
∂F2

∂x2

)
dx1dx2dx3 = k,

where (Ox1, Ox2, Ox3) are Euclidian axis and (F1, F2, F3) the components of ~F .

Proof of lemma 2 Clearly, it suffices, by using scaling arguments (i.e. replacing
F (x1, x2, x3) by λF (µx1, µx2, µx3) with λ constant scalar and µ =+

− 1), to find a vec-

tor field ~F of support B(O, 1) having zero divergence and such that

∫ ∫ ∫

B(O,1)

(
F2

∂F3

∂x2

− F3
∂F2

∂x2

)
dx1dx2dx3 6= 0.

To obtain a vector field of IR3 with a compact support, zero divergence and which is not
zero, it suffices to consider the vector field derived from a rotation around an axis ab and to

multiply it by a compact support function φ of the square Euclidian distance ~PM
2
between

the current point M and a fixed point P on the axis ab: ~F (M) = φ( ~PM
2
)( ~PM× ~ab) where

the vector ~ab is parallel to the rotation axis ab. Clearly ∇· ~F = (∇(φ( ~PM
2
))·( ~PM× ~ab) =

0 because all spheres whose center belongs to the rotation axis ab are invariant sets for
the rotation vector field ~PM × ~ab. However, such vector fields ~F are too symmetric to
satisfy ∫ ∫ ∫

B(O,1)

(
F2

∂F3

∂x2

− F3
∂F2

∂x2

)
dx1dx2dx3 6= 0.

To breakdown such symmetry, the sum of two vector fields is sufficient (the imposed

integral property depends nonlinearly on ~F whereas the two others depend linearly).
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Figure 4: construction of the vector field ~F satisfying lemma 2.

More precisely, we consider the real function φ(s) = exp(4/(4s − 1) for 0 ≤ s < 1/4
and φ(s) = 0 if s ≥ 1/4 (φ is a smooth function with φ′ < 0 on [0, 1/4[) and we define the
following two vector fields (see figure 4):

–

~G(x1, x2, x3) = φ(x2
1 + (x2 + 1/4)2 + x2

3)



−x3

0
x1




which is derived from a rotation around the axis Ox2 and the point PG of coordinates
(0,−1/4, 0);

–

~H(x1, x2, x3) = φ(x2
1 + (x2 − 1/4)2 + x2

3)



−(x2 − 1/4)

x1

0




which is derived from a rotation around the axis parallel to Ox3 passing through
the point PH of coordinates (0, 1/4, 0).

We consider the vector field ~F = ~H + ~G displayed on figure 4.
By construction ~F is zero outside B(O, 1) and ∇ · ~F = 0. In the sequel, we denote

φ− = φ(x2
1 + (x2 − 1/4)2 + x2

3) and φ+ = φ(x2
1 + (x2 + 1/4)2 + x2

3). We have

F2
∂F3

∂x2

− F3
∂F2

∂x2

= x2
1

(
∂φ+

∂x2

φ− − ∂φ−
∂x2

φ+

)
.
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For x1 and x3 fixed, the integration on x2 gives

∫ ∂φ+

∂x2

φ−dx2 = [φ−φ+]−
∫ ∂φ−

∂x2

φ+dx2 = −
∫ ∂φ−

∂x2

φ+dx2

because φ− and φ+ are zero on the boundary. Thus, for fixed x1 and x3, we have

∫ (
F2

∂F3

∂x2

− F3
∂F2

∂x2

)
dx2 = 2x2

1

∫ (
∂φ+

∂x2

φ−

)
dx2.

Since

∂φ+

∂x2

φ− = 2(x2 + 1/4) φ′(x2
1 + (x2 + 1/4)2 + x2

3) φ(x2
1 + (x2 − 1/4)2 + x2

3)

is always non positive, we conclude that

∫ ∫ ∫

B(O,1)

(
F2

∂F3

∂x2

− F3
∂F2

∂x2

)
dx1dx2dx3 < 0.

Lemma 3 Denote O a point interior to D where v 6= 0. Then there exists local coordi-
nates (x, z1, z2) around O, such that ~ex = ~v and such that ∇ · ~ez1 = 0, ∇ · ~ez2 = 0 where
the basis (~ex, ~ez1 , ~ez2) derives from the local coordinates (x, z1, z2) of a point M near O

through the differential formula ~dM = ~exdx + ~ez1dz1 + ~ez2dz2.

The proof differs only slightly from the proof of lemma 1 and is left to the reader.

Lemma 4 For every real k, there exists a vector field ~F in the Euclidian space IR3 such
that

– ∇ · ~F = 0,

– ~F = 0 outside the unit sphere B(O, 1),

–
∫ ∫ ∫

B(O,1)

(
F2

∂F3

∂x1

− F3
∂F2

∂x1

)
dx1dx2dx3 = k,

where (Ox1, Ox2, Ox3) are Euclidian axis and (F1, F2, F3) the components of ~F .
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Proof of lemma 4 It is very similar to the proof of lemma 2. Using the same notation,
it suffices to state ~F = ~G + ~H where

~G(x1, x2, x3) = φ((x1 + 1/4)2 + x2
2 + x2

3)




−x3

0
x1 + 1/4




is derived from a rotation around the axis parallel to Ox2 and including the point
(−1/4, 0, 0) and where

~H(x1, x2, x3) = φ((x1 − 1/4)2 + x2
2 + x2

3)




−x2

x1 − 1/4
0




is derived from a rotation around the axis parallel to Ox3 including the point of coordi-
nates (1/4, 0, 0).
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