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The first experimental realization of a quantum state feedback 2

1

The LKB photon box: sampling time (∼ 100 µs) long enough to
estimate in real-time the quantum-state ρ and to compute the control
u = AeıΦ as a function of ρ (quantum state feedback).

1Courtesy of Igor Dotsenko
2C. Sayrin et al., Nature, 1-September 2011



Experimental data

An open-loop trajectory
starting from coherent state
with an average of 3
photons relaxes towards
vacuum (decoherence due
to finite photon life time
around 70 ms)

Detection efficiency 40%
Detection error rate 10%
Delay 4 sampling periods

The quantum filter takes
into account cavity
decoherence, measure
imperfections and delays
(Bayes law).

Truncation to 9 photons

Stabilization around 3-photon state



Several "quantum states": |ψk〉, ρ̂k and ρ̂est
k .

QuantumFilter_Controller

PhotonBox

u

y

y

Detector
Coherent

pulse
u

est

est

The state estimation ρ̂est
k used in the feedback law takes into account,

measure imperfections, delays and cavity decoherence:

I Derived from Bayes law: depends on past detector outcomes
between 0 and k ; computed recursively from an initial value ρ̂est

0 ;

I Stable and tends to converge towards ρ̂k , the expectation value
of ρk = |ψk〉〈ψk | knowing its initial value ρ0 = ρ̂0 and the past
detector outcomes between 0 and k .
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Markov chain in the ideal case (1)

I System S corresponds to a quantized cavity mode:

HS =

{ ∞∑
n=0

ψn|n〉 | (ψn)∞n=0 ∈ l2(C)

}
,

where |n〉 represents the Fock state associated to exactly n
photons inside the cavity

I Meter M is associated to atoms : HM = C2, each atom
admits two energy levels and is described by a wave
function cg |g〉+ ce|e〉 with |cg |2 + |ce|2 = 1; atoms leaving
B are all in state |g〉

I When an atom comes out B, the state |Ψ〉B ∈ HS ⊗HM of
the composite system atom/field is separable

|Ψ〉B = |ψ〉 ⊗ |g〉.



Markov chain in the ideal case (2)
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I When an atom comes out B: |Ψ〉B = |ψ〉 ⊗ |g〉.
I Just before the measurement in D, the state is in general

entangled (not separable):

|Ψ〉R2 = USM
(
|ψ〉 ⊗ |g〉

)
=
(
Mg |ψ〉

)
⊗ |g〉+

(
Me|ψ〉

)
⊗ |e〉

where USM is the total unitary transformation (Schrödinger
propagator) defining the linear measurement operators Mg and
Me on HS. Since USM is unitary, M†gMg + M†eMe = I.



Markov chain in the ideal case (3)

Just before the measurement in D, the atom/field state is:

Mg |ψ〉 ⊗ |g〉+ Me|ψ〉 ⊗ |e〉

Denote by µ ∈ {g,e} the measurement outcome in detector D: with
probability pµ = 〈ψ|M†µMµ|ψ〉 we get µ. Just after the measurement
outcome µ, the state becomes separable:

|Ψ〉D = 1√
pµ

(Mµ|ψ〉)⊗ |µ〉 =
(Mµ|ψ〉)⊗ |µ〉√
〈ψ|M†µMµ|ψ〉

.

Markov process (density matrix formulation ρ ∼ |ψ〉〈ψ|)

ρ+ =


Mg(ρ) =

MgρM†
g

Tr(MgρM†
g )
, with probability pg = Tr

(
MgρM†g

)
;

Me(ρ) =
MeρM†

e

Tr(MeρM†
e )
, with probability pe = Tr

(
MeρM†e

)
.

Kraus map: E (ρ+/ρ) = K(ρ) = MgρM†g + MeρM†e .



Markov chain with detection errors (1)

I ρ+ = 1
Tr(MµρM†

µ)
MµρM†µ when the atom collapses in µ = g,e.

This happens with probability Tr
(
MµρM†µ

)
.

I Detection error rates: P(y = e/µ = g) = ηg ∈ [0,1] the
probability of erroneous assignation to e when the atom
collapses in g; P(y = g/µ = e) = ηe ∈ [0,1] (given by the
contrast of the Ramsey fringes).

Bayes law gives the probability that the atom collapses in µ = g
knowing the detector outcome y = g:

P(µ = g/y = g) =
(1− ηg) Tr

(
MgρM†g

)
(1− ηg) Tr

(
MgρM†g

)
+ ηe Tr

(
MeρM†e

)
since P(y = g/µ = g) = (1− ηg) and P(y = g/µ = e) = ηe.



Markov chain with detection errors (2)

The expectation value ρ̂+ of ρ+ knowing ρ and the imperfect detection
y = g is given by

ρ̂+ = P(µ = g/y = g)
MgρM†

g

Tr(MgρM†
g )

+ P(µ = e/y = g)
MeρM†

e

Tr(MeρM†
e )

Since
P(µ = g/y = g) =

(1−ηg) Tr(MgρM†
g )

(1−ηg) Tr(MgρM†
g )+ηe Tr(MeρM†

e )

and P(µ = e/y = g) = 1− P(µ = g/y = g), this expectation value
ρ̂+ is given by

ρ̂+ = 1
Tr((1−ηg)MgρM†

g +ηeMeρM†
e )

(
(1− ηg)MgρM†g + ηeMeρM†e

)
Similarly when y = e, the expectation value ρ̂+ is given by

ρ̂+ = 1
Tr((1−ηe)MeρM†

e +ηgMgρM†
g )

(
(1− ηe)MeρM†e + ηgMgρM†g

)



Markov chain with detection errors (3)
We get

ρ̂+ =


(1−ηg)MgρM†

g +ηeMeρM†
e

Tr((1−ηg)MgρM†
g +ηeMeρM†

e )
, with prob. Tr

(
(1− ηg)MgρM†g + ηeMeρM†e

)
;

ηgMgρM†
g +(1−ηe)MeρM†

e

Tr(ηgMgρM†
g +(1−ηe)MeρM†

e )
with prob. Tr

(
ηgMgρM†g + (1− ηe)MeρM†e

)
.

Key point:

Tr
(

(1− ηg)MgρM†g + ηeMeρM†e
)

and Tr
(
ηgMgρM†g + (1− ηe)MeρM†e

)
are the probabilities to detect y = g and e, knowing ρ.
With ηµ′,µ being the probability to detect y = µ′ knowing that the atom
collapses in µ, we have

ρ̂+ =

∑
µ ηµ′,µMµρM†µ

Tr
(∑

µ ηµ′,µMµρM†µ
) when we detect y = µ′.

The probability to detect y = µ′ knowing ρ is Tr
(∑

µ ηµ′,µMµρM†µ
)

.



The Markov chain with cavity decoherence
When the sampling time ∆T is much smaller than the photon life time
Tcav , cavity decoherence (at zero temperature) can be described
approximatively by the Kraus map

ρ 7→ M0ρM†0 + M−ρM†−

with M0 = (1− ∆T
2Tcav

)I− ∆T
2Tcav

N and M− =
√

∆T
Tcav

a
M0 and M− can be seen as "measurement" operators corresponding
to information catched by the "environment", information unknown in
the real life but known in "Matlab/Simulink world":

I M0 corresponds to no photon destruction during the sampling
interval ∆T ; probability Tr

(
M0ρM†0

)
.

I M− corresponds to one photon destruction during the sampling
interval ∆T ; probability Tr

(
M−ρM†−

)
.

The fact that we do not have access to this information can be
interpreted as a detection error of 50% for M0 and M−. We get

ρ̂+ = M0ρM†0 + M−ρM†−.



Photon-box quantum filter parameterized by left stochastic matrix ηµ′,µ 3

ρ̂est
k+1 = 1

Tr
(∑

µ ηµ′,µMµρ̂est
k M†µ

) (∑
µ ηµ′,µMµρ̂

est
k M†µ

)
with

I we have a total of m = 3× 7 = 21 Kraus operators Mµ.
The "jumps" are labeled by µ = (µa, µc) with
µa ∈ {no,g,e,gg,ge,eg,ee} labeling atom related jumps
and µc ∈ {o,+,−} cavity decoherence jumps.

I we have only m′ = 6 real detection possibilities
µ′ ∈ {no,g,e,gg,ge,ee} corresponding respectively to no
detection, a single detection in g, a single detection in e, a
double detection both in g, a double detection one in g and
the other in e, and a double detection both in e.

µ′ \ µ (no, µc ) (g, µc ) (e, µc ) (gg, µc ) (ee, µc ) (ge, µc ) or (eg, µc )

no 1 1− εd 1− εd (1− εd )2 (1− εd )2 (1− εd )2

g 0 εd (1− ηg ) εdηe 2εd (1− εd )(1− ηg ) 2εd (1− εd )ηe εd (1− εd )(1− ηg + ηe)
e 0 εdηg εd (1− ηe) 2εd (1− εd )ηg 2εd (1− εd )(1− ηe) εd (1− εd )(1− ηe + ηg )

gg 0 0 0 ε2
d (1− ηg )2 ε2

dη
2
e ε2

dηe(1− ηg )

ge 0 0 0 2ε2
dηg (1− ηg ) 2ε2

dηe(1− ηe) ε2
d ((1− ηg )(1− ηe) + ηgηe)

ee 0 0 0 ε2
dη

2
g ε2

d (1− ηe)2 ε2
dηg (1− ηe)

3Somaraju, A.; Dotsenko, I.; Sayrin, C. & PR. Design and Stability of
Discrete-Time Quantum Filters with Measurement Imperfections. American
Control Conference, 2012, 5084-5089.



Markov chain in ideal life (e.g. Matlab/Simulink world): pure state ρk

ρk+1 = Mµk (ρk ) =:
Mµkρk M†µk

Tr
(

Mµkρk M†µk

)
I To each measurement outcome µ is attached the Kraus operator

Mµ depending on µ and also on time (not explicitly recalled here,
Mµ = Mµ,k could depend on k ).

I µk is a random variable taking values µ in {1, · · · ,m} with
probability pµ,ρk = Tr

(
Mµρk M†µ

)
. Conservation of probability

(
∑
µ pµ,ρ = 1 for all ρ) is guarantied by

∑m
µ=1 M†µMµ = I.

I The Kraus map K(ρ) =
∑m
µ=1 MµρM†µ provides

E (ρk+1/ρk ) = K(ρk )



The Markov chain in real life: mixed states, ρ̂k and ρ̂est
k (1) 4

Take ρk+1 = 1
Tr(Mµk ρk M†

µk )

(
Mµkρk M†µk

)
with measure imperfections

and decoherence described by the left stochastic matrix η:
ηµ′,µ ∈ |0,1] is the probability of having the imperfect outcome
µ′ ∈ {1, . . . ,m′} knowing that the perfect one is µ ∈ {1, . . . ,m}.

I ρ̂k = E (ρk |ρ0, µ
′
0, . . . , µ

′
k−1

)
can be computed efficiently via the

following recurrence

ρ̂k+1 = 1
Tr
(∑m

µ=1 ηµ′k ,µ
Mµρ̂k M†

µ

)
 m∑
µ=1

ηµ′
k ,µ

Mµρ̂k M†µ


where the detector outcome µ′k takes values µ′ in {1, · · · ,m′}
with probability pµ′,ρ̂k = Tr

(∑m
µ=1 ηµ′

k ,µ
Mµρ̂k M†µ

)
.

I Thus E (ρ̂k+1|ρ̂k ) = K(ρ̂k ) =
∑m
µ=1 Mµρ̂k M†µ.

4Somaraju, A.; Dotsenko, I.; Sayrin, C. & PR. Design and Stability of
Discrete-Time Quantum Filters with Measurement Imperfections. American
Control Conference, 2012, 5084-5089.



The Markov chain in real life: mixed states, ρ̂k and ρ̂est
k (2)

ρ̂k = E (ρk |ρ0, µ
′
0, . . . , µ

′
k−1

)
is given by

ρ̂k+1 = 1
Tr
(∑m

µ=1 ηµ′k ,µ
Mµρ̂k M†

µ

)
 m∑
µ=1

ηµ′
k ,µ

Mµρ̂k M†µ


with the perfect initialization: ρ̂0 = ρ0.
ρ̂est

k+1 = 1
Tr
(∑m

µ=1 ηµ′k ,µ
Mµρ̂est

k M†
µ

) (∑m
µ=1 ηµ′

k ,µ
Mµρ̂

est
k M†µ

)
but with

imperfect initialization ρ̂est
0 6= ρ0.

This filtering process is stable5: the fidelity F (ρ̂k , ρ̂
est
k ) is a

sub-martingale for any η and Mµ:

E (F (ρ̂k+1, ρ̂
est
k+1)/ρ̂k

)
≥ F (ρ̂k , ρ̂

est
k )

Convergence of ρ̂est
k towards ρ̂k when k 7→ +∞ is an open problem.6

5PR. Fidelity is a Sub-Martingale for Discrete-Time Quantum Filters IEEE
Transactions on Automatic Control, 2011, 56, 2743-2747 .

6A partial result (continuous-time): R. van Handel. The stability of
quantum Markov filters. Infin. Dimens. Anal. Quantum Probab. Relat. Top. ,
2009, 12, 153-172.



Bayesian parameter estimations
Consider detector outcomes µ′k corresponding to a parameter value p̄
poorly known. Assume to simplify that either p̄ = a or p̄ = b, with
a 6= b. We can discriminate between a and b and recover p̄ via the
following Bayesian scheme using information contained in the µ′k ’s:

ρ̂est
a,k+1 =

∑
µ η

a
µ′k ,µ

Ma
µρ̂

est
a,k Ma

µ
†

Tr
(∑

p
∑
µ η

p
µ′k ,µ

Mp
µρ̂

est
p,k Mp

µ
†
) , ρ̂est

b,k+1 =

∑
µ η

b
µ′k ,µ

Mb
µρ̂

est
b,k Mb

µ
†

Tr
(∑

p
∑
µ η

p
µ′k ,µ

Mp
µρ̂

est
p,k Mp

µ
†
)

with initialization ρ̂est
a,k+1 = ρ̂est

b,k+1 = ρ̂est
0 /2 where ρ̂est

0 is some guess
of ρ̂0 assuming initial probability of 1

2 to have p̄ = a and p̄ = b.

This estimation/filtering process is also stable:
• F (ρ̂k , ρ̂

est
a,k ) + F (ρ̂k , ρ̂

est
b,k ) is a sub-martingale

• Tr
(
ρ̂est

a,k

)
, Tr

(
ρ̂est

b,k

)
) estim. of proba. to have p̄ = a, p̄ = b.

Direct generalization to a continuum of choices for p̄ ∈ [pmin,pmax]
(see 7 for a first experimental use)

7Brakhane, S.; Alt, W.; Kampschulte, T.; Martinez-Dorantes, M.; Reimann,
R.; Yoon, S.; Widera, A. & Meschede, D. Bayesian Feedback Control of a
Two-Atom Spin-State in an Atom-Cavity System. Phys. Rev. Lett., 2012, 109,
173601-



Dynamical models with a precise structure
Discrete-time models are Markov chains

ρk+1 =
1

pµ(ρk )
Mµρk M†µ with proba. pµ(ρk ) = Tr

(
Mµρk M†µ

)
associated to Kraus maps (ensemble average, open quantum
channels)

E (ρk+1/ρk ) = K(ρk ) =
∑
µ

Mµρk M†µ with
∑
µ

M†µMµ = I

Continuous-time models are stochastic differential systems

dρ =
(
−i[H, ρ] + LρL† − 1

2
(L†Lρ+ ρL†L)

)
dt

+

(
Lρ+ ρL† − Tr

(
(L + L†)ρ

)
ρ

)
dw

driven by Wiener processes8 dw = dy − Tr
(
(L + L†) ρ

)
dt with

measure y and associated to Lindbald master equations:

d
dt
ρ = − i

~ [H, ρ] + LρL† − 1
2

(L†Lρ+ ρL†L)

8Another possibility: SDE driven by Poisson processes.



From discrete-time to continuous-time: heuristic connection

For Monte-Carlo simulations of

dρ =
(
−i[H, ρ] + LρL† − 1

2
(L†Lρ+ ρL†L)

)
dt

+

(
Lρ+ ρL† − Tr

(
(L + L†)ρ

)
ρ

)
dw

take a small sampling time dt , generate a random number dwt
according to a Gaussian law of standard deviation

√
dt , and set

ρt+dt = Mdyt (ρt ) where the jump operator Mdyt is labelled by
the measurement outcome dyt = Tr

(
(L + L†) ρt

)
dt + dwt :

Mdyt (ρt ) =

(
I+(−iH− 1

2 L†L)dt+dyt L
)
ρt

(
I+(iH− 1

2 L†L)dt+dyt L†
)

Tr
((

I+(−iH− 1
2 L†L)dt+dyt L

)
ρt

(
I+(iH− 1

2 L†L)dt+dyt L†
)) .

Then ρt+dt remains always a density operator and using the Itô
rules (dw of order

√
dt and dw2 ≡ dt) we get the good

dρ = ρt+dt − ρt up to O((dt)3/2) terms.



From discrete-time to continuous-time: heuristic connection (end)

For the Lindblad equation

d
dt
ρ = − i

~ [H, ρ] + LρL† − 1
2

(L†Lρ+ ρL†L)

take a small sampling time dt and set

ρt+dt =

(
I + dt(−iH − 1

2 L†L)
)
ρt
(
I + dt(iH − 1

2 L†L)
)

+ dtLρtL†

Tr
((

I + dt(−iH − 1
2 L†L)

)
ρt
(
I + dt(iH − 1

2 L†L)
)

+ dtLρtL†
) .

Then ρt+dt remains always a density operator and
d
dt ρ = (ρt+dt − ρt )/dt up to O(dt) terms.



SDE driven by Poisson and/or Wiener processes

dρt = L(ρt ) dt+
mw∑
ν=1

Λν(ρt ) dwν
t +

mP∑
µ=1

Υµ(ρt )
(

dNµ
t − Tr

(
CµρtC†µ

)
dt
)
,

where
I L(ρt ) := −i [H, ρt ] +

∑mP
µ=1 L

P
µ (ρt ) +

∑mw
ν=1 Lw

ν (ρt ),

LP
µ (ρ) := − 1

2{C
†
µCµ, ρ}+ CµρC†µ, Lw

ν (ρ) := − 1
2{L
†
νLν , ρ}+ LνρL†ν ;

Υµ(ρ) :=
CµρC†µ

Tr
(

CµρC†µ
) − ρ, Λν(ρ) := Lνρ+ ρL†ν − Tr

(
(Lν + L†ν)ρ

)
ρ

I Detector click no µ is related to the Poisson process
dNµ

t = Nµ(t + dt)− Nµ(t) = 1 and happens with

probability Tr
(

CµρtCµ
†
)

dt ;

I Continuous detector yνt is related to the Wiener process
dwν

t by dyνt = dwν
t + Tr

(
(Lν + L†ν)ρt

)
dt .



Quantum filter in the ideal case

dρt = L(ρt ) dt+
mw∑
ν=1

Λν(ρt ) dwν
t +

mP∑
µ=1

Υµ(ρt )
(
dNµ

t − Tr
(
CµρtC†µ

)
dt
)
,

and the associated quantum filter

d ρ̂est
t = L(ρ̂est

t ) dt +
mw∑
ν=1

Λν(ρ̂est
t )
(
dyνt − Tr

(
(Lν + L†ν)ρ̂est

t

)
dt
)

+

mP∑
µ=1

Υµ(ρ̂est
t )
(
dNµt − Tr

(
Cµρ̂est

t C†µ
)

dt
)
.

It can be rewritten as follows

d ρ̂est
t = L(ρ̂est

t ) dt+
mw∑
ν=1

Λν(ρ̂est
t )
(

Tr
(
(Lν + L†ν)ρt

)
− Tr

(
(Lν + L†ν)ρ̂est

t

) )
dt

+
mw∑
ν=1

Λν(ρ̂est
t )dwν

t +

mP∑
µ=1

Υµ(ρ̂est
t )
(
dNµ

t − Tr
(
Cµρ̂est

t C†µ
)

dt
)
.



Quantum filters with imperfections and decoherence9 (1)

I Imperfection model for the Poisson processes dNµ
t :

I real outcomes µ′ ∈ {0,1, . . . ,m′P}
I ideal outcomes µ ∈ {0,1, . . . ,mP}.
I (m′P + 1)×mP left stochastic matrix
ηP = (ηP

µ′,µ)0≤µ′≤m′
P ,1≤µ≤mP

I positive vector η̄P = (η̄P
µ′)1≤µ′≤m′

P
in Rm′

P
+ .

I Imperfection model for the diffusion processes dwν
t :

I m′w real continuous signals yν
′

t with ν′ ∈ {1, . . . ,m′w},
I mw ideal continuous signals yνt with ν ∈ {1, . . . ,mw}
I correlation m′w ×mw matrix ηw = (ηw

ν′,ν)1≤ν′≤m′
w ,1≤ν≤mw ,

with 0 ≤ ηw
ν′,ν ≤ 1 and

∑mrw
ν′=1 η

w
ν′,ν ≤ 1.

9see last chapter of H. Amini. Stabilization of discrete-time quantum
systems and stability of continuous-time quantum filters. PhD thesis,
Mines-ParisTech, September 2012.



Quantum filters with imperfections and decoherence (2)

d ρ̂t = L(ρ̂t ) dt +

m′
w∑

ν′=1

√
η̄w
ν′ Λ̂ν′(ρ̂t ) dŵν′

t

+

m′
P∑

µ′=1

Υ̂µ′(ρ̂t )
(

dN̂µ′

t − η̄
P
µ′ dt −

mP∑
µ=1

ηP
µ′,µ Tr

(
Cµρ̂tC†µ

)
dt
)

I η̄w
ν′ =

∑mw
ν=1 η

w
ν′,ν , Υ̂µ′(ρ) :=

η̄P
µ′ρ+

∑mP
µ=1 η

P
µ′,µCµρC†

µ

η̄P
µ′+

∑mP
µ=1 η

P
µ′,µ Tr(CµρC†

µ)
− ρ,

Λ̂ν′(ρ) = L̂ν′ρ+ ρL̂†ν′ − Tr
(

(L̂ν′ + L̂†ν′)ρ
)
ρ, L̂ν′ := (

∑mw
ν=1 η

w
ν′,νLν)/η̄w

ν′ ;

I the jump detector µ′ corresponds to N̂µ′
(t):

dN̂µ′

t = N̂µ′
(t + dt)− N̂µ′

(t) = 1 happens with probability
P̂µ′(ρ̂t ) = η̄P

µ′ dt +
∑mP
µ=1 η

P
µ′,µ Tr

(
Cµρ̂tC†µ

)
dt ;

I the continuous detector ν′ refers to ŷν
′

t and dŵν′

t :

dŷν
′

t = dŵν′

t +
√
η̄w
ν′ Tr

(
(L̂ν′ + L̂†ν′)ρ̂t

)
dt .



Quantum filters with imperfections and decoherence (3)

d ρ̂t = L(ρ̂t ) dt +

m′
w∑

ν′=1

√
η̄w
ν′ Λ̂ν′(ρ̂t ) dŵν′

t

+

m′
P∑

µ′=1

Υ̂µ′(ρ̂t )
(

dN̂µ′

t − η̄
P
µ′ dt −

mP∑
µ=1

ηP
µ′,µ Tr

(
Cµρ̂tC†µ

)
dt
)

and the associated quantum filter

d ρ̂est
t = L(ρ̂est

t ) dt+
m′

w∑
ν′=1

√
η̄w
ν′ Λ̂ν′ ρ̂est

t )
(

dŷν
′

t −
√
η̄w
ν′ Tr

(
(L̂ν′ + L̂†ν′)ρ̂

est
t

)
dt
)

+

m′
P∑

µ′=1

Υ̂µ′(ρ̂est
t )
(

dN̂µ
′

t − η̄
P
µ′ dt −

mP∑
µ=1

ηP
µ′,µ Tr

(
Cµρ̂est

t C†µ
)

dt
)



Quantum filtering combines the following key points

1. Bayes law: P(µ′/µ) = P(µ/µ′)P(µ′) /
(∑

ν′ P(µ/ν′)P(ν′)
)
.

2. Schrödinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and
convergence are induced by the measure of observables O with
degenerate spectra, O =

∑
µ λµPµ:

I measure outcome λµ with proba. pµ = 〈ψ|Pµ|ψ〉 = Tr (ρPµ)
depending |ψ〉, ρ just before the measurement

I measure back-action if outcome µ:

|ψ〉 7→ |ψ〉+ =
Pµ|ψ〉√
〈ψ|Pµ|ψ〉

, ρ 7→ ρ+ =
PµρPµ
Tr (ρPµ)

4. Tensor product for the description of composite systems (S,M):

I Hilbert space H = HS ⊗HM
I Hamiltonian H = HS ⊗ IM + Hint + IS ⊗ HM
I observable on sub-system M only: O = IS ⊗OM .
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