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Underlying issues

Quantum Error Correction (QEC) is based on a discrete-time feedback loop
> A typical stabilizing feedback-loop for a classical system
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» Current experiments: 1073 is the typical error probability during
elementary gates (manipulations) involving few physical qubits.

» High-order error-correcting codes with an important overhead;

v

Today, no such controllable logical qubit has been built.

» Key issue: reduction by several magnitude orders of such error rates, far
below the threshold required by actual QEC, to build a controllable
logical qubit encoded in a reasonable number of physical qubits and
protected by QEC.

Control engineering can play a crucial role to build a controllable logical qubit
protected by adapted open-loop and closed-loop control schemes increasing
precision and stability.
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Two kinds of quantum feedback?
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voir/dissipation engineering: the system of
Hilbert space . is coupled to the controller,
another quantum system; the composite sys-
tem of Hilbert space s ® H., is an open-
quantum system relaxing to some target (sepa-
rable) state. Relaxation behaviors in open quan-
tum systems can be exploited: optical pumping
of Alfred Kastler.

"Wiseman/Milburn: Quantum Measurement and Control, 2009, Cambridge
University Press.
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Outline

Quantum gate generation for open quantum systems

The monotone/Lyapunov algorithm and optimal control

Numerical case-study: Cnot-gate between two cat-qubits
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Quantum dynamics with dissipation (decoherence)
Gorini—-Kossakowski —Sudarshan—Lindblad (GKSL) master equation:
d . T3 o
<27 = Lu(p) = Lo(p) + u L(p) (typlca”y — ilHo + ub, pl + > D;, (p))
with Dp (p) £ LopL] — 3 (LiLp+ pLiL.).
» Preservation of trace, hermiticity and positivity: p lies in the set of
Hermitian and trace-class operators that are non-negative with trace one.
> Invariance under unitary transformations. N
A time-varying change of frame p — Ul pU; with U; unitary.
The new density operator obeys to a similar master equation where
Fio -+ bl > O} (o + uPo) Ui + i0f (40;) and L, > U/, O
» "[!_contraction" properties. Such master equations generate contraction
semi-groups for many distances (nuclear distance?, Hilbert metric on the
cone of non negative operators®).
> If Hermitian operator A satisfies "adjoint inequality" (Heisenberg view
point):
i[Ho + uHy, Al +> D} (p) <0
then t — V(p(t)) = Tr (Zp(t)) decreases (Lyapunov function if A> 0).

2D.Petz (1996). Monotone metrics on matrix spaces. Linear Algebra and its Applications

R. Sepulchre, A. Sarlette, PR (2010). Consensus in non-commutative spaces. |IEEE-CDC. 5/24



Quantum Gate Generation Problem (Unitary Version)

Given the Schrédinger equation

dl(t))
dt

with | (t)) € C".

Quantum gate generation (includes state preparation)

= —o((Ho + u(t) M1 ) (1)

> {le;),i=1,...,a} and {|f;),i =1,..., A} are orthonormal
subsets of C” with 7 < n. (Note that 7 < n in the case of a
cat-qubit)

» Take T >0 and find v : [0, T] — R such that [¢(t)) is
steered from [¢(0)) = |ej) to [(T)) = |f;) fori=1,..., A up
to some admissible error called gate-fidelity.
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Quantum Gate Generation for open systems (GKSL Master Equations)

dffi(tt) = ﬁ[u](p(t)) = Lo(p(t)) + uli(p(t))

» For the “density matrices context” the quantum gate can be
defined in an analogous way that appear in quantum
Tomographic methods.

» We must steer p(t) (at t = T):
‘ei><ei| ~ M><f;|1 i=1,...,n
> Let
leijr) = 5(lei) + lej)), i > j, and
legr) = () +1lep). i >
(analogous notation for the f;, i =1,...,7)
» One must also:
Steer all
leijr) (eijr| ~ |fijr) (fir]
leiji) (et |~ [fijn) (£
» Remark: all of them are pure states
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Numerical methods

Several numerical methods* (mainly optimal control, Lyapunov control) have
been developed with several packages:

» The Krotov monotone optimal method [Schirmer and de Fouquieres,
2011]

»> GRAPE (of first and second orders) [Khaneja et al., 2005, de Fouquieres
et al., 2011]

CRAB [Rach et al., 2015],
GOAT [Machnes et al., 2018]
RIGA [Pereira da Silva et al., 2019].

QDYN [ C. Koch et al. since 2007 — today]
https://qdyn-library.net/

vVvyVvyy

This talk: how control Lyapunov techniques provide a monotone algorithm
solving the first order stationary condition of an optimal control problem
including time optimization.

*An excellent review of Christiane P Koch: Controlling open quantum
systems: tools, achievements, and limitations. Journal of Physics: Condensed
Matter, 28(21):213001, may 2016.
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Outline

The monotone/Lyapunov algorithm and optimal control
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One iteration of the algorithm (fixed time T, single control-input u)

o Initial guess [0, T] — wo(t)
e ii? backward adjoint equations (open-loop):

0 (0= ~Liwon (o)), Jo(Tr) = Mgy = [de) (5|

|y, ifo=ie{l1,...,A}
Where\gbg): V2 y | O—_URaI7J€{15"'an}a’>J
ff@;‘“, ifo =il ije{l,... a}i>]j

e ii? forward equations (closed-loop)

dps(t
Do) fgm (0o (), 0(0) = Moy = [ec) el
leiy, if o =ie{l,...,a}
where [e,) = { L if o = jR,i,j€{1,...,A}i>]
%7 IfU—Ulylv./e{l ﬁ}7l>./

and Au is given by a time-varying feedback based on the time-varying
Lyapunov function

v=n *Z Tr (Jo(t)pe) 2
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The forward Lyapunov feedback
Lyapunov function: V = n* — 3 Tr(Js(t)po)
> From u— Ly(p) affine and Tr (£[,1(Jo)po) = Tr (o Ly (p5)):

v dJ, dps
i Z“(?Pa“’dt)

= Tr (—Lig)(o)po) + Tt (JoLisorau(ps))

= —Au (Z Tr (Js Ll(PU)))

» Define the Lyapunov-based control with gain K > 0:

Au=K <Z Tr(Js El(pa))>

then & = —K (3, Tr(Js Li(p.)))* <O.

dt
> Next step: take as initial guess [0, T] 3 t — u1 = uo + Au.

> Since Vieo > Vier, Tr(Js(0) po(0)) = Tr (e*Tﬁf‘uol(Jo(T)) pU(O)) and

Tt (Jo(T) po(T)) = Tr (Jo(T) €™ TEt02201 (s (0)) ) = Tr (7 o1 (4, (T)) pr(0))

the Lyapunov function decreases from step to step. 11/24



Including time optimization T

Consider virtual time 7 according to 4t = (1 + v(r)) where |v(7)| < 1.

Physical time t(7) is given by t(7) = [ (14 v(7"))d7".

With & = (1 + v)u one gets:

%% _ % = (1+v(1)(Lo(p) + uls(p))

Lo(p) + v(7)Lo(p) + () L1(p)

Algorithm with time-control v:

» With two control-inputs (v, &) and initial guess T = To, vo = 0 and {o,
an algorithm step provides [0, To] 5 7 +— (va(7), &1 (7)).

» Update Ty via Ty = T °(1 + wa(r'))d7’,
Compute ui(t(7)) = li‘V;)T for 7 € [0, To] and

= Jo (1 +wn(r))dr
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Optimal control interpretation
Find T and [0, T] > t — u(t) minimizing

72— Te (Mg, po(T))

where |'||¢6> = |¢U><¢U|

f), ifo=ie{l,... A}
|fi)+1f)

> |bo) = fﬁff,ifo—:in,i,je{l,.,.,ﬁ},i>j
B i o = ijlij € {1,... A0 >

> for each o, 2=l = £, (po(t)) with po(0) = M|,y = |eo) (x| and
|e,> |fa—le{1 A}

&) = E%%ﬁ,wa—u&uje{l i >
%7 ifo=1il,i,je{l,...,a},i>j

Lemma: Consider the above monotone iterative algorithm starting for To and
ug. Assume that the Lyapunov function does not decrease strictly at step £.
Then T; and [0, T] 3 t — ue(t) satisfy the first-order stationary condition of
this optimal control problem.
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Outline

Numerical case-study: Cnot-gate between two cat-qubits
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Bosonic code with cat-qubits
» Quantum error corrrection requires redundancy.
» Bosonic code: instead of encoding a logical qubit in N physical qubits
living in (CZN, encode a logical qubit in an harmonic oscillator living in
Fock space span{|0), |1),...,|n),...} ~ L*(R,C) of infinite dimension.
» Cat-qubit 3: |¢1) € span{|a),|-a)} where |a) is the coherent state of real
amplitude o 3ja) = o) with 3= (g + ip)/Vv2 and [§, p] = i:
(g—av2)?
2 ~ —~ .dy ex”<7 2 >
\MNwWMﬂ%KCLﬂWquwwMONﬂg#WJMNA——ﬁT—*

> Stabilisation of cat-qubit via a single Lindblad dissipator L = 3> — o?.

For any initial density operator p(0), the solution p(t) of

d  ~~ 1 e
—p=Lpl" — Z(L'Lp+ pL'L
P =Lp S(L'Lp+pL'L)
converges exponentially towards a steady-state density operator since
% Tr (ZTZ,O) <=2Tr (ZTZp) . kerl = span{|a), |-a)}.

Any density operator with support in span{|a), |-a)} is a steady-state.

5M. Mirrahimi, Z. Leghtas, ..., M. Devoret: Dynamically protected cat-qubits: a
new paradigm for universal quantum computation. 2014, New Journal of Physics.
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Asymmetrically Threaded SQUID (ATS) stabilizing a cat-qubit °

Buffer Cat-Qubit

EC,E

Eja >/ Eib Ecp >< £ EL s wiem Ec,a
\ [

Pext, 1 Pext, 2

Figure S3. Equivalent circuit diagram. The cat-qubit (blue), a linear resonator, is capacitively coupled to the buffer (red). One
recovers the circuit of Fig. 2 by replacing the buffer inductance with a 5-junction array and by setting @5, = (ext,1 + Pext,2) /2

and @, = (ext,1 — @ext,2) /2. Not shown here: the buffer is capacitively coupled to a transmission line, the cat-qubit resonator
is coupled to a transmon qubit

OR. Lescanne, ..., Z. Leghtas: Exponential suppression of bit-flips in a qubit
encoded in an oscillator. Nature Physics (2020)
U. Reglade, ..., Z. Leghtas: Quantum control of a cat-qubit with bit-flip times

exceeding ten seconds. Nature (2024)
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Mechanical analogue (R. Lescanne/U. Réglade from Alice&Bob ))

Both "steady-states" are locally stable

Two "steady-states" (locally stable) associated to the same motion
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MAIN IDEA IN A CLASSICAL PICTURE

Driven damped oscillator
coupled to a pendulum.

Courtesy of Raphaél Lescanne



A BI-STABLE SYSTEM

=~

There are 2 steady states in
which we can encode
information

-~

Courtesy of Raphaél Lescanne



MAIN IDEA IN A CLASSICAL PICTURE

Stabilization regardless of the state

1 |

Neither the drive nor the dissipation
can distinguish between O and 1

Important to preserve
guantum coherence

Courtesy of Raphaél Lescanne



Master equations of the ATS super-conducting circuit

Oscillator 3 with quantum controller based on a damped oscillator b:

%p =g [(32 - az)BT— ((@"? - 042)5, p] +kb (EpET —(B"'Ep—i—pETE)/Z)
with a € R such that o® = u/g, the drive amplitude u € R applied to mode b
and 1/kp > 0 the life-time of photon in mode b.

Any density operators p = p, @ |0)(0|, is a steady-state as soon as the support
of p, belongs to the two dimensional vector space spanned by the
quasi-classical wave functions |a) and |-«) (range(p.) C span{|a), |-a)})

Usually x5 > |g2|, mode b relaxes rapidly to vaccuum |0)(0], can be
eliminated adiabatically (singular perturbations, second order corrections) to
provides the slow evolution of mode 3

d _4\gz\2(AAT LTt T4 o0 D)) with T = 5 — o2
T () 5(LLp+pLL))w.thL_a 2.

Convergence via the exponential Lyapunov function V(p) = Tr (ZTZp) 7

7 . . .
For a mathematical proof of convergence analysis in an adapted Banach space, see :R. Azouit, A.
Sarlette, PR: Well-posedness and convergence of the Lindblad master equation for a quantum harmonic
oscillator with multi-photon drive and damping. 2016, ESAIM: COCV.
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Cat-qubit: exponential suppression of bit-flip for large «.
Since (af-a) = e 2" ~ 0
00) & Ja), [10) & |-a), |+ oc 2k ) oc lel—fel,
Photon loss as dominant error channel (dissipator 3 with 0 < k1 < 1):

d
JiPa = Da—az(p) + k1 Ds(p)

with D;(p) = Lol — %(Zﬁ_\p + p/L\TZ).
» if p(0) =10.)(0.] or |1.)(1|, p(t) converges to a statistical mixture of
3|

quasi-classical states close to }|a)(a| 4 3|-a) (-] in a time

202

Thit—fiip ~
K1

since 3]0;) =~ «|0.) and 3]1;) =~ —«|1;).
» if p(0) = |[+1)(+¢| or |[=1)(—¢|, p(t) converges also to the same
statistical mixture in a time
1

I phase—flip ™~
K1 ()(,2

since al4+.) = o] — L) and 3]—1) = a| + L).

Take « large to ignore bit-flip and to correct only the phase-flip with 1D code:

important overhead reduction.
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Cnot-gate between two cat-qubits®

dp
dt

~ig2|(8% — 0?loo) @ Ty @ egl + ((3")2 — 0leo) @ oo @ [g)e] , 1]
+ kP o2l )ehen, (P) + kD o701, (P) + kD7 g5,617, ()

= —ju [(acO + aco 2alco) (aLEta - azﬂa) ® lqu , p}

with =2, kp =1, ki = 1955, &2 = 10.
Cnot-gate in Hilbert space Hco @ Hn @ C:
€1 =100)co ®[01)ta ® |g) = i = |0)co ® |0L)a @ | &)
> =100 @ |1)ta®|g) — £ =100)co @ |11)ta ® |g)
> &=l ®|00)a®[g) = i =l)o®[l)a®|g)
> e =10 ® 1) ®lg) = fa = 1) ®|00)n ®[8).

8R. Gautier, A. Sarlette, and M. Mirrahimi: Combined dissipative and

hamiltonian confinement of cat qubits. PRX Quantum, 3:020339, May 2022.
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Cnot-gate between two cat-qubits (n = 578 > 4 = 7)

Normalized control pulses versus time
T T

0.4 T T
13 10,\(_3) Final control
0 0.8 Pl i e T T T T AT I T AN T AT L s e constant control -
3 _____________________ — — —initial control
=l
o -
S 0.2
5 9.8 107(-4)
O 0.1 i
0 1 1 1 1
0 0.5 1 1.5 2
Time (s)

Infidelity versus Tf for constant adiabatic control
T T

Infidelity

TH(s) 21/24



Conclusion

» Key roles of geometric underlying structures: Hilbert space,
unitary operators and invariance, convex set of density
operators, Schrédinger/Heisenberg view-points.

» Well-chosen optimization criteria and Lyapunov-control
function.
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