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The NIST MicroClock2

I Quartz crystal clocks: 1 second over few days.
I NIST chip-scale atomic clock: 1 second over 300 years
I High-Perf. atomic clocks: 1 second over 100 million years.
2NIST: National Institute of Standards and Technology, web-site:

http://tf.nist.gov/timefreq/index.html.



The principle: Coherent Population Trapping3

3From the web-site: http://tf.nist.gov/timefreq/index.html.



The synchronization via extremum seeking

s = d
dt , constant > 0 parameters (h,k ,a,ω).

Here u = ωdiode
and y = f (ωdiode)
where f admits a
sharp maximum at
the unknown value
ū = ωatom.

Extremum seeking via feedback: u(t) = v(t) + asin(ωt) where
v(t)≈ ωatom is adjusted via a dynamic time-varying output
feedback (with ω,a,h,

√
k � ωatom):

d
dt

v(t) =−k sin(ωt)(y(t)−ξ (t)) with
d
dt

ξ = h(y(t)−ξ (t))

Our contribution4: a real-time synchronization scheme when
the atomic cloud is replaced by a single atom.

4Mirrahimi-R, 2008, arxiv:0806.1392v1



The system and its synchronization scheme

Input: Ω̃1, Ω̃2 ∈ C and u = d
dt ∆.

Output: photo-detector click
times corresponding to stochas-
tic jumps from |e〉 to |g1〉 or |g2〉.
Synchronization goal: stabilize
the unknown detuning ∆ to 0.
Two time-scales:
|Ω̃1|, |Ω̃2|, |∆e|, |∆| � Γ1,Γ2

Modulation of Rabi complex amplitudes Ω̃1 and Ω̃2:
Ω̃1(t) = Ω1− ıεΩ2 cos(ωt), Ω̃2(t) = ıεΩ1 cos(ωt) + Ω2,
with Ω1,Ω2 > 0 constant, ω � Γ1,Γ2 and 0 < ε � 1.

Detuning update ∆N+1 = ∆N −K 2Ω1Ω2
Ω2

1+Ω2
2

cos(ωtN)

at each detected jump-time tN . The gain K > 0 fixes the
standard deviation σK : 4σ2

K = εK Ω2
1+Ω2

2
Γ1+Γ2

.



Closed-loop quantum trajectory (matlab M-file: QCCQI08PR.m)
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Λ-system parameters: Γ1 = Γ2 = 10, ∆e = 2.0
Modulation parameters: Ω1 = Ω2 = 1.0, ω = 2.8, ε = 0.14
Feedback gain K = 0.0023 leading to a standard deviation
σK = 0.0057



Robustness
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Detector efficiency of 50%, wrong jump detection of 50%,
feedback-loop delay of τ with ωτ = π/4.



The slow/fast master equation

Master equation of the Λ-system

d
dt

ρ =− ı
h̄

[H̃,ρ] +
1
2

2

∑
j=1

(2QjρQ†
j −Q†

j Qjρ−ρQ†
j Qj),

with jump operators Qj =
√

Γj
∣∣gj
〉
〈e| and Hamiltonian

H̃
h̄

=
∆

2
(|g2〉〈g2|− |g1〉〈g1|)−

(
∆e +

∆

2

)
|e〉〈e|

+ Ω̃1 |g1〉〈e|+ Ω̃∗1 |e〉〈g1|+ Ω̃2 |g2〉〈e|+ Ω̃∗2 |e〉〈g2| .

Since |Ω̃1|, |Ω̃2|, |∆e|, |∆| � Γ1,Γ2 we have two time-scales: a
fast exponential decay for ”|e〉” and a slow evolution for
”(|g1〉 , |g2〉)”.



The slow master equation
Geometric reduction via center manifold techniques5 leads to a
reduced master equation that is still of Lindblad type with a
slow Hamiltonian H and slow jump operators Lj :

d
dt

ρ =− ı
h̄

[H,ρ] +
1
2

2

∑
j=1

(2LjρL†
j −L†

j Ljρ−ρL†
j Lj),

with H = ∆
2 σz = ∆(|g2〉〈g2|−|g1〉〈g1|)

2 and Lj =
√

γ̃j
∣∣gj
〉〈

b
Ω̃

∣∣ and

where γ̃j = 4 |Ω̃1|2+|Ω̃2|2
(Γ1+Γ2)2 Γj and

∣∣bΩ̃

〉
is the bright state:

∣∣b
Ω̃

〉
=

Ω̃1√
|Ω̃1|2 + |Ω̃2|2

|g1〉+
Ω̃2√

|Ω̃1|2 + |Ω̃2|2
|g2〉

For ∆ = 0, ρ converges towards the dark state
∣∣dΩ̃

〉〈
dΩ̃

∣∣:∣∣d
Ω̃

〉
=−

Ω̃∗2√
|Ω̃1|2 + |Ω̃2|2

|g1〉+
Ω̃∗1√

|Ω̃1|2 + |Ω̃2|2
|g2〉 .

5Mirrahimi-R 2008, arXiv:0801.1602v1, accepted in IEEE-AC.



Quantum trajectories for the slow approximation

In the absence of the quantum jumps, ρ evolves on the Bloch
sphere according to (γ̃ = 4 |Ω̃1|2+|Ω̃2|2

Γ1+Γ2
)

1
γ̃

d
dt

ρ =−ı
∆

2γ̃
[σz ,ρ]−

∣∣b
Ω̃

〉〈
b

Ω̃

∣∣ρ + ρ
∣∣b

Ω̃

〉〈
b

Ω̃

∣∣
2

+
〈
b

Ω̃

∣∣ρ ∣∣b
Ω̃

〉
ρ.

At each time step dt , ρ may jump towards the state |g1〉〈g1| or
|g2〉〈g2| with a jump probability given by:

dt γ̃
〈
b

Ω̃

∣∣ρ ∣∣b
Ω̃

〉
Since Ω̃1(t) = Ω1− ıεΩ2 cos(ωt) and Ω̃2(t) = ıεΩ1 cos(ωt) + Ω2,

γ̃
∣∣b

Ω̃

〉〈
b

Ω̃

∣∣= γ (|b〉+ ıε cos(ωt) |d〉)(〈b|− ıε cos(ωt)〈d |)

with γ = 4 |Ω1|2+|Ω2|2
Γ1+Γ2

, |b〉= Ω1|g1〉+Ω2|g2〉√
Ω2

1+Ω2
2

and |d〉= −Ω2|g1〉+Ω1|g2〉√
Ω2

1+Ω2
2



Quantum trajectories in Bloch-sphere coordinates
With β = 2arg(Ω1 + ıΩ2) and
ρ = 1+X(|b〉〈d |+|d〉〈b|)+Y (ı|b〉〈d |−ı|d〉〈b|)+Z (|d〉〈d |−|b〉〈b|)

2 :

d
dt

X =−∆cosβY − γ

(
ε cos(ωt)Y +

1− ε2 cos2(ωt)
2

Z
)

X

d
dt

Y = ∆cosβX −∆sinβZ + γε cos(ωt)

− γ

(
ε cos(ωt)Y +

1− ε2 cos2(ωt)
2

Z
)

Y

d
dt

Z = ∆sinβY + γ

(
1− ε2 cos2(ωt)

2

)
− γ

(
ε cos(ωt)Y +

1− ε2 cos2(ωt)
2

Z
)

Z

The jump probability per unit of time is

Pjump =
γ

2
(1−Z −2ε cos(ωt)Y + ε

2 cos2(ωt)(1 + Z )).

Just after a jump (X ,Y ,Z ) is reset to ±(sinβ ,0,cosβ ).



Convergence of the no-jump dynamics

d
dt

X =−∆cosβY − γ

(
ε cos(ωt)Y +

1− ε2 cos2(ωt)
2

Z
)

X

d
dt

Y = ∆cosβX −∆sinβZ + γε cos(ωt)− γ

(
ε cos(ωt)Y +

1− ε2 cos2(ωt)
2

Z
)

Y

d
dt

Z = ∆sinβY + γ

(
1− ε2 cos2(ωt)

2

)
− γ

(
ε cos(ωt)Y +

1− ε2 cos2(ωt)
2

Z
)

Z

For |∆|< γ

2 and 0 < ε � 1, the above time-periodic nonlinear
system admits a quasi-global asymptotically stable periodic
orbit (proof: Poincaré-Bendixon and perturbation). It reads

(X ,Y ,Z ) =

(
0 , −sinβ

∆

γ
+

γ2 cos(ωt) + γω sin(ωt)
ω2 + γ2 ε , 1

)
up to second order terms in ε and ∆

γ
.

When ω � γ, Pjump ≈ γ

(
ε cos(ωt) + ∆sinβ

2γ

)2
if the last jump

occurs more that few − logε/γ second(s) ago.6.
6Replace Z by 1− X 2+Y 2

2 in previous formula giving Pjump.



Detuning update as a discrete-time stochastic process
Our analysis neglects the transient just after a jump.
When a jump occurs at tN , we have

∆N+1 = ∆N −K sinβ cos(ωtN)

and its probability was proportional to
(

ε cos(ωtN) + ∆N sinβ

2γ

)2
.

The phase ϖ = ωtN can be seen as a stochastic variable in
[0,2π] with the following probability density P∆N (ϖ) on [0,2π]:

P∆N (ϖ) =

(
ε cos(ϖ) + ∆N sinβ

2γ

)2

2π

(
ε2

2 +
∆2

N sin2
β

4γ2

)
The de-tuning update is thus a discrete-time stochastic

process
∆N+1 = ∆N −K sinβ cosϖ

where the probability of ϖ ∈ [0,2π] depends on ∆N .



Convergence proof
We assume here |∆| � εγ (remember γ � ω � Γ1 + Γ2):

∆N+1 = ∆N −K sinβ cosϖ

with ϖ of probability density P∆N (ϖ)≈ 1
2π

+ ∆N sinβ

πεγ
cosϖ .

Simple computations yield to7

E(∆N+1|∆N) =

(
1− K sin2

β

εγ

)
∆N

For 0 < K ≤ εγ

sin2
β

, E(∆N) tends to zero.
Similarly, we have

E(∆2
N+1|∆N) =

(
1− 2K sin2

β

εγ

)
∆2

N +
K 2 sin2

β

2

For 0 < K ≤ εγ

2sin2
β

, E(∆2
N) converges to σ2

K = εγK
4 .

7E(∆N+1|∆N ) stands for the conditional expectation-value of ∆N+1
knowing ∆N .



Summary: scales and feedback-gain design

Rabi frequency modulations:
Ω̃1(t) = Ω1− ıεΩ2 cos(ωt)
Ω̃2(t) = ıεΩ1 cos(ωt) + Ω2
with Ω1,Ω2� Γ = Γ1 + Γ2,
0 < ε � 1 and
Ω2

1+Ω2
2

Γ1+Γ2
= γ � ω � Γ

Detuning update
∆N+1 = ∆N − K sinβ cos(ωtN)
with K > 0, β = 2arg(Ω1 + ıΩ2).

A discrete-time stochastic process where the gain K > 0 drives

I the convergence speed with a contraction of
(

1− K sin2
β

εγ

)
for E(∆N) at each iteration

I the precision via the asymptotic root-mean-square

σK =

√
εγK
2 .



Concluding remarks

I For a nonlinear convergence proof with ∆ < γ/2, ε small
enough and well tuned gain K , see Mirrahimi-R 2008,
arxiv:0806.1392v1. Sensitivity analysis to wrong jump
detection and noise remains to be done.

I Such simple feedback can be also developed for other
single quantum systems such as the 3-level system
illustrating the Dehmelt’s electron shelving scheme8

I Such feedback scheme could be a preliminary guide for
inventing the ”quantum regulator”, a quantum analogue of
the classical PID regulator.

8C. Cohen-Tannoudji, J. Dalibard: Single atom Laser spectroscopy:
looking for dark periods in fluorescent light. Europhys. Lett. 1 (9),
pp:441-448, 1986.
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