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The NIST MicroClock?
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» Quartz crystal clocks: 1 second over few days.
» NIST chip-scale atomic clock: 1 second over 300 years

» High-Perf. atomic clocks: 1 second over 100 million years.
2NIST: National Institute of Standards and Technology, web-site:
http://tf.nist.gov/timefreq/index.html.




The principle: Coherent Population Trapping®
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3From the web-site: http://tf.nist.gov/timefreq/index.html.



The synchronization via extremum seeking

Y
Lyl y=f(u)

Here U = wgjoge
and y = f(®giode)
Y where f admits a
I i sharp maximum at

s s+h
* the unknown value

asin(wt) sin(wt) U = @atom-
s= %, constant > 0 parameters (h, k, a, »).

Extremum seeking via feedback: u(t) = v(t)+ asin(wt) where
v(t) ~ wawm is adjusted via a dynamic time-varying output
feedback (with @, a, h, Vk < ®atom):

d , . d
gi/(0) = —ksin(ot)(y(1) - &(1))  with .8 = h(y(t) - £(1))

Our contribution?: a real-time synchronization scheme when
the atomic cloud is replaced by a single atom.
4Mirrahimi-R, 2008, arxiv:0806.1392v1




The system and its synchronization scheme
) m—
7 Input: Q1,0 € C and u= GA.
Output:  photo-detector click
times corresponding to stochas-
tic jumps from |e) to |g1) or |go).
Synchronization goal: stabilize
the unknown detuning A to 0.
Tyvo ti[ne—scales:
1], [€22],|Ael, |A] < T4,T2

lg1)
Modulation of Rabi complex amplitudes 21 and Q»:

Qq(t) = Qy —1eQpcos(wt), Qu(t) = 1£Q4 cos(wt) + Qy,
with Q4,95 > 0 constant, o < N, and 0 < e <« 1.

Detuning update Anst = An— Ké?i%% cos(mty)

at each detected jump-time ty. The gain K > 0 fixes the
2 2

standard deviation ox: 402 = eK T2,




Closed-loop quantum trajectory (matiab M-file: gccqro8PR.m)
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A-system parameters: 1 =T> =10, A =2.0
Modulation parameters: Q1 =Q,=1.0, ©=2.8, ¢ =0.14

Feedback gain K = 0.0023 leading to a standard deviation
ok = 0.0057



Robustness
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Detector efficiency of 50%, wrong jump detection of 50%,
feedback-loop delay of T with ot = /4.



The slow/fast master equation

Master equation of the A-system
d LiE 1¢ t_ Ao 1
5P =~ plH:Pl+ 2;(201-96?] -QQp-pQQ),
with jump operators Q; = ,/T}|g;) (€| and Hamiltonian
H A A
b= g9 (Gl g1 @)~ (B4 5 ) le) e
+ Q1 |g1) (el + Q7 |€) (g1]+ Qz(g2) (6] + Q3 |€) (gl

Since [Q4], Q2] |Ael,|A| < T1,I> we have two time-scales: a
fast exponential decay for ”|e)” and a slow evolution for

"(191),192))".



The slow master equation
Geometric reduction via center manifold techniques® leads to a
reduced master equation that is still of Lindblad type with a
slow Hamiltonian H and slow jump operators L;:

4
dt
with H = A(\Qz)(Qz\—\g1><Q1|) and L; = \/7,'!9/} <b§‘ and

where §; = 4%F and |bg) is the bright state:

1 12
p=—5[H.pl+5 ;(2L,-pL} —LiLip—pLILy),
j:

Q
M gy 2 gy
Q4]2 +|Q2/? Q4]2 + Q222

For A =0, p converges towards the dark state |dx ) (dg|:
Q; Q
|dg) = —————101) + ————02).
12112+ 1922 2112+ Q22
SMirrahimi-R 2008, arXiv:0801.1602v1, accepted in IEEE-AC.




Quantum trajectories for the slow approximation

In the absence of the quantum jumps, p evolves on the Bloch

sphere according to (7= 4%)
1d |bg) (bg|p+p |bs) (b
,},dtp*—l?[gsz] & £ D) 2 2 +<b§|p|b§>p

At each time step dt, p may jump towards the state |g1) (g1| or
|g2) (go| with a jump probability given by:

dt ¥ (bg|p |bg)
Since Q4(t) = Qy —1€Qz cos(wt) and Qp(t) = 1£Q4 cos(wt) + Qy,
7|bg) (bg| = v(|b) +1£cos(wt)|d)) ((b] — e cos(mt) (d])

41l 241902 b) = Q1]91)+0(90) and |d) = —Q0|91)+24[g2)

with y =
T Y \/927 /Q12+Q§



Quantum trajectories in Bloch-sphere coordinates

With B =2arg(21 +:£2) and
_ 1+X(|b><d|+\d><b\)+Y(z\b><g\—z|d><b|)+Z(\d><d|—|b><b\):

p
d 1 —£2cos?(wt)
&X:—AcosBY—y ecos(wt)Y+fz X
%Y:AcosBX—AsinﬁZerscos(wt)

_ 2200a2
—’)/(SCOS((Dt)Y-‘r WZ) Y
d . 1 —e2cos?(mt)
dtZ_AsmﬁYer(z)
_ 2200a2
—y(ecos(wt)Y+180203(wt)Z>Z

The jump probability per unit of time is

Pjump = g(1 —Z —2¢ecos(wt) Y +e2cos?(ot)(1+ 2)).

Just after a jump (X, Y,Z) is reset to +(sinB3,0,cos fB).



Convergence of the no-jump dynamics

d

at

20082
1—¢ c;)s (wt)Z)X

X=—-AcosBY— y(scos(wt)Y—i—

20082

1—¢e“cos (wt)Z) v
2

1 — e?cos?(wt) 1 — e?cos?(wt) Z> P

d .
aZ:AsmBYer(f)fy<£cos(cot)Y+ 5

%Y AcosfX— AsinBZ+ yecos(wt) — y(scos(a)t)

For |A] <  and 0 < € < 1, the above time-periodic nonlinear
system admits a quasi-global asymptotically stable periodic
orbit (proof: Poincaré-Bendixon and perturbation). It reads

(X,Y7Z):<o , smﬁ? 2 cos( wal;)zij;(:sm(wt) 7 1)

up to second order terms in € and %.

. 2
When o > v, Piymp ~ y(g cos(mt) + A;‘;B) if the last jump

occurs more that few —loge/y second(s) ago.6.
6Replace Z by 1 — # in previous formula giving-Pjyip.




Detuning update as a discrete-time stochastic process
Our analysis neglects the transient just after a jump.
When a jump occurs at ty, we have

AN+1 =An— KsinB COS((DtN)

a2
and its probability was proportional to (ecos(th) + AN%;W) .

The phase @ = wty can be seen as a stochastic variable in
[0,27] with the following probability density Pa, (@) on [0,2x]:

: 2
(ecos(w) + A’Vzisy'"ﬂ

2 AZsin?B
n <£2 + N472 )

The de-tuning update is thus a discrete-time stochastic
process

PAN(w) =

Aniq=An—KsinBcos®

where the probability of @ € [0,27] depends on Ay,.



Convergence pI’OOf
We assume here |A| < gy (remember y < @ < 1 +T2):

Any1=An—KsinBcos@

with @ of probability density Py, (@) ~ 7 + 22208 cos @ .
Simple computations yield to’

E(Any1|AN) = <1 - Ksin2[3> Ap

ey

ForO< K <5F3 ﬁ , E(Ay) tends to zero.

Similarly, we have

2K sin? K2sin? B
E(A12V+1 ‘AN) = (1 - 8’}’) A12V+ T

For0<K < 23’ E(A%)) converges to o2 = &K,

TE(AN, 1 \AN) stands for the conditional expectation-value of A+
knowing Ay.




Summary: scales and feedback-gain design

lg1)

Rabi frequency modulations:
Q4 (t) = Qy —1eQp cos(mt)

Qo (t) = 1£Q4 cos(wt) + Q2
with Q1,Qo < T =T1 4T,
0<eg<1and

Q7+Q
e =r<<o<l

Detuning update
Ani1 = Ay — KsinBcos(wty)
with K > 0, B =2arg(Q1 +1€2).

A discrete-time stochastic process where the gain K > 0 drives

» the convergence speed with a contraction of (1 - Ksin2ﬁ>

for E(Ay) at each iteration

£y

» the precision via the asymptotic root-mean-square

vV EYK



Concluding remarks

» For a nonlinear convergence proof with A < y/2, € small
enough and well tuned gain K, see Mirrahimi-R 2008,
arxiv:0806.1392v1. Sensitivity analysis to wrong jump
detection and noise remains to be done.

» Such simple feedback can be also developed for other
single quantum systems such as the 3-level system
illustrating the Dehmelt’s electron shelving scheme?®

» Such feedback scheme could be a preliminary guide for
inventing the "quantum regulator”, a quantum analogue of
the classical PID regulator.

8C. Cohen-Tannoudji, J. Dalibard: Single atom Laser spectroscopy:
looking for dark periods in fluorescent light. Europhys. Lett. 1 (9),
pp:441-448, 1986.
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