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Nobel Prize in Physics 2012 (second quantum revolution)

         Serge Haroche          David J. Wineland 
" This year’s Nobel Prize in Physics honours the experimental inventions
and discoveries that have allowed the measurement and control of
individual quantum systems. They belong to two separate but related
technologies: ions in a harmonic trap and photons in a cavity"

From the Scientific Background on the Nobel Prize in Physics 2012 compiled by the
Class for Physics of the Royal Swedish Academy of Sciences, 9 October 2012.
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Investigated technologies for quantum computation 1

© OBrien

Superconduc�ng
circuits

Photons

© S. Kuhr

Ultra-cold 
neutral/Rydberg 

atoms 

© Bla� & Wineland

Trapped ions

© Pe�a

Quantum dots

© IBM

Requirements:
• scalable modular architecture;
• control software from the very beginning.

1Courtesy of Walter Riess, IBM Research - Zurich.
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Issues underlying this talk

Quantum Error Corrections (QEC) is based on an elementary discrete-time
feedback loop: a static-output feedback neglecting the finite bandwidth of the
measurement and actuation processes.

I Current experiments: 10−2 is the typical error probability during
elementary gates (manipulations) involving few physical qubits.

I High-order error-correcting codes with an important overhead; more than
1000 physical qubits to encode a controllable logical qubit2.

I Today, no such controllable logical qubit has been built.
I Key issue: reduction by several magnitude orders such error rates, far

below the threshold required by actual QEC, to build a controllable
logical qubit encoded in a reasonable number of physical qubits and
protected by QEC.

Control engineering can play a crucial role to built a controllable logical qubit
protected by much more elaborated feedback schemes increasing precision
and stability.

2A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland (2012): Surface
codes: Towards practical large-scale quantum computation. Phys. Rev.
A,86(3):032324.
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Dynamics of open quantum systems based on three quantum features 3

1. Schrödinger (~ = 1): wave funct. |ψ〉 ∈ H, density op. ρ ∼ |ψ〉〈ψ|
d

dt
|ψ〉 = −iH |ψ〉, H = H0 + uH1 = H†,

d

dt
ρ = −i [H ,ρ].

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of O = O† with spectral decomp.

∑
y λyPy :

I measurement outcome y with proba.
Py = 〈ψ|Py |ψ〉= Tr (ρPy ) depending on |ψ〉, ρ just before
the measurement

I measurement back-action if outcome y :

|ψ〉 7→ |ψ〉+ =
Py |ψ〉√
〈ψ|Py |ψ〉

, ρ 7→ ρ+ =
PyρPy

Tr (ρPy )

3. Tensor product for the description of composite systems (S ,C ):
I Hilbert space H = Hs ⊗Hc

I Hamiltonian H = H s ⊗ I c + H sc + I s ⊗Hc

I observable on sub-system C only: O = I s ⊗Oc .
3S. Haroche and J.M. Raimond (2006). Exploring the Quantum: Atoms,

Cavities and Photons. Oxford Graduate Texts.
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Classical I/O dynamics based on Stochastic Master Equation (SME) 4

QUANTUM WORLD

decoherence
Hilbert space (dissipation) CLASSICAL WORLD

Continuous-time models: stochastic differential systems (Itō formulation)
density operator ρ (ρ† = ρ, ρ ≥ 0, Tr (ρ) = 1) as state (~ ≡ 1 here):

dρt =
(
− i [H0 + utH1,ρt ] +

∑
ν=d,m

LνρtL
†
ν −

1
2

(L†νLνρt + ρtL
†
νLν)

)
dt

+
√
ηm

(
Lmρt + ρtL

†
m − Tr

(
(Lm + L†m)ρt

)
ρt

)
dWt

driven by the Wiener process Wt , with measurement yt ,

dyt =
√
ηm Tr

(
(Lm + L†m)ρt

)
dt + dWt detection efficiencies ηm ∈ [0, 1].

Measurement backaction: dρ and dy share the same noises dW . Very
different from the usual Kalman I/O state-space description.

4A. Barchielli, M. Gregoratti (2009): Quantum Trajectories and
Measurements in Continuous Time: the Diffusive Case. Springer Verlag.
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SME well adapted to super-conducting Josephson circuits

Classical model ( Cl
C+Cl

= ε� 1):

d

dt
Φ = 1

C
Q + 2εu − ε2

√
`
c

Φ∗
L

sin
(

1
Φ∗

Φ
)

d

dt
Q = −Φ∗

L
sin
(

1
Φ∗

Φ
)

with y = u − ε
√
`
c

Φ∗
L

sin
(

1
Φ∗

Φ
)
.

H s(Φ,Q) = 1
2C Q2 − Φ2

∗
L
cos
(

1
Φ∗

Φ
)
with nonlinearity (Φ∗ < (L/C)1/4):

I anharmonic spectrum: frequency transition between the ground and first
excited states larger than frequency transition between first and second
excited states, . . .

I qubit model based on restriction to these two slowest energy levels, |g〉
and |e〉, with pulsation ωq ∼ 1/

√
LC .

Two weak coupling regimes of the transmon qubit5:
I resonant, in/out wave pulsation ωq;
I off-resonant, in/out wave pulsation ωq + ∆ with |∆| � ωq.
5J. Koch et al. (2007): Charge-insensitive qubit design derived from the

Cooper pair box. Phys. Rev. A, 76:042319.
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A key physical example with super-conducting Josephson circuits 6

Superconducting qubit
dispersively coupled
to a cavity traversed
by a microwave signal
(input/output theory).
The back-action on the
qubit state of a single
measurement of one
output field quadrature
y is described by a
simple SME for the qubit
density operator ρ, 2 × 2
Hermitian ≥ 0 matrix.

dρt =
(
− i

2 [ωqZ ,ρt ] + γ(ZρZ − ρt)
)
dt

+
√
ηγ
(
Zρt + ρtZ − 2 Tr (Zρt)ρt

)
dWt

with yt given by dyt = 2
√
ηγ Tr (Zρt) dt + dWt where γ ≥ 0 is related

to the measurement strength and η ∈ [0, 1] is the detection efficiency.

6M. Hatridge et al. (2013): Quantum Back-Action of an Individual
Variable-Strength Measurement. Science, 339, 178-181.
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Another formulation of diffusive SME 7

With a single imperfect measurement dyt =
√
η Tr

(
(L + L†)ρt

)
dt + dWt and

detection efficiency η ∈ [0, 1], the quantum state ρt obeys to

dρt =
(
−i [H0 + utH1,ρt ] + LρtL

† − 1
2

(L†Lρt + ρtL
†L)
)
dt

+
√
η

(
Lρt + ρtL

† − Tr
(

(L + L†)ρt

)
ρt

)
dWt

driven by the Wiener process dWt

With Itō rules, it can be written as the following "discrete-time" Markov model

ρt+dt , ρt + dρt =
Mut ,dytρtM

†
ut ,dyt

+ (1− η)LρtL
†dt

Tr
(
Mut ,dytρtM

†
ut ,dyt

+ (1− η)LρtL
†dt
)

with Mut ,dyt = I −
(
i(H0 + utH1) + 1

2

(
L†L
))

dt +
√
ηLdyt .

7PR (2014): Models and Feedback Stabilization of Open Quantum Systems. Proc.
of Int. Congress of Mathematicians, vol. IV, pp 921–946, Seoul.
(http://arxiv.org/abs/1407.7810).
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Key characteristics of quantum SME (1)

Measured output map dyt =
√
η Tr

(
(L + L†)ρt

)
dt + dWt and

measurement backaction described by

ρt+dt , ρt + dρt =
Mut ,dytρtM

†
ut ,dyt

+ (1− η)LρtL
†dt

Tr
(
Mut ,dytρtM

†
ut ,dyt

+ (1− η)LρtL
†dt
)

I if ρ0 density operator, then, for all t > 0, ρt remains a density
operator
The dynamics preserve the cone of non-negative Hermitian
operators.

I Positivity and trace preserving numerical scheme for quantum
Monte-Carlo simulations.

I When η = 1, rank(ρt) ≤ rank(ρ0) for all t ≥ 0. In particular if ρ0 is
a rank one projector, then ρt remains a rank one projector (pure
state).
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Key characteristics of quantum SME (2)

dρt =
(
−i [H0 + uH1,ρt ] + LρtL

† − 1
2

(L†Lρt + ρtL
†L)
)
dt

+
√
η

(
Lρt + ρtL

† − Tr
(

(L + L†)ρt

)
ρt

)
dWt

with measured output map dyt =
√
η Tr

(
(L + L†)ρt

)
dt + dWt

I Invariance of the SME structure under unitary transformations.
A time-varying change of frame ρ̃ = U†tρU t with U t unitary.
The new density operator ρ̃ obeys to a similar SME where
H̃0 + uH̃1 = U†t (H0 + uH0)U t + iU†t

(
d
dt

U t

)
and L̃ = U†t LU t .

I "L1-contraction" properties. When η = 0, SME becomes deterministic
d

dt
ρ = −i [H0 + uH1,ρt ] + LρtL

† − 1
2

(L†Lρt + ρtL
†L)

generating a contraction semi-group for many distances (nuclear
distance8, Hilbert metric on the cone of non negative operators9).

I If the non-negative Hermitian operator A satisfies the operator inequality

i [H0 + uH1,A] + L†AL− 1
2

(L†LA + AL†L) ≤ 0

then V (ρ) = Tr (Aρ) is a super-martingale (Lyapunov function).
8D.Petz (1996). Monotone metrics on matrix spaces. Linear Algebra and its Applications, 244,

81-96.
9R. Sepulchre, A. Sarlette, PR (2010). Consensus in non-commutative spaces. IEEE-CDC. 14 / 37
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Belavkin quantum filter: stability and convergence issues

Quantum state ρt producing dyt =
√
η Tr

(
Lρt + ρtL

†) dt + dWt and its
estimate ρ̂t :

dρt =
(
−i [H0 + uH1,ρt ] + LρtL

† − 1
2

(L†Lρt + ρtL
†L)
)
dt

+
√
η

(
Lρt + ρtL

† − Tr
(

(L + L†)ρt

)
ρt

)
dWt

d ρ̂t =
(
−i [H0 + uH1, ρ̂t ] + Lρ̂tL

† − 1
2

(L†Lρ̂t + ρ̂tL
†L)
)
dt

+
√
η

(
Lρ̂t + ρ̂tL

† − Tr
(

(L + L†)ρ̂t

)
ρ̂t

)(
dyt −

√
η Tr

(
Lρ̂t + ρ̂tL

†
)
dt
)
.

I Stability10: the fidelity F (ρt , ρ̂t) = Tr2
(√√

ρt ρ̂t

√
ρt

)
is always a

sub-martingale:

∀t1 ≤ t2, E
(
F
(
ρt2 , ρ̂t2

) ∣∣∣ ρt1 , ρ̂t1

)
≥ F

(
ρt1 , ρ̂t1

)
.

Fidelity: 0 ≤ F (ρ, ρ̂) ≤ 1 and F (ρ, ρ̂) = 1 iff ρ = ρ̂.
I Convergence11 of ρ̂t towards ρt when t 7→ +∞ is an open problem
10H. Amini, C. Pellegrini, C., PR (2014). Stability of continuous-time quantum filters with

measurement imperfections. Russian Journal of Mathematical Physics, 21(3), 297-315.
11Partial result: R. van Handel (2009): The stability of quantum Markov filters. Infin. Dimens.

Anal. Quantum Probab. Relat. Top., 12, 153-172.
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Measurement-based feedback

QUANTUM WORLD

CLASSICAL WORLD

classical 
controller 

decoherenceclassical
input

classical
output

quantum measurement

classical
reference

SME

I P-controller (Markovian feedback12) for ut dt = k dyt , the ensemble
average closed-loop dynamics of ρ remains governed by a linear Lindblad
master equation.

I PID controller: no Lindblad master equation in closed-loop for dynamics
output feedback

I Nonlinear hidden-state stochastic systems: Lyapunov state-feedback13;
many open issues on convergence rates, delays, robustness, . . .

I Short sampling times limit feedback complexity
12H. Wiseman, G. Milburn (2009). Quantum Measurement and Control. Cambridge University Press.
13See e.g.: C. Ahn et. al (2002): Continuous quantum error correction via quantum feedback

control. Phys. Rev. A 65;
M. Mirrahimi, R. Handel (2007): Stabilizing feedback controls for quantum systems. SIAM Journal on
Control and Optimization, 46(2), 445-467;
G. Cardona, A. Sarlette, PR (2019): Continuous-time quantum error correction with noise-assisted
quantum feedback. IFAC Mechatronics & Nolcos Conf.
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First MIMO measurement-based feedback for a superconducting qubit 14

FM

Rabi

b)

~
~

FM

~
~

~

Rabi

JPC

outin

Drift

,
a)

c)

3 inputs

2 outputs

14P. Campagne-Ibarcq, . . . , PR, B. Huard (2016): Using Spontaneous
Emission of a Qubit as a Resource for Feedback Control. Phys. Rev. Lett.
117(6).
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Coherent (autonomous) feedback (dissipation engineering)

Quantum analogue of Watt speed governor: a dissipative mechanical
system controls another mechanical system 15

QUANTUM WORLD

CLASSICAL WORLD

Hilbert space 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

quantum
interaction

Optical pumping (Kastler 1950), coherent
population trapping (Arimondo 1996)

Dissipation engineering, autonomous
feedback: (Zoller, Cirac, Wolf, Verstraete,
Devoret, Schoelkopf, Siddiqi, Martinis,
Raimond, Brune,. . . , Lloyd, Viola, Ticozzi,
Leghtas, Mirrahimi, Sarlette, PR, ...)

(S,L,H) theory and linear quantum
systems: quantum feedback networks
based on stochastic Schrödinger equation,
Heisenberg picture (Gardiner, Yurke,
Mabuchi, Genoni, Serafini, Milburn,
Wiseman, Doherty, . . . , Gough, James,
Petersen, Nurdin, Yamamoto, Zhang,
Dong, . . . )

Stability analysis: Kraus maps and Lindblad propagators are always
contractions (non commutative diffusion and consensus).

15J.C. Maxwell (1868): On governors. Proc. of the Royal Society, No.100.
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Coherent feedback involves tensor products and many time-scales

The closed-loop Lindblad master equation on H = Hs ⊗Hc :

d

dt
ρ = −i

[
H s ⊗ I c + I s ⊗Hc + H sc , ρ

]
+
∑
ν

DLs,ν⊗I c (ρ) +
∑
ν′

DI s⊗Lc,ν′ (ρ)

with DL(ρ) = LρL† − 1
2

(
L†Lρ + ρL†L

)
and operators made of tensor products.

• Consider a convex subset Ds of steady-states for original system S : each
density operator ρs on Hs belonging to Ds satisfy i [H s ,ρs ] =

∑
ν DLs,ν (ρs).

• Designing a realistic quantum controller C (Hc , Lc,ν′) and coupling
Hamiltonian H sc stabilizing Ds is non trivial. Realistic means in particular
relying on physical time-scales and constraints:

I Fastest time-scales attached to H s and Hc (Bohr frequencies) and
averaging approximations: ‖H s‖, ‖Hc‖ � ‖H sc‖,

I High-quality oscillations: ‖H s‖ � ‖L†s,νLs,ν‖ and ‖Hc‖ � ‖L†c,ν′Lc,ν′‖.
I Decoherence rates of S much slower than those of C :
‖L†s,νLs,ν‖ � ‖L†c,ν′Lc,ν′‖: model reduction by quasi-static
approximations (adiabatic elimination, singular perturbations).
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Quantum feedback engineering

QUANTUM WORLD

CLASSICAL WORLD
Hilbert space 

classical 
controller 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

classical
input

classical
output

quantum measurement

classical
reference

quantum
interaction

To stabilize the quantum information localized in system S:

I fast decoherence addressed preferentially by quantum controllers
(coherent feedback);

I slow decoherence, perturbations and parameter drifts tackled mainly
by classical controllers (measurement-based feedback).

24 / 37



Outline

Continuous-time dynamics of open quantum system
Stochastic Master Equation (SME)
Key characteristics of SME
Quantum filtering and state estimation

Feedback schemes
Measurement-based feedback and classical controller
Coherent feedback and quantum controller
Merging measurement-based and coherent feedbacks

Quantum Error Correction (QEC) and feedback
QEC from scratch
Storing a logical qubit in a high-quality harmonic oscillator
Simplified feedback scheme for cat-qubit experiment

25 / 37



The simplest classical error correction code

• Single bit error model: the bit b ∈ {0, 1} flips with probability p < 1/2
during ∆t (for usual DRAM: p/∆t ≤ 10−14 s−1).
• Multi-bit error model: each bit bk ∈ {0, 1} flips with probability
p < 1/2 during ∆t; no correlation between the bit flips.
•Use redundancy to construct with several physical bits bk of flip
probability p, a logical bit bL with a flip probability pL < p.
• The simplest solution, the 3-bit code (sampling time ∆t):

t = 0: bL = [bbb] with b ∈ {0, 1}
t = ∆t: measure the three physical bits of bL = [b1b2b3]

(instantaneous) :

1. if all 3 bits coincide, nothing to do.
2. if one bit differs from the two other ones, flip this bit

(instantaneous);

• Since the flip probability laws of the physical bits are independent, the
probability that the logical bit bL (protected with the above error
correction code) flips during ∆t is pL = 3p2 − 2p3 < p since p < 1/2.
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The 3-qubit bit-flip code (Peter Shor (1995))17

• Local bit-flip errors: each physical qubit |ψ〉 = α|0〉+ β|1〉 becomes
X |ψ〉 = α|1〉+ β|0〉 16 with probability p < 1/2 during ∆t.
(for actual super-conducting qubit p/∆t > 103 s−1).
• t = 0: |ψL〉 = α|0L〉+ β|1L〉 ∈ C2 ⊗ C2 ⊗ C2 ≡ C8 with |0L〉 = |000〉 and
|1L〉 = |111〉.
• t = ∆t: |ψL〉 becomes with

1 flip:

 α|100〉+ β|011〉
α|010〉+ β|101〉
α|001〉+ β|110〉

; 2 flips:

 α|110〉+ β|001〉
α|101〉+ β|010〉
α|011〉+ β|100〉

; 3 flips: α|111〉+ β|000〉.

• Key fact: 4 orthogonal planes Pc = span(|000〉, |111〉), P1 = span(|100〉, |011〉),
P2 = span(|010〉, |101〉) and P3 = span(|001〉, |110〉).
• Error syndromes: 3 commuting observables S1 = I ⊗ Z ⊗ Z , S2 = Z ⊗ I ⊗ Z and
S3 = Z ⊗ Z ⊗ I with spectrum {−1,+1} and outcomes (s1, s2, s3) ∈ {−1,+1}.

-1- s1 = s2 = s3: Pc 3 |ψL〉 =

{
α|000〉+ β|111〉 0 flip
β|000〉+ α|111〉 3 flips ; no correction

-2- s1 6= s2 = s3: P1 3 |ψL〉 =

{
α|100〉+ β|011〉 1 flip
β|100〉+ α|011〉 2 flips ; (X ⊗ I ⊗ I )|ψL〉 ∈ Pc .

-3- s2 6= s3 = s1: P2 3 |ψL〉 =

{
α|010〉+ β|101〉 1 flip
β|010〉+ α|101〉 2 flips ; (I ⊗ X ⊗ I )|ψL〉 ∈ Pc .

-4- s3 6= s1 = s2: P3 3 |ψL〉 =

{
α|001〉+ β|110〉 1 flip
β|001〉+ α|110〉 2 flips ; (I ⊗ I ⊗ X )|ψL〉 ∈ Pc .

16
X = |1〉〈0| + |0〉〈1| and Z = |0〉〈0| − |1〉〈1|.

17M.A Nielsen, I.L. Chuang (2000): Quantum Computation and Quantum Information.Cambridge
University Press. 27 / 37



The 3-qubit phase-flip code

• Local phase-flip error: each physical qubit |ψ〉 = α|0〉+ β|1〉 becomes
Z |ψ〉 = α|0〉 − β|1〉 18 with probability p < 1/2 during ∆t.
• Since X = HZH and Z = HXH (H2 = I ), use the 3-qubit bit flip code in the
frame defined by H:

|0〉 7→
|0〉+ |1〉
√
2

, |+〉, |1〉 7→
|0〉 − |1〉
√
2

, |−〉, X 7→ HXH = Z = |+〉〈+|+ |−〉〈−|.

• t = +: |ψL〉 = α|+L〉 + β|−L〉 with |+L〉 = | + ++〉 and |−L〉 = | − −−〉.
• t = ∆t: |ψL〉 becomes with

1 flip:

 α| − ++〉 + β| +−−〉
α| +−+〉 + β| − +−〉
α| + +−〉 + β| − −+〉

; 2 flips:

 α| − −+〉 + β| + +−〉
α| − +−〉 + β| +−+〉
α| +−−〉 + β| − ++〉

; 3 flips: α| − −−〉 + β| + ++〉.

• Key fact: 4 orthogonal planes Pc = span(| + ++〉, | − −−〉), P1 = span(| − ++〉, | +−−〉,
P2 = span(| +−+〉, | − +−〉) and P3 = span(| + +−〉, | − −+〉).
• Error syndromes: 3 commuting observables S1 = I ⊗ X ⊗ X , S2 = X ⊗ I ⊗ X and S3 = X ⊗ X ⊗ I
with spectrum {−1,+1} and outcomes (s1, s2, s3) ∈ {−1,+1}.

-1- s1 = s2 = s3: Pc 3 |ψL〉 =

{
α| + ++〉 + β| − −−〉 0 flip
β| + ++〉 + α| − −−〉 3 flips ; no correction

-2- s1 6= s2 = s3: P1 3 |ψL〉 =

{
α| − ++〉 + β| +−−〉 1 flip
β| − ++〉 + α| +−−〉 2 flips ; (Z ⊗ I ⊗ I )|ψL〉 ∈ Pc .

-3- s2 6= s3 = s1: P2 3 |ψL〉 =

{
α| +−+〉 + β| − +−〉 1 flip
β| +−+〉 + α| − +−〉 2 flips ; (I ⊗ Z ⊗ I )|ψL〉 ∈ Pc .

-4- s3 6= s1 = s2: P3 3 |ψL〉 =

{
α| + +−〉 + β| − −+〉 1 flip
β| + +−〉 + α| − −+〉 2 flips ; (I ⊗ I ⊗ Z)|ψL〉 ∈ Pc .

18
X = |1〉〈0| + |0〉〈1|, Z = |0〉〈0| − |1〉〈1| and H =

(
|0〉+|1〉√

2

)
〈0| +

(
|0〉−|1〉√

2

)
〈1|.
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The 9-qubit bit-flip and phase-flip code (Shor code (1995))
• Take the phase flip code |+ ++〉 and | − −−〉. Replace each |+〉 (resp. |−〉) by
|000〉+|111〉√

2
(resp. |000〉−|111〉√

2
).

New logical qubit |ψL〉 = α|0L〉+ β|1L〉 ∈ C29 ≡ C512:

|0L〉 =

(
|000〉+|111〉

)(
|000〉+|111〉

)(
|000〉+|111〉

)
2
√
2

, |1L〉 =

(
|000〉−|111〉

)(
|000〉−|111〉

)(
|000〉−|111〉

)
2
√
2

• Local errors: each of the 9 physical qubits can have a bit-flip X , a phase flip Z or a
bit flip followed by a phase flip ZX = iY 19 with probability p during ∆t.
• Denote by X k (resp. Y k and Zk ), the local operator X (resp. Y and Z) acting on
physical qubit no k ∈ {1, . . . , 9}. Denote by Pc = span(|0L〉, |1L〉) the code space.
One get a family of the 1 + 3× 9 = 28 orthogonal planes:

Pc ,
(
X kPc

)
k=1,...,9

,
(
Y kPc

)
k=1,...,9

,
(
ZkPc

)
k=1,...,9

.

• One can always construct error syndromes to obtain, when there is only one error
among the 9 qubits during ∆t, the number k of the qubit and the error type it has
undergone (X , Y or Z). These 28 planes are then eigen-planes by the syndromes.
• If the physical qubit k is subject to any kind of local errors associated to arbitrary
operator Mk = g I + aX k + bY k + cZk (g , a, b, c ∈ C), |ψL〉 7→ Mk |ψL〉√

〈ψL|M
†
k
Mk |ψL〉

, the

syndrome measurements will project the corrupted logical qubit on one of the 4 planes
Pc , X kPc , Y kPc or ZkPc . It is then simple by using either I , X k , Y k or Zk , to
recover up to a global phase the original logical qubit |ψL〉.

19
X = |1〉〈0| + |0〉〈1|, Z = |0〉〈0| − |1〉〈1| and Y = i|1〉|0〉 − i|0〉|1〉.
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Practical open issues with usual QEC

• For a logical qubit relying on n physical qubits, the dimension of the
Hilbert has to be larger than 2(1 + 3n) to recover a single but arbitrary
qubit error: 2n ≥ 2(1 + 3n) imposing n ≥ 5 (H = C25

= C32)

• Efficient constructions of quantum error-correcting codes: stabilizer
codes, surface codes where the physical qubits are located on a
2D-lattice, topological codes, . . .

• Fault tolerant computations: computing on encoded quantum states;
fault-tolerant operations to avoid propagations of errors during encoding,
gates and measurement; concatenation and threshold theorem, . . .

• Actual experiments: 10−2 is the typical error probability during
elementary gates involving few physical qubits.

• High-order error-correcting codes with an important overhead; more
than 1000 physical qubits to encode a logical qubit 20 H ∼ C21000

.
20A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland (2012): Surface

codes: Towards practical large-scale quantum computation. Phys. Rev.
A,86(3):032324.
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Cat-qubit: storing a logical qubit in a high-quality harmonic oscillator21

• System S (LC circuit): a high-quality harmonic oscillator (1� ωs/κs ∼ 106):

d

dt
ρ̃s = −iωs [N s , ρ̃s ] + κsDas (ρ̃s)

with Hs = span{|0〉, |1〉, . . . , |n〉, . . .}, photon-number operator N s and
annihilation operator as (N s = a†s as , N s |n〉 = n|n〉, as |n〉 =

√
n|n − 1〉).

• In the rotation frame ( ρ̃s = e−iωs tNsρse
+iωs tNs ):

d

dt
ρs = κsDas (ρs) = κs

(
asρa†s − 1

2 (a†s asρ + ρa†s as)
)
.

• Goal: engineer a logical qubit with superpositions of coherent states

|β〉 = e−
|β|2

2
∑
n≥0

βn

√
n!
|n〉

of complex amplitudes β ∈ {α, iα, -α, -iα} with α� 1 (typically α ≥ 3).
• Coherent states are robust to decoherence: as |β〉 = β|β〉: if ρs(0) = |β0〉〈β0|,
then ρs(t) = |βt〉〈βt | with βt = β0e

−κs t/2.

21M.Mirrahimi, Z. Leghtas . . . , M. Devoret. (2014). Dynamically protected cat-qubits: a new
paradigm for universal quantum computation. New Journal of Physics, 16, 045014.
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Simplified feedback scheme for a possible cat-qubit experiment22

(measurement-based feedback)

high Q mode

(logical qubit)

low Q mode 

(coherent feedback)

Re

Im

dispersive coupling

non-linear mixer 

low Q mode 

Stochastic master equation on Hs ⊗H1 ⊗H2 :

dρ = κsDas (ρ) dt − i [H,ρ] dt

+ κ1Da1 (ρ) dt + κ2Da2 (ρ) dt

+
√
ηκ2

(
ia2ρ− iρa†2 − Tr

(
ia2ρ− iρa†2

)
ρ
)

dWt

Engineered Hamiltonian

H = i(u1a†1 − u∗1a1) + i(u2a†2 − u∗2a2)

+ g1
(
a4s a
†
1 + (a4s )†a1

)
+ g2a†2a2 e iπa†s as ,

Classical control inputs u1, u2 ∈ C
Measurement output classical signal:
dyt =

√
ηκ2 Tr

(
ia2ρ− iρa†2

)
dt + dWt

Many time-scales, κs � g1, g2 � κ1, κ2 and

κs �
g2
1
κ1
,
g2
2
κ2

, providing a reduced slow SME on

span{|α〉, |iα〉, |-α〉, |-iα〉} with α = 4
√

u1/g1
22Inspired by

• N. Ofek, . . . , M. Mirrahimi, M. Devoret, R. Schoelkopf (2016). Extending the lifetime of a quantum
bit with error correction in superconducting circuits. Nature, 536(7617),441-445.
• R. Lescanne, . . . , M. Mirrahimi, Z. Leghtas (2019): Exponential suppression of bit-flips in a qubit
encoded in an oscillator. arXiv:1907.11729 [quant-ph].
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Quantum feedback engineering for robust quantum information processing

QUANTUM WORLD

CLASSICAL WORLD
Hilbert space 

classical 
controller 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

classical
input

classical
output

quantum measurement

classical
reference

quantum
interaction

To protect quantum information stored in system S (alternative to usual QEC):
I fast stabilization and protection mainly achieved by a quantum controller

(coherent feedback stabilizing decoherence-free sub-spaces);
I slow decoherence and perturbations mainly tackled by a classical controller

(measurement-based feedback "finishing the job")

Underlying mathematical methods for high-precision dynamical modeling and
control based on stochastic master equations (SME):

I High-order averaging methods and geometric singular perturbations for coherent
feedback.

I Stochastic control Lyapunov methods for exponential stabilization via
measurement-based feedback.
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Qubit (2-level system, half-spin) 23

I Hilbert space:
HM = C2 =

{
cg |g〉+ ce |e〉, cg , ce ∈ C

}
.

I Quantum state space:
D = {ρ ∈ L(HM),ρ† = ρ, Tr (ρ) = 1,ρ ≥ 0} .

I Operators and commutations:
σ- = |g〉〈e|, σ+ = σ-

† = |e〉〈g |
X ≡ σx = σ- + σ+ = |g〉〈e|+ |e〉〈g |;
Y ≡ σy = iσ- − iσ+ = i |g〉〈e| − i |e〉〈g |;
Z ≡ σz = σ+σ- − σ-σ+ = |e〉〈e| − |g〉〈g |;
σx

2 = I , σxσy = iσz , [σx ,σy ] = 2iσz , . . .

I Hamiltonian: HM = ωqσz/2 + uqσx .

I Bloch sphere representation:
D =

{
1
2

(
I + xσx + yσy + zσz

) ∣∣ (x , y , z) ∈ R3, x2 + y2 + z2 ≤ 1
}

|g

|e
ωq

uq

23 See S. M. Barnett, P.M. Radmore (2003): Methods in Theoretical
Quantum Optics. Oxford University Press.
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Quantum harmonic oscillator (spring system) 23

I Hilbert space:
HS =

{∑
n≥0 ψn|n〉, (ψn)n≥0 ∈ l2(C)

}
≡ L2(R,C)

I Quantum state space:
D = {ρ ∈ L(HS),ρ† = ρ, Tr (ρ) = 1,ρ ≥ 0} .

I Operators and commutations:
a|n〉 =

√
n |n-1〉, a†|n〉 =

√
n + 1|n + 1〉;

N = a†a, N |n〉 = n|n〉;
[a, a†] = I , af (N) = f (N + I )a;
Dα = eαa†−α†a.
a = X + iP = 1√

2

(
x + ∂

∂x

)
, [X ,P] = ıI/2.

I Hamiltonian: HS = ωca†a + uc(a + a†).
(associated classical dynamics:
dx
dt = ωcp,

dp
dt = −ωcx −

√
2uc).

I Classical pure state ≡ coherent state |α〉
α ∈ C : |α〉 =

∑
n≥0

(
e−|α|

2/2 αn
√
n!

)
|n〉; |α〉 ≡ 1

π1/4 e
ı
√

2x=αe−
(x−
√

2<α)2
2

a|α〉 = α|α〉, Dα|0〉 = |α〉.

|0

|1

|2

ωc

|n

ωc
uc

...
 ..

.
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