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The first experimental realization of a quantum state feedback

i
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The LKB photon Box
Group of Serge Haroche, Jean-Michel Raimond and Michel Brune.
1

Stabilization by a measurement-based feedback
of photon-number states (sampling time 80 ..5)
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.
Theory: I. Dotsenko et al., Physical Review A, 2009, 80: 013805-013813.
H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

' Animation realized by Igor Dotsenko 2/27




Experimental closed-loop data  Stabilization around 3-photon stateg%

ng = 3 photons

C. Sayrin et. al., Nature
477, 73-77, Sept. 2011.

Decoherence due to finite '{V‘ | | | | ' | ' 1
photon life time around
70 ms) [ ) ‘ ‘ ‘ / ‘ ]

Detection efficiency 40%
Detection error rate 10%
Delay 4 sampling periods

The quantum filter takes

20 40

. . ] 100 120
into account cavity Time ¢ (ms)
decoherence, \

140 180

measurement imperfections
and delays (Bayes law).

Truncation to 9 photons



Ideal model: Markov chain with input u, hidden state p and output y/gj

S
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Input: control u = Ae*® describing the classical EM pulse .
Quantum state : p the density operator of the photons .
Output: y € {g, e} measurement of the atom.

Dy, MypiM}; D}
w7 Yk = g with proba. Pgx = Tr (MngM;>

Tr (MngM;>

Pk+1 = D.. M.owMiD}
w7 Yk = e with proba. Pek = Tr (MepkMg>

Tr (MepkMg)

QND measurement operators: M, = cos (w) et
M, = sin (W) with N = afa = diag(0,1,2,...).

Unitary control operator : D, = gta'—u"a where a is the photon
annihilation operator.

Goal : stabilize state with exactly n photon(s), 5 = |n)(n|, that are
open-loop stationary state for u = 0.



Structure of this quantum-state feedback (ideal case)? /5/75

Observer-Controller

» Non linear filtering of the measurements k — yi provides an
estimate p®' of p:

DUk MYk p‘la(St M}]:k DlJDk
Tr (My 52}, )

est _
Prky1 =

Quantum filter in the sense of Belavkin.

» The stabilizing feedback ux = f(p§') ensuring convergence
towards j is based on Lyapunov design:

ux = Argmin - E (V(pk+1) | px = 5, U)
u

where V is a well chosen super-martingale constructed with
open-loop martingales attached to the QND process.

2The global convergence proof of such observer/controller for the realistic
case is given in H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.
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In the realistic case: |vk), px and p§'. ;j
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PhotonBox yoll ]
Coherent
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u
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est
P
QuantumFilter_Controller est
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The state estimation p,ef’ used in the feedback law takes into account, measurement
imperfections, delays and cavity decoherence:

» Derived from Bayes law: depends on past detector outcomes between 0 and k;
computed recursively from an initial value pSSt;

> Stable and tends to converge towards py, the expectation value of | ) (k|
knowing its initial value |) (9| and the past detector outcomes from 0 to k.



Outline
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Quantum filtering: discrete-time case

Quantum filtering: continuous-time case

Conclusion
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For the photon box, quantum filtering combines /5/75

1. Bayes law: P('/u) = B(u/i)B(1') | (3, B/ )B()).

2. Schrédinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and
convergence are induced by the measurement of observables O
with degenerate spectra, O =} A, P!

» measurement outcome A, with proba.
P, = (W|P.ly) = Tr(pP,) depending |¢), p just before the
measurement
» measurement back-action if outcome p:
PM|¢> PMPPM
|1/1> = W]>+ <¢‘PH|'¢>7 p = Pt Tr(,OPM)

4. Tensor product for the description of composite systems (S, M):
» Hilbert space H = Hgs ®@ Huy
» Hamiltonian H = Hs ® Iy + Hint + Is ® Hy
» observable on sub-system M only: O =1s ® Op.



LKB photon-box: Markov chain in the ideal case (1) J
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» System S corresponds to a quantized cavity mode:

MHs = {Zw In) | 06/2((@)},

where |n) represents the Fock state associated to exactly n
photons inside the cavity

» Meter M is associated to atoms : Hy = C2, each atom
admits two energy levels and is described by a wave
function cg|g) + cel€) with |cg|? + |ce|? = 1; atoms leaving
B are all in state |g)

» When an atom comes out B, the state |V)g € Hg ® Hpy of
the composite system atom/field is separable

V) =) @|9).



LKB photon-box: Markov chain in the ideal case (2) J
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» When an atom comes out B: |V)g = |[¢)) ® |g).

» Just before the measurement in D, the state is in general
entangled (not separable):

V)R, = Usu (1) @1g)) = (Mglt)) ® |9) + (Me|th)) @ |€)

where Usgy, is the total unitary transformation (Schrédinger
propagator) defining the linear measurement operators M, and
Me on Hs. Since Usy is unitary, MMy + M{Me = 1.

10/27



LKB photon-box: Markov chain in the ideal case (3)

Just before the measurement in D, the atom/field state is:
Mgl) @ 1) + Me|y)) @ |€)

Denote by 1 € {g, e} the measurement outcome in detector D: with
probability P, = <w|MfLM#Wz> we get p. Just after the measurement
outcome p, the state becomes separable:

(Mul¢)) @ |p)

W)p = — (Mu]0h) @ |p) = ~ il
Ve (WML M, )

Markov process (density matrix formulation p ~ |1) (1))

M, pM},
L"T, with probability Py = Tr (Mgng);
T (Mepm)
P+ = M. pMT
_ TeP¥e _ with probability P = Tr (Mep/\//;).
Tr (MepM;)

Kraus map: [E (p. |p) = K(p) = MgpM} + MepM{.

Z
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LKB photon-box: Markov process with detection errors (1) 7
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» With pure state p = [¢)(¢|, we have

1
py = Y)Yy | = T (MuPMD

when the atom collapses in 1 = g, e with proba. Tr (M, pM},).

M,.pM}

» Detection error rates: P(y = e/ = g) = ng € [0, 1] the
probability of erroneous assignation to e when the atom
collapses in g; P(y = g/u = €) = ne € [0, 1] (given by the
contrast of the Ramsey fringes).

Bayes law: expectation p, of |¢; ) (x| knowing p and the imperfect
detection y.

(1 *Wg)MgPM; +1eMopM]
Tr((1—ng) Mg pM{ +116MepM{ )
ngMgPMg+(1 —ne)MepM]
-I—r(TIgIV’gP’V’;-‘r(1 _We)MePM;)
p+ does not remain pure: the quantum state p, becomes a mixed

state; ;) becomes physically irrelevant (not numerically).

it y = g, prob. T (1 = 1g)MgpM + neMepM} );
P+ =

if y = e, prob. Tr (ngMgpM; (- ne)Meng).

12/27



Z

Photon-box quantum filter: 6 x 21 left stochastic matrix (7, ,,) =
pf’f{s_"__' — TI’(Z“ ﬂu/,lMquStMl) (Z L upiStMT> with
» we have a total of m = 3 x 7 = 21 Kraus operators M,,.. The
"jumps" are labeled by p = (p?, u€) with
u? e {no,g,e,gg,ge, ey, ee} labeling atom related jumps and
¢ e {o,+, —} cavity decoherence jumps.
» we have only m’ = 6 real detection possibilities
u' € {no,g,e,gg, ge, ee} corresponding respectively to no
detection, a single detection in g, a single detection in e, a
double detection both in g, a double detection one in g and the
other in e, and a double detection both in e.
’ w\ H (no, pu°) ‘ (9, 1°) ‘ (e, 1) ‘ (99, 1%) ‘ (ee, 1) ‘ (ge, 1) (eg, p°) ‘
no 1 11— e [— (1 — e (1 — e (1 — e
g 4 eg(1 — mg) €476 2e4(1 — €4)(1 — 1) 2e4(1 — €4)n, eq(1 — €g)(1 — My + 710)
e 0 €4 es(t — me) 2€4(1 — €4)my 264(1 — €,)(1 — m.) es(1 — €)1 = Mo + 1)
99 4 4 4 (1 — my)? ein? en.(1 — mg)
ge 4 4 0 2e2n,(1 — m,) 2€5m,(1 — 7,) e((1 = me)(1 = me) + Memy)
e 0 0 0 én? e — my &m,(1 = n,)
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The Markov chain with imperfections: |¢x) and py J
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Take [e) (st | = sy (Mo 10 (0l M, ) wit

measurement imperfections and decoherence described by the left
stochastic matrix n: 7, € |0, 1] is the probability of having the
imperfect outcome ¢/ € {1,..., m'} knowing that the perfect one is

we{l,...,m}.

The optimal quantum filter: px = I <|¢k><¢k|’|¢o>,%, . ,,/“)
can be computed efficiently via the following recurrence

=1

m
= ! M p MY
Pk+1 Tr(ZfZ:1 "u;,uMquMl) (Z Nupeon Vi Pk u)

where the detector outcome ) takes values ' in {1,---,m'} with
probability P, ,, = Tr (zg; HML,MM;LPRMZ).
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Stability and convergence issues (1) ;j

» The quantum state px = £ (Ilﬁk)(iﬁkl‘ltbo%%, iy -7%{_1) is
given by the following optimal Belavkin filtering process

m
1 T
Pk+1 = > 1 MupiM,
(S0 m . MopiM) ' i M PV,

with the perfect initialization: pg = |v0) (90|
> lts estimate p*' follows the same recurrence

m
est 1 est AT
Piy1 = > g 1w MupeM
k+1 Tr(ZZ:1 WML,MMuPiStMZ> = M 1%

but with imperfect initialization pg™* # |10) (/o]

A natural question : p§' — px when k — +o0o0 ?
15/27



Stability and convergence issues (2) /5/75

Markov chain of state (px, p§*

t
> WM;,“MMMM‘E e PO WMo M],
’ k+1 — est
TV(EZ:1 W“;(,MMHWME) + Tr(E“ 1, MMHpks ML)

Pk+1 =

Proba. to get 1) at step k, Tr (Z,T:1 Uu;,ﬂMquMD’ depends on p.

» Convergence of p* towards px when k — +o0 is an open
problem.
A partial result (continuous-time) due to R. van Handel: The
stability of quantum Markov filters. Infin. Dimens. Anal.
Quantum Probab. Relat. Top. , 2009, 12, 153-172.

> Stability®: the fidelity F(px, pi") = T (\/V/okpe/px) is @
sub-martingale for any n and M,,:

E (F(ps1. 6220)/ ok 621) = Flpi, ).

3Somaraju, A.; Dotsenko, |.; Sayrin, C. & PR. Design and Stability of
Discrete-Time Quantum Filters with Measurement Imperfections. American

Control Conference, 2012, 5084-5089.
16/27



The key inequality underlying F(p, p®) is sub-martingale*

Z
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For

> any set of m matrices M, with S-7"_, MiM, =1,

» any partition of {1,..., m} into p > 1 sub-sets P,,

» any Hermitian non-negative matrices p and o of trace one,
the following inequality holds

> MuUMT > MuPMT

Tr M pM HEPY w 7 LEP, 2

Z “;V ' ( Tr<zu67’u MHUM‘E) Tr(ZuEP MHle]:>
> F(o,p)

where F(o,p) = Tr? < \/Ep\/E>.
Proof combines Cauchy-Schwartz inequalities with a lifting
procedure based on Ulhmann’s theorem.

*PR. Fidelity is a Sub-Martingale for Discrete-Time Quantum Filters. IEEE
Transactions on Automatic Control, 2011, 56, 2743-2747.
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. 0 0 /
Bayesian parameter estimations®
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Consider detector outcomes . corresponding to a parameter value p
poorly known. Assume to simplify that either p = a or p = b, with

a # b. We can discriminate between a and b and recover p via the
following Bayesian scheme using information contained in the ;i ’s:

a a ~est prat
th nuf(,“Mp,pa,kMﬂ

P p ~est
TI’(ZP 2 nHLvuM“pp’k

b b ~est psb T
Z,L W#L,“Mﬂpb,kMﬂ

(5, 5,00, MEBTME)

~est

. ~est
Pak+1 =

Mﬁf> v Ppky1 =

with initialization pg%y 1 = piq = P5/2 Where pg = po assuming
initial probability of 1 to have p = aand p = b. At step k,

Pox = Tr (ﬁ;f;), Pox = Tr (ﬁf,f‘k) ) are the proba. to have p = a,
p = b, knowing the initial state pg and the past detection outcomes.

This dynamical parameter estimation process is stable: if the true
value of the parameter is a then P, « is a sub-martingale.

5See Kato, Y. & Yamamoto, N. Decision and Control (CDC), 2013 IEEE 52nd
Annual Conference on, 2013, 1904-1909
Discrete-time translation of
Gambetta, J. & Wiseman, H. M., Phys. Rev. A, 2001, 64, 042105
and of Negretti, A. & Mglmer, K. , New Journal of Physics, 2013, 15, 125002.
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Discrete-time models of open quantum systems

Four features:
1. Bayes law: P(u/ /) = P(u/u)P(i') / (X, P(u/V')P(V)),
2. Schrédinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and dissipation
are induced by the measurement of observables with
degenerate spectra.

4. Tensor product for the description of composite systems.
= Discrete-time models: Markov processes of state p, (density op.):
M Mt My oM, .
2yt Mty Mo )’ with proba. P,/ (pk) = Z;T=1 Mt o TF (MMPKML)

P = (St MM
associated to Kraus maps (ensemble average, quantum channel)

E (pxs1lon) = K(pk) =D MupicM, with >~ MM, =1

B w

and left stochastic matrices (imperfections, decoherences) (7,/,,.)-

19/27



Continuous/discrete-time Stochastic Master Equation (SME) /5/75

Discrete-time mode!s: Markov chains
STy My M, )
Pk+1 = Tr(Elen , M:);;(ML)’ with proba. ./ (px) = ZZ':1 N 10 (MHPKML)
with ensemble averages corresponding to Kraus linear maps

E (pkstlpx) = K(pk) = > MupeM], with > MM, =1
© W

Continuous-time models: stochastic differential systems
j 1
dpr = (—,;[H,pf] 3 Lopekd — ML+ ptLiL») ot
+ \/"77(1-1//)1 +pelf — Tr ((Lu + LDPt) Pt) aw.,.;

driven by Wiener process dW,; = dy,: — /n, Tr ((LV + L) p,) dt
with measurements y,, ;, detection efficiencies 7, € [0,1] and
Lindblad-Kossakowski master equations (1, = 0):

d ' 1
Ep = —é[H,p] + Z Lupt’-l - E(LZLVPT =+ ptLlLu)

20/27



Continuous/discrete-time diffusive SME 9
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With a single imperfect measurement
dy;=nTr ((L + L") Pr) dt + dW; and detection efficiency n € [0, 1],
the quantum state p; is usually mixed and obeys to

dpr = (M, pd + Loek" = J(LT Lo+ piL L)) o
Vi Lo ol = T (L L) )
driven by the Wiener process dW;
With It0 rules, it can be written as the following "discrete-time" Markov

model
Md.thTMTdy, + (1 —n)LpL' at

Tr (May,pcMly, + (1 = n)LpiL'dt)

Pt+dt =

with May, = 1+ (—fH =} (L'L)) dt + /idyiL.

21/27



Continuous/discrete-time jump SME 7
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With Poisson process N(t), (dN(t)) = <§+ﬁ Tr (VpeVT) ) at, and

detection imperfections modeled by § > 0 and 7 < [0, 1], the quantum
state p; is usually mixed and obeys to

dpi = (—ilH, il + VorVE = L(VIVo +pVIV)) ot

Opt +1Vp V1 ) a4 =
————— — dN(t) — (0 Tr (Vp VT
<0+nTr(thVT) " ( © ( +am Ve ))dt)

0 n T
For N(t + df) — N() = 1 we have py, g = 2L =1VoV"

0 +7Tr(Vp: V1)
For dN(t) = 0 we have

MopiM§ + (1 = 7))V Vi dit
Tr (MoptMg +(1—7)Vpy VTdt)

Pt+dt =

with My = I+ (—iH + 4 (7 Tr (Vp V) 1= ViV)) dt.

22/27



Continuous/discrete-time diffusive-jump SME 7
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The quantum state p; is usually mixed and obeys to
. 1 1
dpi = (71[H, pt] + LpllT — E(L*Lp, +plTL) + Vpr VT — E(vT Vor + pe V7 V)) dt
¥ \/77<Lpt TPWAREE ((L + U)p,) p,> dw,

+ (egf%?&\(/ﬁ;t‘/VJ(T) - Pt> (dN(t) - (5 +7Tr (Vﬂt VT) ) dt)

0 7 T
ForN(t+dt)—N(t)=1weha\,ept+dt:w-
047 Tr(Vp: V1)

For dN(t) = 0 we have
Md}'tpr:;y,

Tt (May, M},

+ (1 —=n)LplLtdt + (1 =) Vpe Vidt
+ (1 —n)LpLtdt + (1 —ﬁ)thVTdt)

Pti-dt =

with May, = I+ (—iH — JLTL+ 1 (7 Tr (Vp: V) 1 = VTV)) dt + /ndy:L.

23/27



Continuous/discrete-time general diffusive-jump SME 7

The quantum state p; is usually mixed and obeys to
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dp; = (—f[H, ol + 3 Lupill, = YW L pr + it L) + Vi VE = SV Vs + oy V] vu)) dt
-

+> Vi <LuP1 oLl — T ((Lu + LZ)P!) Pi) aw,
v

0o+, Ty VotV
+30 | - ' ot ;jr ~
m 9#+Eu’ Ty Tf(VufPtVM,)

AN () = (B + S, T (Ve ) dt>

P

where n,, € [0, 1], @UHH ! > 0 with Myt = Eu My, < 1 are parameters modelling measurements
imperfections.

Oupt + 3, My Vi PIV:;/

If, for some w, Ny, (t + dt) — N, (t) = 1, we have p g4 = .
O+ X Ty T (VroeVT))

When V., dN,,(t) = 0, we have

May, peMYy, + 50, (1 = nu)Lupelldt + 52, (1 = 0,)Vupe Vi ot

T (May, oM, + 5, (1 = m)LupeLb ot + 50, (1 = 7,) Vi Vi)

Ptrdt =

with My, = I+ (—iH i L+, (W T (v”p,vl) 1= v vu)) dt+ Y, /Ao dy,el, and

where dy,, 1 = v/ Tr ((L,, +Lf) p,) dt + dw,, ;.
Could be used as a numerical integration scheme that preserves the positiveness of p
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Continuous-time diffusive SME and quantum filtering 7
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For clarity’sake, take a single measurement y; associated to operator
L and detection efficiency n € [0, 1]. Then p; obeys to the following
diffusive SME

dpi = ~ilH. pl ot + (LpiL! = J(LiLpt + piL1L)) e
+ /1 (Lpt + peLlT = Tr ((L+ LYpr) pr) dW,
driven by the Wiener processes W;,

Since dy; = /i Tr (L + L") p;) dt + dW;, the estimate p§*' is given by

dpest _ —I[H pest] dt+ (LpestLT 7(LTLp98t+pGStLT )) at
+V1 (Lpg™ + p' L — Tr ((L+ LNp§™) pf) (dyr — /i Tr (L + LN)p§™) dt) .

initialized to any density matrix p§®.

25/27



Stability of diffusive quantum filtering® =

Assume that (p, p*') obey to

dpr = —ilH, pil dt + (LprLT = J(LiLpi+ prl L)) ot
+ 7 (Lot + el = Tr ((L+ LNpy) pr) dW;

dpest = —i[H, pest] at + (LpetzstLT _ %(LTLpeSt +pestLTL)) at
+ \f(LpeSt ttastLT — Tr ((L—l— LT) est) est) th
4 (Lo + pLt — Tr ((L+ LYpg) p5) Tr ((L+ L) (pr — p5)) ot

correction terms vanishing when p; = p$t

Then for any H, Land 5 € [0,1], F(pt, p5*) = T (\/\/oep/pe) is @
sub-martingale:
t — [ (F(pr, p5)) is non-decreasing.

8H. Amini, C. Pellegrini, PR: Stability of continuous-time quantum filters

with measurement imperfections. http://arxiv.org/abs/1312.0418
26/27



Metric for the distance between p and its estimate p®! /5/75

» 1 — F(pt, p§) remains a super-martingale for all Belavkin
SMEs and their associated quantum filters when they are
driven simultaneously by several Wiener and Poisson
processes.

» Petz has given, via the theory of operator monotone
functions, a complete characterization of distance that are
contracted for all Lindblad-Kossakovski evolutions”:

d .
o =—ilH. i+ (Lpri — (L + pL:[,L,,)> .

» Could we exploit Petz results to characterize "metrics”
D(p, p*) that are super-martingale for all Belavkin SMEs.
and filters ?

D. Petz. Monotone metrics on matrix spaces.Linear Algebra and its
Applications, 244:81-96, 1996.
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