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Quantum state tomography based on POVM,
∑

j πj = I

I Tomography of ρ via N independent measurements Y associated to
POVM: probability Tr (ρπj ) of each measurement outcome j given by πj ;
for Nj the number of j outcomes, Y ≡ (Nj) with

∑
j Nj = N, the number

of measurements.
I Several estimation methods:

MaxEnt: ρME maximizes − Tr (ρ log(ρ)) under the constraints
| Tr (ρπj )− Nj/N| ≤ ε (Bužek et al, Ann. Phys. 1996).

Compress Sensing: ρCS minimizes Tr (ρ) under the constraints
| Tr (ρπj )− Nj/N| ≤ ε (Gross et al PRL2010)

MaxLike: ρML maximizes the likelihood function,
ρ 7→ P(Y | ρ) =

∏
j

(
Tr (ρπj )

)Nj (see, e.g.,
Lvovsky/Raymer RMP 2009)

Bayesian Mean: ρBM ∝
∫
ρP(Y | ρ)P0(ρ)dρ where P0 is some prior

distribution P0(ρ)dρ (see, e.g., Blume-Kohout
NJP2010).

Low rank, high dimensional systems: see, e.g, PhD thesis "Efficient
and Robust Methods for Quantum Tomography" of
Charles Heber Baldwin, University of New Mexico,
December 2016.
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Quantum filtering / tomography with quantum trajectories Y =
(

y (n)
t

)
Filtering: estimation of the quantum state ρt at time t > 0 from the

measurement trajectory [0, t [3 τ 7→ yτ and the initial state ρ0;
see Belavkin semilar contributions (links with Monte-Carlo
quantum-trajectories).

State tomography: estimation of the initial state ρ0 = ρ from a collection of N
measurement trajectories: Y =

(
y (n)

t

)
with n ∈ {1, . . . ,N}

and t ∈ [0,T ].

Process tomography: estimation of a parameter p from a known initial state
ρ and a collection of N measurement trajectories Y .

This talk: MaxLike estimation with decoherence and measurement
imperfections (PhD thesis of Pierre Six, November 2016):

1. How to compute the likelihood function P
(
Y/ρ,p

)
and its gradient from

the stochastic master equation governing filtering (P. Six et al. PRA
2016).

2. For state estimation: variance computation based on asymptotic
expansions of Laplace integrals for low rank MaxLike estimates (P. Six
/PR, chapter in Lecture Notes in Control and Information Sciences no
473, April 2017).
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Regular MaxLike estimation of a parameter p

Log-likelihood function f (p) = log
(
P(Y | p)

)
admits a unique

maximum at pML (∇f (pML) = 0) with a negative definite Hessian
(∇2f (pML) < 0).

f coming from N independent realisations: f (p) ≡ Nf̄ (p) with
asymptotics for N 7→ +∞ of the Laplace integrals connecting

I Bayesian Mean pBM and MaxLike estimation pML:

pBM =

∫
p eNf̄ (p)P0(p)dp∫
eNf̄ (p)P0(p)dp

= pML + O(1/N).

with any smooth prior distribution P0(p)dp

I Bayesian variance and Fisher information F ML = −∇2f (pML):∫
‖p − pML‖2 eNf̄ (p)P0(p)dp∫

eNf̄ (p)P0(p)dp
= Tr

((
F ML

)−1
)
/(2N) + O(1/N2).

Confidence intervals based on −∇2f (pML).

5 / 27



Outline

Quantum tomography versus quantum filtering

Likelihood function calculations via adjoint states
Discrete time case
Continuous time case

MaxLike estimations with experimental data
Process tomography for QND measurement of photons
State tomography of a quantum Maxwell demon

Fisher information and low-rank MaxLike estimates

Appendix: asymptotics for multi-dimension Laplace integrals and boundary
corrections

6 / 27



Discrete-time models of open quantum systems

Four features1:

1. Bayes law: P(µ′/µ) = P(µ/µ′)P(µ′) /
(∑

ν′ P(µ/ν′)P(ν′)
)
,

2. Schrödinger equations defining unitary transformations.

3. Randomness, irreversibility and dissipation induced by the
measurement of observables with degenerate spectra.

4. Entanglement and tensor product for composite systems.

V Discrete-time models
Take a set of operators Mµ satisfying

∑
µ M†µMµ = I and a left

stochastic matrices (ηyt ,µ). Consider the following Markov process of
state ρ (density op.) and measured output y :

ρt+1 =
K yt (ρt )

Tr(K yt (ρt ))
, with proba. Pyt (ρt ) = Tr (K yt (ρt ))

with K y (ρ) =
∑m
µ=1 ηy,µMµρM†µ. It is associated to the Kraus map

(ensemble average, quantum channel)

E (ρt+1|ρt ) = K (ρt ) =
∑

y

K y (ρt ) =
∑
µ

MµρtM†µ.

1See the book of S. Haroche and J.M. Raimond.
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Computation of the likelihood function via the adjoint state (1)

I Denote by Pn(ρ,p) the probability of getting measurement
trajectory n, (y (n)

t )t=0,...,T , knowing the initial state ρ(n)
0 = ρ and

parameter p.

I Since ρ(n)
t+1 =

K p

y(n)t

(
ρ

(n)
t

)
Tr

(
K p

y(n)t

(
ρ

(n)
t

)) with Tr
(

K p
y (n)

t

(
ρ

(n)
t

))
the

probability of having detected y (n)
t knowing ρ(n)

t and p, a direct
use of Bayes law yields

Pn(ρ,p) =
T∏

t=0

Tr
(

K p
y (n)

t

(
ρ

(n)
t

))
= Tr

(
K p

y (n)
T

◦ . . . ◦ K p
y (n)

0

(ρ)

)
.
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Computation of the likelihood function via the adjoint state (2)

I With adjoint map K p∗
y (∀A,B, Tr

(
K p

y (A)B
)
≡ Tr

(
AK p∗

y (B)
)
):

Pn(ρ,p) = Tr
(

K p
y (n)

T

◦ . . . ◦ K p
y (n)

0

(ρ) I
)

= Tr
(
ρ K p∗

y (n)
0

◦ . . . ◦ K p∗
y (n)

T

(I)
)
.

I Normalized adjoint quantum filter2 E (n)
t =

K p∗

y(n)t

(
E (n)

t+1

)
Tr

(
K p∗

y(n)t

(
E (n)

t+1

)) with

E (n)
T +1 = I/ Tr (I), we get

Pn(ρ,p) =
0∏

t=T

Tr
(

K p∗
y (n)

t

(
E (n)

t+1

))
Tr
(
ρE (n)

0

)
, gn(Y ,p) Tr

(
ρE (n)

0

)
.

I A simple expression of the gradients:

∇ρ logPn =
E (n)

0

Tr
(
ρE (n)

0

) , ∇p logPn·δp =
T∑

t=0

Tr
(

E (n)
t+1 ∇pK p

y (n)
t

(
ρ

(n)
t

)
· δp

)
Tr
(

E (n)
t+1 K p

y (n)
t

(
ρ

(n)
t

)) ,

2M. Tsang. Time-symmetric quantum theory of smoothing. PRL 2009.
S. Gammelmark, B. Julsgaard, and K. Mølmer. Past quantum states of a
monitored system. PRL 2013.
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MaxLike tomography based on N trajectories data Y =
(

y (n)
t

)
From Pn(ρ,p) = gn(Y ,p) Tr

(
ρE (n)

0

)
we have

P(ρ,p) ,
N∏

n=1

Pn(ρ,p) =

(
N∏

n=1

gn(Y ,p)

)(
N∏

n=1

Tr
(
ρE (n)

0

))
.

I MaxLike state tomography: p is known and ρML maximizes

ρ 7→
N∑

n=1

log
(

Tr
(
ρE (n)

0

))
a concave function on the convex set of density operators ρ:
a well structured convex optimization problem.

I MaxLike process tomography: ρ is known and pML maximizes
p 7→ f (p) = logP(ρ,p) those gradient is given by

∇pf (p) · δp =
∑N

n=1
∑T

t=0

Tr

(
E (n)

t+1 ∇pK p

y(n)t

(
ρ

(n)
t

)
·δp

)

Tr

(
E (n)

t+1 K p

y(n)t

(
ρ

(n)
t

)) ,

The Hessian ∇2
pf can be computed similarly (Fisher information).
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Continuous/discrete-time Stochastic Master Equation (SME)

Discrete-time models: Markov chains ρt+1 =
K yt (ρt )

Tr(K yt (ρt ))
, with

K yt (ρt ) =
∑m
µ=1 ηyt ,µMµρtM†µ, and proba. Pyt (ρt ) = Tr (K yt (ρt )).

Ensemble averages correspond to Kraus linear maps

E (ρt+1|ρt ) = K (ρt ) =
∑

y

K y (ρt ) =
∑
µ

MµρtM†µ with
∑
µ

M†µMµ = I

Continuous-time models: stochastic differential systems (see, e.g.,
Barchielli/Gregoratti, 2009)

dρt =

(
− i

~ [H, ρt ] +
∑
ν

LνρtL†ν −
1
2

(L†νLνρt + ρtL†νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL†ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t

driven by Wiener processes dWν,t , with measurements dyν,t ,
dyν,t =

√
ην Tr

(
(Lν + L†ν) ρt

)
dt + dWν,t , detection efficiencies

ην ∈ [0,1] and Lindblad-Kossakowski master equations (ην ≡ 0):

d
dt
ρ = − i

~ [H, ρ] +
∑
ν

LνρL†ν −
1
2

(L†νLνρ+ ρL†νLν)
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Continuous/discrete-time diffusive SME

The Belavkin quantum filter

dρt =

(
− i

~ [H, ρt ] +
∑
ν

LνρtL†ν −
1
2

(L†νLνρt + ρtL†νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL†ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t

with dWν,t = dyν,t −
√
ην Tr

(
(Lν + L†ν) ρt

)
dt given by the

measurement signal dyν,t , is always a stable filtering process.3

Using Itō rules, it can be written as a "discrete-time" Markov model4

ρt+dt = K dyt (ρt )/ Tr (K dyt (ρt ))

with partial Kraus maps K dyt (ρt ) = MdytρtM†dyt
+
∑
ν(1− ην)LνρtL†νdt

Mdyt = I +
(
− i

~H − 1
2

(∑
ν L†νLν

))
dt +

∑
ν

√
ηνdyν,tL

where the probability of outcome dyt = (dyν,t ) reads:
P
(

dyt ∈
∏
ν [ξν , ξν + dξν ]

/
ρt

)
= Tr (K ξ(ρt ))

∏
ν e−ξ

2
ν/2dt dξν√

2πdt
3H. Amini et al., Russian J. of Math. Physics, 2014, 21, 297-315.
4PR, J. Ralph PRA2015; see also PhD thesis of Ph. Campagne-Ibracq

(2015) and of P. Six (2016).
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QND measurement of photons

C

B

D

R 1
R 2

I The probability P(y | φR ,n) to get y ∈ {g,e} knowing the
Ramsey angle φR and the number of photon(s) n ∈ {0,1,2, . . .}:

P(y | φR ,n) = 1+εy
(
A+Bc(n) cosφR+Bs(n) sinφR

)
with εe/g = ±1.

depends on the parameters p = (Bc(n),Bs(n))n∈{0,1,...,}.

I The Kraus maps K p
y based on known cavity decay and thermal

photons.
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A priori calibration5 (black dots) versus MaxLike (blue dots)
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Photon number, n

P (e 0 , n )

MaxLike estimation of 32 parameters p based on N = 8000
trajectories of T = 6000 outcome measurements.

5T. Rybarczyk, B. Peaudecerf, M. Penasa, S. Gerlich, B. Julsgaard, K.
Mølmer, S. Gleyzes, M. Brune, J. M. Raimond, S. Haroche, and I. Dotsenko.
Forward-backward analysis of the photon-number evolution in a cavity. PRA
2015.

15 / 27



A quantum Maxwell demon experiment arXiv:1702.01917v1

(a) After preparation in a thermal or quantum state the system S (superconducting
qubit) state is recorded into the demon’s quantum memory D (microwave cavity) via a
pulse that populates the cavity mode only if the qubit is in the ground state. This
information is used to extract work which charges a battery with one extra photon:
system S emits this photon only when the demon’s cavity is empty. The memory reset
is performed by cavity relaxation.
(b) When the system starts in a quantum superposition of the demon and system are
entangled after the record step. 16 / 27



Tomography of the demon after the work extraction step

rank 2

rank 6rank 4

rank 4

Computations are
based on a truncation
to 20 photons
How to define the
confidence intervals
for low rank ρML?
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Asymptotic when ρML is on the boundary

I To bypass boundary problem, consider Bayesian estimate instead of
MaxLike ones

ρBM =

∫
ρ P(Y | ρ)P0(ρ)dρ∫
P(Y | ρ)P0(ρ)dρ

with some prior distribution P0(ρ)dρ.
I When the likelihood exp(f (ρ)) ≡ P(Y | ρ) is concentrated (f = N f̄ with

N � 1) around its maximum ρML that lies on the boundary (ρML not full
rank), how to compute the first terms of an asymptotic expansion versus
N of ∫

Tr (ρA)r exp(N f̄ (ρ))P0(ρ)dρ

for any operator A and exponent r and for some prior distribution
P0(ρ)dρ (e.g., Gausssian unitary ensemble).

I Since all functions are analytic such an asymptotic expansion versus N
always exists: Integration by parts, Watson’s lemma, Laplace’s method,
stationary phase, steepest descents, Hironaka’s resolution of
singularities 6, "singular learning" 7

6An important reference: V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko.
Singularities of Differentiable Maps, Vol. II. Birkhäuser, Boston, 1985

7S. Watanabe: Algebraic Geometry and Statistical Learning Theory, Cambridge
University Press, 2009.
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Geometric optimality condition for the log-likelihood function

Assume that ρML is an argument of the maximum of

f : D 3 ρ 7→
∑
µ∈M

log
(

Tr
(
ρE (µ)

))
∈ [−∞,0]

over D (the set of density operators, E (µ) ∈ D.). Then necessarily,
ρML satisfies the following conditions:

I Tr
(
ρMLE (µ)

)
> 0 for each µ ∈M;

I
[
ρML , ∇f |ρML

]
= 0, where ∇f |ρML

=
∑
µ∈M

E (µ)

Tr(ρMLE (µ))
is the

gradient of f at ρML for the Frobenius scalar product;

I there exists λML > 0 such that λMLPML = PML ∇f |ρML
and

∇f |ρML
≤ λMLI, where PML is the orthogonal projector on the

range of ρML and I is the identity operator.

These conditions are also sufficient and characterize the unique
maximum when, additionally, the vector space spanned by the E (µ)’s
coincides with the set of Hermitian matrices.
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Geometric asymptotic expansions of Bayesian mean and variance

For any Hermitian operator A, its Bayesian mean and variance read:

IA(N) =

∫
D Tr (ρA) eNf (ρ) P0(ρ) dρ∫

D eNf (ρ) P0(ρ) dρ
, VA(N) =

∫
D

(
Tr (ρA)− IA(N)

)2
eNf (ρ) P0(ρ) dρ∫

D eNf (ρ) P0(ρ) dρ
.

Denote by ρML the unique maximum of f on D and by PML the orthogonal
projector on its range. In addition to the necessary and sufficient geometric
conditions above, assume that ker

(
λMLI − ∇f |ρML

)
= ker(I − PML).

IA(N) = Tr (AρML)+O(1/N), VA(N) = Tr
(

A‖ (FML)
−1(A‖)

)
/N+O(1/N2)

where B‖ is an orthogonal projection

B‖ = B − Tr (BPML)

Tr (PML)
PML − (I − PML)B(I − PML);

and where FML is a linear super-operator, corresponds to the Hessian at ρML

of some restriction of f and generalizes the Fisher information matrix:

FML(X ) =
∑
µ

Tr
(

XE (µ)
‖

)
Tr2 (ρMLE (µ))

E (µ)
‖ +

(
λMLI − ∇f |ρML

)
Xρ+

ML + ρ+
MLX

(
λMLI − ∇f |ρML

)
with ρ+

ML the Moore-Penrose pseudo-inverse of ρML.
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Concluding remarks

I Low-rank approximations and efficient numerical schemes for
computations of ρML, the adjoint states E (n), . . .

I Asymptotics when the log-likelihood function is not strongly
concave, when ker

(
λMLI − ∇f |ρML

)
6= ker(I − PML) . . .

I Process tomography: log-likelihood function not concave . . .

I Parameter estimation along quantum trajectories (in real-time)
. . .

I Thematic quarter at Institut Henri Poincaré in Paris next Spring
2018 gathering experimental physicists and theoreticians.
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Asymptotics for multi-dimension Laplace integrals (1)

Theorem (interior max) Ig(N) =
∫

z∈(−1,1)n g(z) exp (Nf (z)) dz
with f and g analytic functions of z on a compact neighbourhood of
D, the closure of D. Assume that f admits a unique maximum on D at
z = 0 with ∂2f

∂z2

∣∣∣
0

negative definite.

If g(0) 6= 0, we have the following dominant term in the asymptotic
expansion of Ig(N) for large N:

Ig(N) =

g(0) (2π)n/2 eNf (0)N−n/2√∣∣∣det
(
∂2f
∂z2

∣∣∣
0

)∣∣∣
+ O

(
eNf (0)N−n/2−1

)
.

If g(0) = 0, with ∂g
∂z

∣∣∣
0

= 0, then we have:

Ig(N) =

 Tr
(
− ∂2g

∂z2

∣∣∣
0

(
∂2f
∂z2

∣∣∣
0

)−1
)

(2π)n/2

2
√∣∣∣det

(
∂2f
∂z2

∣∣∣
0

)∣∣∣
eNf (0)N−n/2−1

+ O
(

eNf (0)N−n/2−2
)
.
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Asymptotics for Bayesian integrals (1’)

Corollary (interior max): Assume that f admits a unique maximum
on D at z = 0 with ∂2f

∂z2

∣∣∣
0

negative definite. Then we have the

following asymptotic for any analytic function g(z):

Mg(N) ,

∫
z∈(−1,1)n g(z) exp (Nf (z)) dz∫

z∈(−1,1)n exp (Nf (z)) dz
= g(0) + O(N−1)

We have also:

Vg(N) ,

∫
z∈(−1,1)n

(
g(z)−Mg(N)

)2
exp (Nf (z)) dz∫

z∈(−1,1)n exp (Nf (z)) dz

=

Tr
(
− ∂2g

∂z2

∣∣∣
0

(
∂2f
∂z2

∣∣∣
0

)−1
)

2N
+ O

(
N−2).
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Asymptotics for multi-dimension Laplace integrals (2)

Theorem (boundary max):
Ig(N) =

∫
x∈(0,1)

∫
z∈(−1,1)n xmg(x, z) exp (Nf (x, z)) dx dz with f and g

analytic functions of (x , z) on a compact neighbourhood of D, the closure of
D. Assume that f admits a unique maximum on D at (x , z) = (0, 0), with
∂2f
∂z2

∣∣∣
(0,0)

negative definite and ∂f
∂x

∣∣
(0,0) < 0. If g(0, 0) 6= 0, we have the

following dominant term in the asymptotic expansion of Ig(N) for large N:

Ig(N) =

g(0, 0) m! (2π)n/2 eNf (0,0)N−m−n/2−1√∣∣∣∣det
(
∂2f
∂z2

∣∣∣
(0,0)

)∣∣∣∣ (− ∂f
∂x

∣∣
(0,0)

)m+1

+ O
(

eNf (0,0)N−m−n/2−2
)
.

If g(0, 0) = 0, with ∂g
∂x

∣∣∣
(0,0)

= 0 and ∂g
∂z

∣∣∣
(0,0)

= 0, then we have:

Ig(N) =


Tr

(
− ∂2g

∂z2

∣∣∣
(0,0)

(
∂2f
∂z2

∣∣∣
(0,0)

)−1
)

m! (2π)n/2

2

√∣∣∣∣det
(
∂2f
∂z2

∣∣∣
(0,0)

)∣∣∣∣ (− ∂f
∂x

∣∣
(0,0)

)m+1

 eNf (0,0))N−m−n/2−2

+ O
(

eNf (0,0))N−m−n/2−3
)
. 26 / 27



Asymptotics for Bayesian integrals (2’)

Corollary (boundary max): Assume that f admits a unique maximum on D
at (x , z) = (0, 0), with ∂2f

∂z2

∣∣∣
(0,0)

negative definite and ∂f
∂x

∣∣
(0,0)

< 0. Then, we

have the following asymptotic for any analytic function g(x , z):

Mg(N) ,

∫
x∈(0,1)

∫
z∈(−1,1)n xmg(x , z) exp (Nf (x , z)) dx dz∫

x∈(0,1)

∫
z∈(−1,1)n xm exp (Nf (x , z)) dx dz

= g(0, 0)+O(N−1)

We have also:

Vg(N) ,

∫
x∈(0,1)

∫
z∈(−1,1)n xm

(
g(x , z)−Mg(N)

)2
exp (Nf (x , z)) dx dz∫

x∈(0,1)

∫
z∈(−1,1)n xm exp (Nf (x , z)) dx dz

=

Tr

(
− ∂2g

∂z2

∣∣∣
(0,0)

(
∂2f
∂z2

∣∣∣
(0,0)

)−1
)

2N
+ O

(
N−2).
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