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Nobel Prize in Physics 2012 (second quantum revolution)

         Serge Haroche          David J. Wineland 
" This year’s Nobel Prize in Physics honours the experimental inventions
and discoveries that have allowed the measurement and control of
individual quantum systems. They belong to two separate but related
technologies: ions in a harmonic trap and photons in a cavity"

From the Scientific Background on the Nobel Prize in Physics 2012 compiled by the
Class for Physics of the Royal Swedish Academy of Sciences, 9 October 2012.
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Technologies for quantum cryptography, metrology, computation 1

© OBrien

Superconduc�ng
circuits

Photons

© S. Kuhr

Ultra-cold 
neutral/Rydberg 

atoms 

© Bla� & Wineland

Trapped ions

© Pe�a

Quantum dots

© IBM

Requirement:
Scalable modular architecture
Control software from the very beginning.

1Courtesy of Walter Riess, IBM Research - Zurich.
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Nonlinear LC circuit connected to a transmission line 2

H
(

(Φ,Q), (φ0, q0), (φx , πx)x>0

)
= 1

2Cc
Q2 − Φ2

∗
L cos

(
1

Φ∗
Φ
)

︸ ︷︷ ︸
Hsys

+ 1
Cc
Q q0︸ ︷︷ ︸
Hint

+ 1
C̃l
q2

0 +

∫
x>0

(
1
2c π

2
x + 1

2` (∂xφx)2
)
dx︸ ︷︷ ︸

Hline

where 1/C̃l = 1/Cc + 1/Cl with weak coupling (Cl � C ).
2See e.g. G. M. Bernstein and M. A. Lieberman: A method for obtaining a

canonical Hamiltonian for nonlinear LC circuits. IEEE Transactions on Circuits
and Systems, 36(3):411-420, 1989.
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Hamiltonian dynamics

Hamilton equations: d
dt Φ = ∂QH, d

dtQ = −∂ΦH, . . .

d

dt
Φ = 1

Cc
(Q + q0),

d

dt
Q = −Φ∗

L sin
(

1
Φ∗

Φ
)

(nonlinear LC)

∂tφ0 = 1
Cc
Q + 1

C̃l
q0,

d

dt
q0 = 1

`∂xφ0 (boundary conditions)

∂tφx = 1
c πx , ∂tπx = 1

`∂xxφx for x > 0 (wave dynamics).

With φ(t, x) = φin(t +
√
`c x) + φout(t −

√
`c x) for x ≥ 0 we get

d

dt
Φ(t) = 1

Cc
(Q(t) + q0(t))

d

dt
Q(t) = −Φ∗

L sin
(

1
Φ∗

Φ(t)
)

d

dt
q0(t) =

√
c
`

(
2u(t)− 1

Cc
Q(t)− 1

C̃l
q0(t)

)
=
√

c
`

(
u(t)− y(t)

)
y(t) = −u(t) + 1

Cc
Q(t) + 1

C̃l
q0(t)

with input u(t) = φ̇in(t), output y(t) = φ̇out(t) and C̃l � Cc .
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Input-state-output dynamics: passivity and measurement back-action

Adiabatic elimination of q0 (fast and exponentially stable) exploiting
weak coupling C̃l = εCc with ε� 1:

d

dt
Φ = 1

Cc+Cl
Q + 2εu −ε2√ `

c
Φ∗
L sin

(
1

Φ∗
Φ
)

d

dt
Q = −Φ∗

L sin
(

1
Φ∗

Φ
)

with output y containing some informations on Φ.

y = u −ε
√

`
c

Φ∗
L sin

(
1

Φ∗
Φ
)
.

Passive system with storage function

Hsys(Φ,Q) = 1
2(Cc+Cl )

Q2 − Φ2
∗
L cos

(
1

Φ∗
Φ
)

and (
√

`
c line impedance)

d

dt
Hsys =

√
c
` (u + y)(u − y).

Remember u = φ̇in and y = φ̇out (∼ voltage): classical analogue of
measurement back-action.
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The first experimental realization of a quantum-state feedback

microwave photons
            (10 GHz)

Experiment: C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S.
Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.M. Raimond, S. Haroche:
Real-time quantum feedback prepares and stabilizes photon number states.
Nature, 2011, 477, 73-77.

Theory: I. Dotsenko, M. Mirrahimi, M. Brune, S. Haroche, J.M. Raimond, P.
Rouchon: Quantum feedback by discrete quantum non-demolition measurements:
towards on-demand generation of photon-number states. Physical Review A, 2009,
80: 013805-013813.
H. Amini et al. IEEE Trans. Automatic Control, 57 (8): 1918–1930 2012
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.
H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.
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Three quantum features emphasized by the LKB photon box 3

1. Schrödinger: wave funct. |ψ〉 ∈ H, density op. ρ ∼ |ψ〉〈ψ|
d

dt
|ψ〉 = − i

~H |ψ〉, H = H0 + uH1,
d

dt
ρ = − i

~ [H ,ρ].

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of observable O with spectral decomp.

∑
µ λµPµ:

I measurement outcome µ with proba.
Pµ = 〈ψ|Pµ|ψ〉= Tr (ρPµ) depending on |ψ〉, ρ just before
the measurement

I measurement back-action if outcome µ = y :

|ψ〉 7→ |ψ〉+ =
Py |ψ〉√
〈ψ|Py |ψ〉

, ρ 7→ ρ+ =
PyρPy

Tr (ρPy )

3. Tensor product for the description of composite systems (S ,M):
I Hilbert space H = HS ⊗HM

I Hamiltonian H = HS ⊗ IM + H int + I S ⊗HM

I observable on sub-system M only: O = I S ⊗OM .
3S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities

and Photons. Oxford Graduate Texts, 2006.
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Composite system (S ,M): harmonic oscillator ⊗ qubit.

I System S corresponds to a quantized harmonic oscillator:

HS =

{ ∞∑
n=0

ψn |n〉
∣∣∣∣ (ψn)∞n=0 ∈ l2(C)

}
,

where |n〉 is the photon-number state with n photons
(〈n1|n2〉 = δn1,n2).

I Meter M is a qubit, a 2-level system:

HM =

{
ψg |g〉+ ψe |e〉

∣∣∣∣ ψg , ψe ∈ C
}
,

where |g〉 (resp. |e〉) is the ground (resp. excited) state
(〈g |g〉 = 〈e|e〉 = 1 and 〈g |e〉 = 0)

I State of the composite system |Ψ〉 ∈ HS ⊗HM :

|Ψ〉 =
∑
n≥0

(
Ψng |n〉 ⊗ |g〉+ Ψne |n〉 ⊗ |e〉

)
=

∑
n≥0

Ψng |n〉

⊗ |g〉+

∑
n≥0

Ψne |n〉

⊗ |e〉, Ψne ,Ψng ∈ C.

Ortho-normal basis:
(
|n〉 ⊗ |g〉, |n〉 ⊗ |e〉

)
n∈N. 11 / 34



The hidden Markov chain (1)

C

B

D

R 1
R 2

B R 2

I When atom comes out B, the quantum state |Ψ〉B of the
composite system is separable: |Ψ〉B = |ψ〉 ⊗ |g〉.

I Just before the measurement in D, the state is in general entangled
(not separable):

|Ψ〉R2
= USM

(
|ψ〉 ⊗ |g〉

)
=
(
Mg |ψ〉

)
⊗ |g〉+

(
Me |ψ〉

)
⊗ |e〉

where USM is a unitary transformation (Schrödinger propagator)
defining the measurement operators Mg and Me on HS . Since
USM is unitary, M†gMg + M†eMe = I .
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The hidden Markov chain (2)

Just before the atom detector D the quantum state is entangled:

|Ψ〉R2
= (Mg |ψ〉)⊗ |g〉+ (Me |ψ〉)⊗ |e〉

Just after outcome y , the state becomes separable 4:

|Ψ〉D = 1√
Py

(My |ψ〉)⊗ |y〉 =

(
My√

〈ψ|M†y My |ψ〉
|ψ〉
)
⊗ |y〉.

Outcome y obtained with probability 〈ψ|M†yMy |ψ〉 depending on |ψ〉.

Hidden Markov chain:

|ψk+1〉 =


Mg√

〈ψk |M†gMg |ψk〉
|ψk〉, yk = g with probability 〈ψk |M†gMg |ψk〉;

Me√
〈ψk |M†e Me |ψk〉

|ψk〉, yk = e with probability 〈ψk |M†eMe |ψk〉;

with state |ψk〉 and output yk ∈ {g , e} at time-step k :

4Measurement operator O = I S ⊗ (|e〉〈e| − |g〉〈g |).
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Why density operators ρ instead of wave functions |ψ〉

Assume known |ψ0〉 and detector out of order: what about |ψ1〉 ?

I Expectation value of |ψ1〉〈ψ1| knowing |ψ0〉: 5

E (|ψ1〉〈ψ1|
∣∣ |ψ0〉

)
= Mg |ψ0〉〈ψ0|M†g + Me |ψ0〉〈ψ0|M†e .

I Set K (ρ) , MgρM†g + MeρM†e for any operator ρ.

I ρk expectation of |ψk〉〈ψk | knowing |ψ0〉:

ρk+1 = K (ρk) and ρ0 = |ψ0〉〈ψ0|.

Linear map K : trace preserving Kraus map (quantum channel).

Density operators ρ: convex space of Hermitian non-negative operators
of trace one.

5|ψ〉〈ψ|: orthogonal projector on line spanned by unitary vector |ψ〉.
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The Markov chain with ρ as hidden state

Detector efficiency η ∈ [0, 1]. Output y ∈ {g , e,∅}:

ρk+1 =



K g (ρk)

Tr (K g (ρk))
, yk = g with probability Tr (K g (ρk));

K e(ρk)

Tr (K e(ρk))
, yk = e with probability Tr (K e(ρk));

K∅(ρk)

Tr (K∅(ρk))
, yk = ∅ with probability Tr (K∅(ρk));

with Kraus maps

K g (ρ) = ηMgρM†g , K e(ρ) = ηMeρM†e

K∅(ρ) = (1− η)
(
MgρM†g + MeρM†e

)
.

We still have:

E (ρk+1

∣∣ ρk) , K (ρk) = MgρkM
†
g + MeρkM

†
e =

∑
y

K y (ρk).
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A controlled Markov process (input u, hidden state ρ, output y)

Input u: classical amplitude of a coherent micro-wave pulse
State ρ: the density operator of the photon(s) trapped in the cavity
Output y : measurement of the probe atom

ρk+1 =



DukK g (ρk)D†uk
Tr (K g (ρk))

,yk = g with probability Tr (K g (ρk));

DukK e(ρk)D†uk
Tr (K e(ρk))

,yk = e with probability Tr (K e(ρk));

DukK∅(ρk)D†uk
Tr (K∅(ρk))

,yk = ∅ with probability Tr (K∅(ρk));

Controlled displacement unitary operator (u ∈ R): Du = eua
†−ua with

a = upper diag(
√
1,
√
2, . . .) the photon annihilation operator.

Measurement Kraus operators in the linear dispersive case
Mg = cos

(
φ0N+φR

2

)
and Me = sin

(
φ0N+φR

2

)
: M†gMg + M†eMe = I

with N = a†a = diag(0, 1, 2, . . .) the photon number operator.
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Discrete-time models of open quantum systems

Four features:

1. Bayes law: P(µ/y) = P(y/µ)P(µ) /
(∑

µ′ P(y/µ′)P(µ′)
)
,

2. Schrödinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and dissipation are
induced by the measurement of observables with degenerate spectra.

4. Tensor product for the description of composite systems.

V Discrete-time models: Markov processes of state ρ, (density op.):

ρk+1 =
∑m
µ=1 ηy,µMµρkM†µ

Tr(
∑m
µ=1 ηy,µMµρkM†µ)

, with proba. Py (ρk) =
∑m
µ=1 ηy ,µ Tr

(
MµρkM†µ

)
associated to Kraus maps 6 (ensemble average, quantum channel)

E (ρk+1|ρk) = K (ρk) =
∑
µ

MµρkM†µ with
∑
µ

M†µMµ = I

and left stochastic matrices (imperfections, decoherences) (ηy ,µ).
6M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum

Information. Cambridge University Press, 2000.
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Continuous/discrete-time Stochastic Master Equation (SME)

Discrete-time models: Markov chains
ρk+1 =

∑m
µ=1 ηy,µMµρkM†µ

Tr(
∑m
µ=1 ηy,µMµρkM†µ)

, with proba. Py (ρk) =
∑m
µ=1 ηy ,µ Tr

(
MµρkM†µ

)
with ensemble averages corresponding to Kraus linear maps

E (ρk+1|ρk) = K (ρk) =
∑
µ

MµρkM†µ with
∑
µ

M†µMµ = I

Continuous-time models: stochastic differential systems 7

dρt =
(
− i

~ [H , ρt ] +
∑
ν

LνρtL†ν −
1
2

(L†νLνρt + ρtL†νLν)
)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL†ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t

driven by Wiener processes dWν,t , with measurements yν,t ,

dyν,t =
√
ην Tr

(
(Lν + L†ν) ρt

)
dt + dWν,t , detection efficiencies

ην ∈ [0, 1] and Lindblad-Kossakowski master equations (ην ≡ 0):

d

dt
ρ = − i

~ [H , ρ] +
∑
ν

LνρL†ν −
1
2

(L†νLνρ+ ρL†νLν)

7A. Barchielli, M. Gregoratti: Quantum Trajectories and Measurements in
Continuous Time: the Diffusive Case. Springer Verlag, 2009. 18 / 34



Continuous/discrete-time diffusive SME 8

With a single imperfect measurement dyt =
√
η Tr

(
(L + L†) ρt

)
dt + dWt and

detection efficiency η ∈ [0, 1], the quantum state ρt is usually mixed and obeys
to

dρt =
(
− i

~ [H , ρt ] + LρtL† −
1
2

(L†Lρt + ρtL†L)
)
dt

+
√
η

(
Lρt + ρtL† − Tr

(
(L + L†)ρt

)
ρt

)
dWt

driven by the Wiener process dWt

With Itō rules, it can be written as the following "discrete-time" Markov model

ρt+dt =
MdytρtM

†
dyt

+ (1− η)LρtL†dt

Tr
(
MdytρtM

†
dyt

+ (1− η)LρtL†dt
)

with Mdyt = I +
(
− i

~H − 1
2

(
L†L
))

dt +
√
ηdytL.

ρ0 density operator 7→ for all t > 0, ρt density operator
Positivity preserving numerical scheme.

8P. Rouchon: Models and Feedback Stabilization of Open Quantum Systems.
Proc. of Int. Congress of Mathematicians, vol. IV, pp 921–946, Seoul 2014
(http://arxiv.org/abs/1407.7810).
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Qubit (2-level system, half-spin) 9

I Hilbert space:
HM = C2 =

{
cg |g〉+ ce |e〉, cg , ce ∈ C

}
.

I Quantum state space:
D = {ρ ∈ L(HM), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

I Operators and commutations:
σ- = |g〉〈e|, σ+ = σ-

† = |e〉〈g |
σx = σ- + σ+ = |g〉〈e|+ |e〉〈g |;
σy = iσ- − iσ+ = i |g〉〈e| − i |e〉〈g |;
σz = σ+σ- − σ-σ+ = |e〉〈e| − |g〉〈g |;
σx

2 = I , σxσy = iσz , [σx ,σy ] = 2iσz , . . .

I Hamiltonian: HM/~ = ωqσz/2 + uqσx .

I Bloch sphere representation:
D =

{
1
2

(
I + xσx + yσy + zσz

) ∣∣ (x , y , z) ∈ R3, x2 + y2 + z2 ≤ 1
}

|g

|e
ωq

uq

9 See S. M. Barnett, P.M. Radmore: Methods in Theoretical Quantum
Optics. Oxford University Press, 2003.
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Quantum harmonic oscillator (spring system) 9

I Hilbert space:
HS =

{∑
n≥0 ψn|n〉, (ψn)n≥0 ∈ l2(C)

}
≡ L2(R,C)

I Quantum state space:
D = {ρ ∈ L(HS), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

I Operators and commutations:
a|n〉 =

√
n |n-1〉, a†|n〉 =

√
n + 1|n + 1〉;

N = a†a, N |n〉 = n|n〉;
[a, a†] = I , af (N) = f (N + I )a;
Dα = eαa†−α†a.
a = X + iP = 1√

2

(
x + ∂

∂x

)
, [X ,P] = ıI/2.

I Hamiltonian: HS/~ = ωca†a + uc(a + a†).
(associated classical dynamics:
dx
dt = ωcp,

dp
dt = −ωcx −

√
2uc).

I Classical pure state ≡ coherent state |α〉
α ∈ C : |α〉 =

∑
n≥0

(
e−|α|

2/2 αn
√
n!

)
|n〉; |α〉 ≡ 1

π1/4 e
ı
√

2x=αe−
(x−
√

2<α)2
2

a|α〉 = α|α〉, Dα|0〉 = |α〉.

|0

|1

|2

ωc

|n

ωc
uc

...
 ..

.
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Key dissipative models of a qubit and of a spring 10

Lindbladian super-operator LL(ρ) = LρL† − (L†Lρ+ ρL†L)/2.

I Qubit: u, v are two inputs (drives); ωq/2π is the qubit frequency;
τφ is dephasing time; τ1 is life time of |e〉 (usually τφ < τ1 and
ωqτφ � 1 ).

d

dt
ρ = − i

2

[
uσx + vσy + ωqσz , ρ

]
+ 1

τφ
Lσz (ρ) + 1

τ1
Lσ-(ρ)

I Harmonic oscillator: u, v are two inputs; ωc/2π is the oscillator
frequency; τc is the photon life time; nth is the number of thermal
photon(s). (usually, ωcτc � 1 and nth � 1).

d

dt
ρ = −i

[
u(a+a†)+iv(a−a†)+ωca†a , ρ

]
+ 1+nth

τc
La(ρ)+ nth

τc
La†(ρ)

10S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.
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Transmon regime 11

d

dt
Φ = 1

C
Q + 2εu − ε2

√
`
c

Φ∗
L

sin
(

1
Φ∗

Φ
)

d

dt
Q = −Φ∗

L
sin
(

1
Φ∗

Φ
)

with y = u − ε
√
`
c

Φ∗
L

sin
(

1
Φ∗

Φ
)
.

Hsys(Φ,Q) = 1
2CQ

2− Φ2
∗
L cos

(
1

Φ∗
Φ
)
with nonlinearity (Φ∗ < (L/C )1/4):

I anharmonic spectrum with frequency transition between the ground
and first excited states larger than frequency transition between first
and second excited states.

I qubit model based on restriction to these two slowest energy levels,
|g〉 and |e〉, with pulsation ωq ∼ 1/

√
LC .

Two weak coupling regimes:
I resonant, in/out wave pulsation ωq;
I off-resonant , in/out wave pulsation ωq + ∆ with |∆| � ωq.
11J. Koch et al.: Charge-insensitive qubit design derived from the Cooper

pair box. Phys. Rev. A, 76:042319, 2007.
23 / 34



A key physical example in circuit quantum electrodynamics 12

Superconducting qubit
dispersively coupled
to a cavity traversed
by a microwave signal
(input/output theory).
The back-action on the
qubit state of a single
measurement of one
output field quadrature y
is described by a simple
SME for the qubit density
operator ρ.

dρt =
(
− i

2 [ωqσz , ρt ] + γ(σzρσz − ρt)
)
dt

+
√
ηγ
(
σzρt + ρtσz − 2 Tr (σzρt) ρt

)
dWt

with yt given by dyt = 2
√
ηγ Tr (σzρt) dt + dWt where γ ≥ 0 is related

to the measurement strength and η ∈ [0, 1] is the detection efficiency.
Quantum Monte Carlo open-loop trajectories with MATLAB :

DiffusiveMeasurementQubit.m
12M. Hatridge et al. Quantum Back-Action of an Individual

Variable-Strength Measurement. Science, 2013, 339, 178-181.
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Measurement-based feedback

system

controller

quantum world

classical world y

u
decoherence

P-controller (Markovian feedback a):
for ut dt = k dyt , average closed-loop
dynamics of ρ remains governed by a
Lindblad master equation.

PID controller: no Lindblad master
equation in closed-loop;

Nonlinear hidden-state stochastic
systems: convergence analysis,
Lyapunov exponents, dynamic output
feedback, delays, robustness, . . .

aH.M. Wiseman: Quantum Trajectories
and Feedback. PhD Thesis,
University of Queensland, 1994.

Short sampling times limit feedback complexity
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First SISO measurement-based feedback for a superconducting qubit 13

 

 

 
 

 
 
 
 
 

 

 
 

 
  
 

 
 

Analog 
Multiplier 

d Feedback circuit 

X*Y 

Rabi reference 
3.0 MHz 

10 MHz 

Phase error = Feedback signal 
Y 

X 

a Signal generation 
Rabi drive 

c Homodyne setup 

I 
LO Readout 

drive 
Q 

LO 
Digitizer/ 
computer 

Q RF RF I 

b Dilution refrigerator 

Transmon 
qubit 

IN 
(x2) Paramp HEMT 

Q                            Q 

OUT |0> 

I 
Readout 

cavity 
|1> 

|0> 
|1> I 

13R. Vijay, . . . , I. Siddiqi. Stabilizing Rabi oscillations in a superconducting
qubit using quantum feedback. Nature 490, 77-80, October 2012.
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First MIMO measurement-based feedback for a superconducting qubit 14

FM

Rabi

b)

~
~

FM

~
~

~

Rabi

JPC

outin

Drift

,
a)

c)

3 inputs

2 outputs

14P. Campagne-Ibarcq, . . . , B. Huard: Using Spontaneous Emission of a
Qubit as a Resource for Feedback Control. Phys. Rev. Lett. 117(6), 2016.
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Exponential Lyapunov stabilization of a qubit

Theorem 15. For the stochastic master equation of a qubit

dρt = −iu[σy , ρt ] dt +γ
(
σzρtσz −ρt

)
+
√
ηγ
(
σzρt +ρtσz −2 Tr (σzρt) ρt

)
dWt .

with measurement dyt = 2
√
ηγ Tr (σzρt) dt + dWt , the feedback

u dt = −ηγ
(
1− Tr (ρtσz)2 ) dt +

√
ηγ
(
1− Tr (ρtσz)

)
dyt

globally and exponentially stabilizes the system to the excited state
ρ̄ = (I + σz)/2 with the control Lyapunov function

V (ρ) =
√

1− Tr (ρσz)
converging exponentially to zero in closed-loop:
E
(
V (ρt) | ρ0

)
≤ exp

(
ηγ
2 t
)
V (ρ0), for any t ≥ 0 and density operator ρ0.

The first mathematical proof of exponential stabilization by
measurement-based feedback of a two-level quantum system.

Quantum Monte Carlo closed-loop trajectories with MATLAB :
ExpoStabilizationQubit.m

15G. Cardona et al.: Exponential stochastic stabilization of a two-level quantum
system via strict Lyapunov control. CDC 2018 (https://arxiv.org/abs/1803.07542)
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Coherent (autonomous) feedback (dissipation engineering)

Quantum analogue of Watt speed governor: a dissipative mechanical
system controls another mechanical system 16

system

controller

quantum world

classical world

decoherence

decoherence

u
y

uc yc

Optical pumping (Kastler 1950), coherent
population trapping (Arimondo 1996)

Dissipation engineering, autonomous
feedback: (Zoller, Cirac, Wolf, Verstraete,
Devoret, Schoelkopf, Siddiqi, Lloyd, Viola,
Ticozzi, Leghtas, Mirrahimi, Sarlette, ...)

(S,L,H) theory and linear quantum
systems: quantum feedback networks
based on stochastic Schrödinger equation,
Heisenberg picture (Gardiner, Yurke,
Mabuchi, Genoni, Serafini, Milburn,
Wiseman, Doherty, Gough, James,
Petersen, Nurdin, Yamamoto, Zhang,
Dong, . . . )

Stability analysis: Kraus maps and Lindblad propagators are always
contractions (non commutative diffusion and consensus).

16J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.
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Reservoir engineering to stabilize "Schrödinger cats" |α〉+ |-α〉 17

Cavity mode (system)atom (controller)

R1
R2

Box of 
atoms

Aim: 
engineer atom-mode interaction,

to stabilize |-α  +|α

DC field: 
(controls atom frequency)

ENS experiment

Jaynes-Cumming Hamiltionian

H(t)/~ = ωca†a ⊗ IM + ωq(t)I S ⊗ σz/2 + iΩ(t)
(
a† ⊗ σ- − a ⊗ σ+

)
/2

with the open-loop control t 7→ ωq(t) combining dispersive ωq 6= ωc and
resonant ωq = ωc interactions.
Key issues: convergence of ρk+1 = K (ρk) = MgρkM†g + MeρkM†e .

17A. Sarlette, et al: Stabilization of nonclassical states of the radiation field
in a cavity by reservoir engineering. Phys. Rev. Lett. 107(1), 2011.
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Autonomous feedback stabilization of 1√
2

(|g〉⊗ |e〉− |e〉⊗ |g〉) 18

Lindblad master equation:

d

dt
ρ = −i [H(t),ρ] + κDa(ρ)

+ 1
TA

1
D

σA
−

(ρ) + 1
2TA
φ

D
σA

z
(ρ)

+ 1
TB

1
D

σB
−

(ρ) + 1
2TB
φ

D
σB

z
(ρ)

with

H(t)/~ =
(
χA
2 σA

z + χB
2 σB

z

)
a†a

+ 2εc cos
(
χA+χB

2 t
)(

a + a†
)

+ Ω0

(
σA

x + σB
x

)
+Ωn

(
e−in

χA+χB
2 t(σA

+ − σB
+) + h.c.

)

18S. Shankar, . . . , M.H. Devoret. Autonomously stabilized entanglement
between two superconducting quantum bits. Nature, 504: 419-422, 2013.
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Quantum feedback engineering

QUANTUM WORLD

CLASSICAL WORLD
Hilbert space 

classical 
controller 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

classical
input

classical
output

quantum measurement

classical
reference

quantum
interaction

To stabilize the quantum information localized in system S:

I fast decoherence addressed by a quantum controller
(coherent feedback);

I slow decoherence and perturbation tackled by a classical controller
(measurement-based feedback).
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Cat-Qubit: feedback stabilization for quantum error correction. 19

readout mode
(measurement-based feedback)

high Q mode a
(logical qubit)

low Q mode b
(coherent feedback)

I

Q

qubit

non-linear mixer: a4b†+h.c

Stochastic master equation :

dρ = −i [H,ρ] dt + κaDa(ρ) dt

+ κbDb(ρ) dt + γDσz (ρ) dt

+
√
ηγ (σzρ + ρσz − 2 Tr (σzρ)ρ) dWt

with Hamiltonian

H = ubb† + u∗bb+u|e〉〈g |+ u∗|g〉〈e|

+ g
(
a4b†+ (a4)†b

)
+χ|e〉〈e| a†a,

measurement output

dyt = 2
√
ηγ Tr (σzρ) + dWt ,

classical control inputs ub, u ∈ C,
parameters κb, γ � κa, g , χ.

19M. Mirrahimi, Z. Leghtas, . . . , M. Devoret: Dynamically protected cat-qubits: a
new paradigm for universal quantum computation. New Journal of Physics, 16:
045014, 2014.
Z. Leghtas, . . . , M. Mirrahimi, M. Devoret: Confining the state of light to a
quantum manifold by engineered two-photon loss. Science, 347:853–857,2015.
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