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Nobel Prize in Physics 2012 (second quantum revolution) AT IpsLw

Serge Haroche David J. Wineland

" This year's Nobel Prize in Physics honours the experimental inventions
and discoveries that have allowed the measurement and control of
individual quantum systems. They belong to two separate but related
technologies: ions in a harmonic trap and photons in a cavity"

From the Scientific Background on the Nobel Prize in Physics 2012 compiled by the
Class for Physics of the Royal Swedish Academy of Sciences, 9 October 2012.
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Technologies for quantum cryptography, metrology, computation *

Quantum dots / Ultra-cold

Superconducting Rl

neutral/Rydberg

(\K atoms

@ O000OO00 ©
© OBrien © Blatt & Wineland

Requirement:
Scalable modular architecture
Control software from the very beginning.

! Courtesy of Walter Riess, IBM Research - Zurich.
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Outline /Q/f‘ | PSL*

Classical nonlinear LC circuit weakly connected to a transmission line
Classical Hamiltonian dynamics
Input-state-output dynamics: passivity and measurement back-action

Dynamics of open quantum systems
LKB photon box: model based on 3 quantum rules
Discrete-time models
Continuous-time models driven by Wiener processes
Operators and decoherence dynamics of qubits and oscillators
Transmon qubit: typical Josephson super-conducting circuit

Quantum feedback
Measurement-based feedback
Coherent feedback (dissipation engineering)
Quantum feedback engineering
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. . . . . . 24
Nonlinear LC circuit connected to a transmission line 2 %{,‘PSL*

X,
) dxmx  cq)eee
e T —— >
2 q)x 5 Pout(t — Ve )
B i
-—_— =
H((d), Q)7 (¢0a qO)a (¢X77TX)X>0) - T]CQQ - <I)L* Cos (&Cb)
Hsys
+£Qaq+ %’qg +/ (2—1c7r)2< + i(ax(bx)z) dx
N—— x>0
ant Hline

where 1/5, =1/C. 4+ 1/C; with weak coupling (C; < C).

2See e.g. G. M. Bernstein and M. A. Lieberman: A method for obtaining a
canonical Hamiltonian for nonlinear LC circuits. IEEE Transactions on Circuits
and Systems, 36(3):411-420, 1989.
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. . . 24
Hamiltonian dynamics AT Ipsix

Hamilton equations: %d) = 0oH, %Q =—0oH, ...

%d): £ (Q+ ), %Q: — %= sin (q%*dD) (nonlinear LC)
d .
Oro = C%Q + %qo, %0 = %5)((;50 (boundary conditions)

Ordx = Imy, Oy = 30u@x for x >0 (wave dynamics).

With ¢(t, x) = pin(t + VEc X) + Pou(t — V/£c x) for x > 0 we get

(1) = &(Q1) + ao()
%Q(t) = —%=sin (o)
Sa(t) =[5 (2u(0) - £0(0) ~ Lao(t)) = /5 (u(8) - (1)

y(£) = —u(t) + Q) + L (1)

with input u(t) = ¢in(t), output y(t) = dou(t) and C; < C,.
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Input-state-output dynamics: passivity and measurement back—action?{, I PSL%

Adiabatic elimination of go (fast and exponentially stable) exploiting
weak coupling C; = £€C. with € < 1:

d 2
dt¢—c+C/Q+2€u \/>L5|n(

aa- (ko

with output y containing some informations on ®.

y= u—é\/%%*sin (q)%cb).

Passive system with storage function
Heys(P, Q) = m@z - %i cos (Q)%CD)
and (\/g line impedance)
9 M =[5 (t y)u— )
dt

Remember u = ¢;, and y = ¢our (~ voltage): classical analogue of
measurement back-action.
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Outline AT psix

Dynamics of open quantum systems
LKB photon box: model based on 3 quantum rules
Discrete-time models
Continuous-time models driven by Wiener processes
Operators and decoherence dynamics of qubits and oscillators
Transmon qubit: typical Josephson super-conducting circuit
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The first experimental realization of a quantum-state feedback ﬁ, | PSL*

microwave photons
(10GH2)

Experiment: C. Sayrin, |. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S.
Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.M. Raimond, S. Haroche:
Real-time quantum feedback prepares and stabilizes photon number states.

Nature, 2011, 477, 73-77.

Theory: |. Dotsenko, M. Mirrahimi, M. Brune, S. Haroche, J.M. Raimond, P.
Rouchon: Quantum feedback by discrete quantum non-demolition measurements:
towards on-demand generation of photon-number states. Physical Review A, 2009,
80: 013805-013813.

H. Amini et al. IEEE Trans. Automatic Control, 57 (8): 1918-1930 2012

R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.
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Three quantum features emphasized by the LKB photon box 3 AT IpsLw

1. Schrédinger: wave funct. |¢) € H, density op. p ~ |) (1]

d ; d .
Gl = —hHIV) H=Hot b Gop = lH.p)

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of observable O with spectral decomp. > A, P,:
» measurement outcome p with proba.
P, = (Y|Pul¢)= Tr(pP,) depending on 1), p just before
the measurement
» measurement back-action if outcome y = y:

Py|¢) P,pP,
) > W)y = ===, prrp.=—"5~
V (WIPy ) T Tr(pPy)
3. Tensor product for the description of composite systems (S, M):
» Hilbert space H = Hs @ Huy
» Hamiltonian H=Hs Q@ Ipy+ Hipt + 1s @ Hy
» observable on sub-system M only: O = Is ® Oyy.

3S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.
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Composite system (S, M): harmonic oscillator @ qubit. AT IpsLw

» System S corresponds to a quantized harmonic oscillator:

Hs = {an |n)
n=0

where |n) is the photon-number state with n photons

((n1|n2) = by nz)-
» Meter M is a qubit, a 2-level system:

Ha = {wg 1g) + ele)

(¥n)nZo € /2(<C)} ,

¢gaweec}7

where |g) (resp. |e)) is the ground (resp. excited) state

((glg) = (ele) = 1 and (gle) = 0)
» State of the composite system |W) € Hs @ Hy:

W) =37 (Vg |n) @ 1) + Ve [n) @ e))
n>0
= (Z"’ng |”>> ® |g) + (ane |n>) @le), Wpe, W, €C.

n>0 n>0

Ortho-normal basis: (|n) ® |g),|n) @ |e))
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The hidden Markov chain (1) AT IpsLw

W)g ) =N

R>

> When atom comes out B, the quantum state |W) g of the
composite system is separable: |W) gz = [¢)) @ |g).

» Just before the measurement in D, the state is in general entangled
(not separable):

(W) g, = Usm([v) @ lg)) = (Mgli))) @ [g) + (Me|v)) @ |e)

where Ugy is a unitary transformation (Schrodinger propagator)
defining the measurement operators Mg and M. on Hs. Since
Usw is unitary, MLMg + MIM, = I.
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The hidden Markov chain (2) AT IpsLw

Just before the atom detector D the quantum state is entangled:
|W)g, = (Mg[)) @ [g) + (Me[¢)) @ |e)

Just after outcome y, the state becomes separable +:

W)o = S M) &) = (i) @ 1)
Outcome y obtained with probability <1/J|M;My‘1/1> depending on |¢).
Hidden Markov chain:

) = m\ilzk), yk = g with probability <¢k|M£Mg|wk>;

M. — e wi i t .
T = th probabilit MM ,
<wk|MZMe|¢k>|¢k>’ Yk = e with probability (¢x|McMe|t)y)

with state |¢x) and output yx € {g, e} at time-step k:

*Measurement operator O = Is ® (|e){e| — |g)(g]).
13/34



Why density operators 0 instead of wave functions |?,b> AT IpsLw

Assume known [t¢)g) and detector out of order: what about |¢) ?

» Expectation value of [¢1) (11| knowing [1o): °
I ([oa) (wnl [ 10)) = Mltbo) (ol ML + Me|tho) (ol M.
> Set K(p) £ MypM] + M.pM! for any operator p.
> p, expectation of |1 ) (1| knowing |)g):
Pi+1 = K(py) and py = [tho) (Yol-
Linear map K: trace preserving Kraus map (quantum channel).

Density operators p: convex space of Hermitian non-negative operators
of trace one.

5|4)(1)|: orthogonal projector on line spanned by unitary vector |)).
14/34



The Markov chain with p as hidden state AT IpsLw

Detector efficiency n € [0,1]. Output y € {g,e,@}:

Kg(Pk) Vi
Tr(Kg(p))'

Ke(pi) . o
Pri1 =4 ——————, yx = e with probability Tr(Ke(p,));
k+1 Tr(Ke(pk)) k ( ( k))

Kz (pi) Vi
Tr(Ka(pe)’

with Kraus maps

= g with probability Tr(K(py));

= @& with probability Tr(Kg(pk));

Ke(p) =nMgpM},  K.(p)=nM.pM!
Kg(p)=(1-n) (MgpML + Mele) :
We still have:

E (Pk+1 | Pk) £ K(py) = MngM; + MePkMTe = Z Ky (py)-
y
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A controlled Markov process (input u, hidden state p, output y) 47, Ipsi*

Input u: classical amplitude of a coherent micro-wave pulse
State p: the density operator of the photon(s) trapped in the cavity
Output y: measurement of the probe atom

D, K¢(pi)D . .
——————* yx = g with probability Tr(Kz(px));
T (Ke(p0)) (Kelon)
D, Ke(pk)DJL . -
Pri1 = ———— %y = e with probability Tr(K<(py));
" Tr(Ke(pi)) " Hele)
Duk Kg(pk)DJLk . .-
————————* vy, = & with probability Tr(K :
T (Kolpr) P y Tr(Kgo(pi))

Controlled displacement unitary operator (u € R): D, = eua'—ua yith
a = upper diag(v/1,v/2,...) the photon annihilation operator.
Measurement Kraus operators in the linear dispersive case

M, = cos (%) and M, = sin (%) MZMg + MlMe =1
with N = a'a = diag(0,1,2,...) the photon number operator.

16 /34



Discrete-time models of open quantum systems
Four features:
1. Bayes law: P(u/y) = P(y/un)P(r) / (X, Bly/u)B(1)),
2. Schrédinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and dissipation are
induced by the measurement of observables with degenerate spectra.

4. Tensor product for the description of composite systems.

= Discrete-time models: Markov processes of state p, (density op.):

_ Zm::_ ny,uMMpkMT . - m t
Phet = Tr(iﬂzl ny,HMMkaC’L)’ with prOba' Py(pk) n Zﬂ:l My T (M#pkMH)

associated to Kraus maps © (ensemble average, quantum channel)

E (pis1lpn) = K(pk) = > MupeM], with > MM, =1
u I

and left stochastic matrices (imperfections, decoherences) (7,.,.).

5M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum

Information. Cambridge University Press, 2000.
17 /34



Continuous/discrete-time Stochastic Master Equation (SME) AT IpsLw

Discrete-time models: Markov chains

_ > Wy,uMul)kML . _ m ( T)
Pkl = Tr(f),’fd MM with proba. Py (px) =32 "1 1y Tr (MupcM,,

with ensemble averages corresponding to Kraus linear maps

E (prsalox) = K(px) = ZMMPkMT with ZMT =1

Continuous-time models: stochastlc differential systems
i 1
dpr = ( - ﬁ[vat] + Z LuPtLi - E(LZLVPt + PtLZLV)) dt

+ Z \/nj(Lth +pel] — Tr ((Ly + LZ)M) pt> dW, .

driven by Wiener processes dW,, ;, with measurements y, ;,
dy,t =/, Tr ((L,, + L) pt) dt + dW, ;, detection efficiencies
1y € [0, 1] and Lindblad-Kossakowski master equations (7, = 0):

d ; 1
= i § ’ T_ 2t T
dtp— ;—L[Hap] ~ LVIOLV 2(LVLVp pLuLV)

"A. Barchielli, M. Gregoratti: Quantum Trajectories and Measurements in

Continuous Time: the Diffusive Case. Springer Verlag, 20009. 18/34



Continuous/discrete-time diffusive SME 8 AT Ipsix

e
" Tvcn*

With a single imperfect measurement dy: = /i Tr (L + L") p¢) dt + dW,; and
detection efficiency 1 € [0, 1], the quantum state p; is usually mixed and obeys
to

; 1
dpe = (—F1H, pid + Loel = S(LLpe + peL L))
+ \/ﬁ(l—ﬂt + Py:l.]L — Tr ((L + LT)Pt> Pt) dW;

driven by the Wiener process dW;

With ItG rules, it can be written as the following "discrete-time" Markov model

May, peMy, + (1 = n)Lp:LT dt

Tr (MdytptMT (- n)LptLTdt)

Pt+dt =
dy:
with Mgy, = I + (—iH — 1 (LTL)) dt + \/ndy.L.
po density operator — for all t > 0, p: density operator
Positivity preserving numerical scheme.

8P. Rouchon: Models and Feedback Stabilization of Open Quantum Systems.
Proc. of Int. Congress of Mathematicians, vol. IV, pp 921-946, Seoul 2014
(http://arxiv.org/abs/1407.7810).
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Qubit (2-level system, half-spin) ° AT IpsLx

» Hilbert space:
Hpy =C? = {cg|g> + Cele), cq,Ce € (C}.

» Quantum state space:
D={peL(Hm)p'=p, Tr(p)=1,p>0}.

» Operators and commutations:
o = |g)(el, or = o =|e)(g] q
o = o+ oy = [g)(e| +[e)(g]; vy O
oy = io. — ioy. = ilg)(e| —ile)(gl;
o, = oo — ooy = |e)(e| — [g)(gl:
ol =1, 0,0y = i0y, [ox, 0y] = 2i0y, ...

<---->

|2)

> Hamiltonian: Hy/h = wqo;/2 + ugox.

> Bloch sphere representation:
D= {%(I—&-xa’x +yoy+z0;) | (x,y,2) ER3, X2+ y? + 2% < 1}

9 See S. M. Barnett, P.M. Radmore: Methods in Theoretical Quantum

Optics. Oxford University Press, 2003.
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. . . 24
Quantum harmonic oscillator (spring system) ° AT Ipsix

» Hilbert space:
Hs = { Sazo nln), (Wa)azo € P(O)} = L3(R,C)

» Quantum state space:

D={peL(Hs),p' =p, Tr(p)=1,p>0}. )
> Operators and commutations:

aln) = /n |n-1), a'|n) = v/n+ 1|n+ 1);

N = a'a, N|n) = n|n);

[a,a] = 1, af(N) = f(N + I)a; . —[2)

D, — e wa'—ata c LOCE

a—X—i—IP—f(x—i—aX) [X,P]=:/2. I ’1>
» Hamiltonian: Hs/h = w.a'a + u.(a+ a'). (’Dci

(associated classical dynamics: A4 0)

% = Wcp, Zt = —WeX — \/iuc)-
> Classical pure state = coherent state |«)
—laf? " _ =vERa)?
a€eC: |a)=3"59 (e x| /2%) In); |a) = ﬂll/aezﬁxSae 2
ala) = ala), D,|0) = |a). .




Key dissipative models of a qubit and of a spring 1° /%?\Psu

Lindbladian super-operator £, (p) = LpL" — (LTLp + pLTL)/2.

> Qubit: u, v are two inputs (drives); wq/27 is the qubit frequency;
Ty is dephasing time; 7y is life time of |e) (usually 7, < 71 and
wqTp > 1).

d i
P =1 [uo-x + voy + wqoy , p} + %Eaz(p) + T%,Cc,_(p)

» Harmonic oscillator: u, v are two inputs; w./27 is the oscillator
frequency; 7. is the photon life time; ny, is the number of thermal
photon(s). (usually, were > 1 and ny < 1).

d

P =i u(a+a')+iv(a—a')+w.a'a, p}—i—lt—fmﬁa(p)—ki—fﬁaf(p)

195 Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.
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Transmon regime 11 /Zf

dt
—Q— ——sm ((bl*‘-b)

with y = u — 6\/7¢L* sin (%‘D)

Heys(P, Q) = 5= Q% — ¢—E cos (d%*tb) with nonlinearity (. < (L/C)Y*):

> anharmonic spectrum with frequency transition between the ground
and first excited states larger than frequency transition between first

and second excited states.
> qubit model based on restriction to these two slowest energy levels,
lg) and |e), with pulsation wy ~ 1/V/LC.
Two weak coupling regimes:
> resonant, in/out wave pulsation wyg;
> off-resonant , in/out wave pulsation wq + A with |A] < wg.

11J. Koch et al.: Charge-insensitive qubit design derived from the Cooper
pair box. Phys. Rev. A, 76:042319, 2007.

| PSL*

id> = CQ—i-Qeu - ez\/7¢L* sin <%¢)
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A key physical example in circuit quantum electrodynamics 12 AT IpsLw

Superconducting qubit

B 1 dispersively coupled
Ref .
to a cavity traversed
compact 4 a

readout resonator —=| Hemr b.y a microwave signal

pulse = quantum (input/output  theory).

f'"(l."l‘ul_} JPc noise The back-action on the
|

1
"I"iﬂ Iw.u.m,* qubit state of a single

measurement  of  one
output field quadrature y
is described by a simple
ransmon SME for the qubit density

qubit operator p.

dp: = ( - %[an'b pt] + '7(0'2/)0'2 - Pt)) dt
+ /1 <Uzpt + peoy — 2 Tr(ozpt) pt) dW,

with y; given by dy: = 2,/ny Tr(ozp:) dt + dW; where v > 0 is related
to the measurement strength and 7 € [0, 1] is the detection efficiency.
Quantum Monte Carlo open-loop trajectories with MATLAB :

DiffusiveMeasurementQubit.m
12M. Hatridge et al. Quantum Back-Action of an Individual

Variable-Strength Measurement. Science, 2013, 339, 178-181.
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OUtline gg* | PSL*

Quantum feedback
Measurement-based feedback
Coherent feedback (dissipation engineering)
Quantum feedback engineering
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Measurement-based feedback AT IpsLw

P-controller (Markovian feedback ?):

-
’ s S N for u; dt = k dy;, average closed-loop
p A «  dynamics of p remains governed by a
¢ 7\je°°herence A Lindblad master equation.
4 \
controller: no Lindblad master
I a4 L PID controller: no Lindblad
_|—) system jequation in closed-loop;
\ . . .
N y d Nonlinear hidden-state stochastic
~ 3uantum World’ ’ systems: convergence analysis,
. N o m = Lyapunov exponents, dynamic output
classical world y feedback, delays, robustness, ...
controller j€— “H.M. Wiseman: Quantum Trajectories

and Feedback. PhD Thesis,
University of Queensland, 1994.

Short sampling times limit feedback complexity
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First SISO measurement-based feedback for a superconducting qubi

t13

Signal generation

¥ G Homodyne setup |

Rabi drive ' '
(N} 1

(N} 1

LO Readout i — '
drive o Q Digitizer/ i

¥ computer |

i i

RF ¥ = h :
i

t :

¥ !

b Dilution refrigerator

h Q
ouT T~ e

Readout oD
cavity 8 ¥

1
i
1
P
:
Transmon '
qubit U :
D_E_l:l EITN o2 Paramp HEMT '
- . . :
i
1
1
1
1
1
1
1
1

B3R, Vijay, ...
qubit using quantum feedback. Nature 490, 77-80, October 2012.

| PSL*

e
Pari; Tzv.-n*

, |. Siddigi. Stabilizing Rabi oscillations in a superconducting
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First MIMO measurement-based feedback for a superconducting qubit 1 47, psL«

\_B,70 MHz f.+ 170 MHz

4P Campagne-lbarcq, ..., B. Huard: Using Spontaneous Emission of a
Qubit as a Resource for Feedback Control. Phys. Rev. Lett. 117(6), 2016.
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Exponential Lyapunov stabilization of a qubit AT IpsLw

Theorem *°. For the stochastic master equation of a qubit

dp: = —iuloy, pi] dt+~(0zpeoz — pt) + /1Y (Uzpt +proz —2 Tr(ozpt) pt) dW.
with measurement dy; = 2,/ny Tr(ozp:) dt + dW,, the feedback

u dt = —nry(l — Tr(pto'z)z) dt + \/ﬁ(l — Tr(peoz) )dyf

globally and exponentially stabilizes the system to the excited state
p = (I + o;)/2 with the control Lyapunov function
V(p) = v1— Tr(poz)
converging exponentially to zero in closed-loop:
E(V(pt) | po) < exp (Lt) V(po), foranyt >0 and density operator po.

The first mathematical proof of exponential stabilization by
measurement-based feedback of a two-level quantum system.

Quantum Monte Carlo closed-loop trajectories with MATLAB :
ExpoStabilizationQubit.m

15G. Cardona et al.; Exponential stochastic stabilization of a two-level quantum
system via strict Lyapunov control. CDC 2018 (https://arxiv.org/abs/1803.07542)
29/34



Coherent (autonomous) feedback (dissipation engineering) AT IpsLw

Quantum analogue of Watt speed governor: a dissipative mechanical
system controls another mechanical system 6

dlassicalworld - N Optical.pumping.(KastI?r 1950), coherent
\ population trapping (Arimondo 1996)
Vs A
P T ecotieres \ Dissipation engineering, autonomous
Uc VV/ Ye feedback: (Zoller, Cirac, Wolf, Verstraete,
< —L> Devoret, Schoelkopf, Siddiqi, Lloyd, Viola,
4 system 1 Ticozzi, Leghtas, Mirrahimi, Sarlette, ...)
4 |U> 1 (S.L,H) theory and linear quantum
i quantum world ] systems: quantum feedback networks
1 |y> Vs based on stochastic Schrédinger equation,
controller | Heisenberg picture (Gardiner, Yurke,
1 N - X4 Mabuchi, Genoni, Serafini, Milburn,
1 v A s Wiseman, Doherty, Gough, James,
decoherence ¢ s Petersen, Nurdin, Yamamoto, Zhang,
~ o _\4 - Dong, ...)

Stability analysis: Kraus maps and Lindblad propagators are always
contractions (non commutative diffusion and consensus).
16 J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.
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Reservoir engineering to stabilize "Schrddinger cats" |a) + |-a) 17 ﬁ, | PSL*

atom (controller) Cavity mode (system) Aim:
engineer atom-mode interaction,
to stabilize |-o)+|or)

DC field:
(controls atom frequency)

ENS experiment

Jaynes-Cumming Hamiltionian
H(t)/h=wca'a® Iy + wq(t)ls ® 0, /2 + iQt)(a' ® o —a® 0y ) /2

with the open-loop control t — wq(t) combining dispersive wq # w, and
resonant wy = wc interactions.

Key issues: convergence of pxi1 = K(pi) = Mg,okML + Meple.

17A. Sarlette, et al: Stabilization of nonclassical states of the radiation field

in a cavity by reservoir engineering. Phys. Rev. Lett. 107(1), 2011.
31/34



MINES

Autonomous feedback stabilization of - L s (lg) ® le) — |e) @ |g)) "B AT, ipsix

a Alice  Bob

input loutput
=

JPC
continuous ”MM A
drives
Cavity
b qubit spectrum cavity spectrum
" 0 n 0 eg ge
04 [oX) o 0 oo B¢ Oc g
| | | O i
N - AVANAS
I N J ™
J\ AN \ \_
_—ia by -1

185 Shankar, ...,

Lindblad master equation:

di,, = —i[H(t), p] + KDa(p)
—|— D A (p) 2T£ o"zq(p)

+ Ds(p)+2T§ )
with

H(t)/h = ( oAt X8 f);ﬁa
+ 2¢c cos (WTXBL‘) (a-‘raT)
+Qo(0'f+0'f)

inXAtXxB
+Q, (ef'" z Yo —oB)+ h.c.)

M.H. Devoret. Autonomously stabilized entanglement

between two superconducting quantum bits. Nature, 504: 419-422, 2013.
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Quantum feedback engineering

J | PSL*

NINES

’
CLASSICAL WORLD I
i

System S ) 7det:oherence
Hilbert spaceH,
Hilbert space

- 1
Aquantum E H= H‘ ® HC
classical = interaction v |
reference classical | = decoherence |
- input U quantum 4
classical % controller uuuuuuuuuu#
controller Hilbert space .. quantum measurem'ent
classical 4 QUANTUM WORLD P 4
outputyy - oam o mm =

LG

To stabilize the quantum information localized in system S:

» fast decoherence addressed by a quantum controller

(coherent feedback);

> slow decoherence and perturbation tackled by a classical controller
(measurement-based feedback).
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Cat-Qubit: feedback stabilization for quantum error correction. ° /55/* | PSL*

low Q mode b
me (coherent feedback) WW\M

| I non-linear mixer: a*bT+h.c

high Q mode a
(logical qubit)

V\[W\/\ ) readou:mo:jf P V\M\W\

Stochastic master equation :

dp = —i[H, p] dt + k.Da(p) dt
+ HbDb(p) dt +vDg, (P) dt
+vmy (oz:p + poz — 2 Tr (azp) p) dW:

with Hamiltonian
H = upb' + ujb+ule)(g| + u*[g) (e|
+g(a*b +(a*)'b) +xle)(e| a'a,

measurement output
dy: = 2\/ny Tr(ozp) + dW,

classical control inputs up, u € C,
parameters Kp, 7 > Ka, &, X-

M. Mirrahimi, Z. Leghtas, ..., M. Devoret: Dynamically protected cat-qubits: a
new paradigm for universal quantum computation. New Journal of Physics, 16:

045014, 2014.

Z. Leghtas, ..., M. Mirrahimi, M. Devoret: Confining the state of light to a
quantum manifold by engineered two-photon loss. Science, 347:853-857,2015.
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