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Open quantum systems
The Lindbald-Kossakowski equation

dtp - [H o] + Z (2Lka; — Ly — pLLLk)

is the master equation associated to an ensemble average of
quantum trajectories (stochastic jump dynamics of a single quantum
system where the "environment is watching"").

Contribution: when the Lindblad operators Ly are associated to highly
unstable excited states, we propose a systematic method to eliminate
the resulting fast and asymptotically stable dynamics. The obtained
slow dynamics

[ s, ps| + Z <2Ls kpsl s P L;kLs,kps - PsL;kLs,k>

is still of Lindbald-Kossakowski form ((ps, Hs, Ls k) = fnct(p, H, L)).

"H.-P. Breuer and F. Petruccione. The Theory of Open Quantum Systems.
Clarendon-Press, Oxford, 2006.  S. Haroche and J.M. Raimond. Exploring
the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006:




Prototype of open quantum syste|rr)1: A-systems.
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N stable states |g),
k=1,...,N.

Unstable state |e)

Quasi resonant laser
transition, |gx) < |e) with
de-tuning ¢, and Rabi
pulsations Q4 € C.
Spontaneous  emission
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Lindbald-Kossakowski master-equation for the density matrix p

d

N
1 1
giP = ~3lHl+ D 5 @Lepli — LiLkp — pLiLy)
k=1

B =531 0k 19K) (G| + Qi) (el + Q2 [€) (g,
Lx =v/Tk |gk) (e|. Photon flux (measure): y = Zﬁa tr (LLLk,o>.
Two time-scales: |0k|, || < Tk-



Main result: adiabatic elimination of the unstable state |e)?
The slow/fast dynamics

dtp =~ [H.ol+ Z (2LwpLf — LhLep = pLiLk)

with Ly = Tk |gk) (€|, T = (3_4 l'k) much larger than %,
y=3,tr <LLLkp>, is approximated by the slow dynamics

at” = "

with ps = (1 — P)p(1 — P) the slow density operator,

Hs = (1 — P)H(1 — P) the slow Hamiltonian and

Lsx = 2%%(1 — P) the slow jump operators (P = |e) (e|). The
slow approximation of y is still given by the standard formula

Ys = itl’ (Lj;kLs,sz)
k=1

2See, Mirrahimi-R, CDC 2006 and IEEE AC to appear in-2009:

N
d 1 1
*[H& Ps]+z 5 (2LS,kPSLL,k - Ll’kLs,sz - PSL‘L,kLs,k)
k=1




Application to the 3-level system (coherence population trapping®)

y-

lg1)
Input: Q1,9 € C and A
Output: photo-detector click times corresponding to jumps from

le) to |gy) or |gz).
Two time-scales: |Q4],|Q2], |Ael, |A] < T1,T2

3See, e.g., Arimondo: Progr. Optics, 35:257, 1996.



The slow/fast master equation

Master equation of the A-system

d

2
1 1
gt? = ~plH A+ 5 D (@LepLl — LiLkp — pLiLk).
k=1

with jump operators Lx = /T« |gk) (€| and Hamiltonian

o= 5090 (0o ~ 90 (on) - (8ot 5 ) lo)

+ Q1 |91) (el + Q7 |e) (91| + Q2 |g2) (] + Q23 |e) (go] .

Since |Q4],|Q2],|Ael|, |A| < 1,2 we have two time-scales: a
fast exponential decay for "|e)" and a slow evolution for

"(191) 5 192))".



The slow master equation with bright and dark states.
The above general result leads to a reduced master equation
that is still of Lindblad type with a slow Hamiltonian Hs and slow
jump operators Lg k:

2

d ) 1

aps = _ﬁ[Hs, ps| + > Z(ZLs,szL;k - Llykl-s,kps - pSL;kLS,k)J
k=1

with Hs = 20 _ A(\92><92\*|91>(g1|) ,Lsk = \ﬁ|gk> (ba| where

e = 4%rk and |bQ> is the bright state:

B gy 2 g
1 2
Q4] + Q]2 VIQ12 + Q22

For A = 0, ps converges towards the dark state |dg):

|ba) =

Q5 Q3

191) + 192) .
124]2 + Q22 VIQ4[2 + Q)2

|dq) = —



Extension to V-systems: Dehmelt’s electron shelving scheme*

A A stable state |g1). A quasi-stable state:
|g=) with a long life time 1/+.
ar An unstable state: |e) with a short life time

Q 1.
Quasi resonant transitions:

> |g1) = |e) with de-tuning A and
Rabi pulsation Q € C.

> |g1) = |g2) with de-tuning § and
Rabi pulsation w € C.

Lindbald-Kossakowski master-equation for the density matrix p

a,_
at” =
H * *

5 = Ale) (el +Qgi) (el + Q7 [e) (g1] + 0|g2) (ge| +wgr) (G2 +w™ [g2) (g1

L=vVT|g) (e, I=v7|91) (g

Photon flux (measure): y = tr (L'Lp) +tr (/'Ip). (||, |w|, |2],~ < T).
“See, e.g., Cohen-Tannoudji-Dalibard: Europhys. Lett., 1986.

Mg+ %(2LpLT CLTLp—pliL) + %(Z/p/T = plt)




The slow master equation

The slow dynamics is still of Lindblad type with a slow
Hamiltonian Hs, slow jump operators Lg and I = [

;’tps *[Ho psl + (2LspsL — LiLsps — psLELs)
n %(2/5;)3/5 — Rsps — psllls)
Hs .
7 = 0192) (el +wlgr) (g2| +w"|ge) (g1l
=2 gy @l 1=1=vile) el

Photon flux (measure): y = tr (LLLSpS) +tr (/;rlsp3>.



Slow/fast systems in Tikhonov normal form

(X%)

f(z,z,¢) 9(z,2,0) = 0+ O(e)
( g(x,2,€) )
>
x

ax — f(x,z,¢) with x € R", z € RP,

dt T 0 < € < 1 a small parameter ,

az 9(x.2.¢) f and g regular functions.
E— = ,Z, €



Slow approximation (zero order in ¢)

As soon as g(x, z,0) = 0 admits a solution, z = p(x), with p

smooth function of x and gg(x, p(x),0) is a stable matrix, the
approximation of
ax
= ax
c at f(X7Z7€) 0 F = f(X7ZaO)
(%) by (=°)¢ df
az
g = a(x,z,¢) 0 = 9(x,z0)

is valid for time intervals of length 1.

For longer intervals of length 1 /¢, correction terms of order 1 in
¢ should be included in X°. They can be computed via center
manifold techniques and Carr’s approximation lemma>.

5See, e.g., J. Carr: Application of Center Manifold Theory. Springer; 1981-



Proof based on matrix computations only ©

With Q = |gk) (€], Tk = % and 0 < ¢ < 1 the slow/fast master
equation reads

=
—| |

J ;
G’ = [H, p] + Z “(2QupQf — QL Qup — pQL Q).

k=1

(Y

Change of variables p — (py, ps) to put the system in Tikhonov
normal form (P = |e) (e|): pf Pp+pP PoP,
ps=(1—=P)p(1 = P) + —— S, T« QupQj, with inverse
(Zk 1 rk
p=ps+pr— 77— 1Tk QuprQ).
ST
The dynamics in (ps, pf) "Tikhonov coordinates":

N =

d (Zm rk)
“at’r T 2

8See, Mirrahimi-R, CDC 2006 and IEEE AC to appear in-2009.

(ps + PpiP) = 2 (PIH. ol + [H. pIP = PIH. pIP).




Order zero approximation in ¢

» Setting e to 0 in

d —H N

Srs= (=P S|P (z“rk)kz || o
.

= —(Zk;‘rk)m +PoiP) ~ “(PIH.p) + W, 1P — PIH. P)

yields to the coherent dynamics

d
maps = [(1 - P)H(1 - P)aps]
pr=0

with y = 0.
» Need for higher order corrections terms in ¢



High order approximation via center manifold techniques ’
Consider the slow/fast system (f and g are regular functions)
d d
Pk f(x, z), el = —Az 4 e9(x, 2)
where all the eigenvalues of the matrix A have strictly positive

real parts, and 0 < ¢ <« 1. The slow invariant attractive manifold
admits for equation (boundary layer)

z=eA""9(x,0) + O(?)

and the restriction of the dynamics on this slow invariant
manifold reads
d

of
X =fx, eA71g(x,0))+0(c?) = f(x, 0)+55|(X70)A‘1 g(x,0)+0(¢?)

Center-manifold approximations yield to second order terms in
the expansion of z:

0 o
z=eAg(x,0)+2A" [ 2] 0)A1g(x,0) — A ST, 01 7(x,0) ) +O(2).
0z ox

’See, e.g., Fenichel J. Diff. Eq. 1979 or Duchéne-R Chem. Eng. Sci.
190R



Order one approximation in ¢
Addition of first order correction terms in ¢ are related to

decoherence and thus to Lindblad terms:

N

d 1 _

205 = —5[Hs psl+25 > T (2QspsQ i — @l Qsips — 5L Qsik)
k=1

where

Qo = —————(1-P)QeH(1—P).

Hs=(1-P)H(1-P) and —( )
h(Zf; F/)

The boundary layer reads

-2
— = (PHps — psHP) + O(?).
h( > k=1 rk)

and the output (measure)

= (X

Pr =

)tr (Pps) + O(),

|M2



Concluding remarks

» The proposed adiabatic reduction mixing non commutative
computations with operators and dynamical systems
theory (geometric singular perturbations theory, invariant
manifold) preserves the "physics" (CPT slow dynamics).

» In the slow master equation, the decoherence terms
depend on the control input Q: influence on controllability
and optimal control?8

» Straightforward extensions to: several unstable states |e;)
with fast relaxation to stable states |gk); slow decoherence
between the "stable" states |gx).

» A method to approximate slow/fast quantum trajectories by
slow quantum trajectories where the jumps from |e) to |gx)
are replaced by jumps inside the "slow space"®

8See, e.g., Altafini and Bonnard-Chyba-Sugny for the recent results on

controllability and optimal control of such dissipative systems.

9For mathematical justifications see: Bouten-Silberfarb: Commun. Math.

Phys., 2008; Bouten-vanHandel-Silberfarb: Journal of Functional Analysis,
2008; Gough-vanHandel: J. Stat. Phys., 2007.




Quantum trajectories’® associated to the slow master equation

_ 212+ _

At each infinitesimal time step dt,
> ps jumps

» towards the state |g1) (91| with a jump probability given by:
(bal ps |ba) 71 dt.

» or towards the state |go) (go| with a jump probability given
by: <bQ| Ps |bQ> Y2 at.

> Or pg does not jump with probability
1 —(bal ps |ba) (71 +2) at
and then evolves on the Bloch sphere according to

1d A |ba) (bal ps + ps |ba) (ba

aaps = —25[027 Ps]— > + <bQ| Ps |b§2> Ps-

with v = v + 2.

9See, e.g., Haroche-Raimond book, 2006.



Quantum trajectories in Bloch-sphere coordinates
Set = 2arg(Q4 + £22) and

pe — 1+ X(Ib) {d| + |d) (b]) + Y(2]b) <g| —1d) (b]) + Z(|d) (d| — |b) (b])
At each infinitesimal time step dt, the point (X, Y, Z) € S?,
> jumps
» towards the state (sin 3,0, cos 3) with a jump probability
given by: “;—Z) ~1 dt.
» or towards the state (—sin 3,0, — cos 8) with a jump
probability given by: U=2) ~, di.

» or does not jump with probability 1 — M(% + 72) dt and
then evolves according to

d XZ

d YZ

th AcospX — AsinpZ — ey
_ 72

gZ AsmﬂYJru

dt 2



Convergence of the no-jump dynamics

For |A| < %, the nonlinear system in S?

d XZ

EX —ACOSﬁY—’y?

d YZ
th AcospBX —AsingZ —y— 5
d (1 — Z?)
dtZ AsingY + —

admits a two equilibirum points, one is unstable and the other
one is quasi-global asymptotically stable.
Proof: based on Poincaré-Bendixon on the sphere. "

"See, Mirrahimi-R, 2008, arxiv:0806.1392v1



	The main result on -systems
	Optical pumping and coherence population trapping
	Extension to V-systems
	Proof of the main result
	Concluding remarks
	Appendix
	Quantum trajectories associated to slow master equations


