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Harmonic oscillator with single-photon drive and damping

Well posedness and convergence for multi-photon drive and
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Nobel Prize in Physics 2012

         Serge Haroche          David J. Wineland 

" This year’s Nobel Prize in Physics honours the experimental
inventions and discoveries that have allowed the measurement and
control of individual quantum systems. They belong to two separate
but related technologies: ions in a harmonic trap and photons in a
cavity . . . "
From the Scientific Background on the Nobel Prize in Physics 2012 compiled by the
Class for Physics of the Royal Swedish Academy of Sciences, 9 october 2012.
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Two kinds of quantum feedback

quantum
system

classical
controller 

quantum world

classical world y

u

decoherence Measurement-based feedback: controller is
classical; measurement back-action on the
quantum system of Hilbert spaceH is stochas-
tic (collapse of the wave-packet); the measured
output y is a classical signal; the control input u
is a classical variable appearing in some con-
trolled Schrödinger equation; u(t) depends on
the past measurements y(τ), τ ≤ t .

quantum
system

quantum
controller

quantum world
y?

u ?

classical world

decoherence

decoherence Coherent/autonomous feedback and reser-
voir engineering: the system of Hilbert
space H is coupled to the controller, an-
other quantum system; the composite sys-
tem of Hilbert space Hcontroller⊗H, is an open-
quantum system relaxing to some target (sep-
arable) state.
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Watt regulator: classical analogue of quantum coherent feedback. 1

From WikiPedia The first variations of speed δω
and governor angle δθ obey to

d
dt
δω =−aδθ

d2

dt2
δθ = −Λ

d
dt
δθ − Ω2(δθ−bδω)

with (a,b,Λ,Ω) positive parame-
ters.

Third order system

d3

dt3 δω + Λ
d2

dt2 δω + Ω2 d
dt
δω + abΩ2δω = 0.

Characteristic polynomial P(s) = s3 + Λs2 + Ω2s + abΩ2 with roots
having negative real parts iff Λ > ab: governor damping must be
strong enough to ensure asymptotic stability.
Key issues: asymptotic stability and convergence rates.

1J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.
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Reservoir Engineering and coherent feedback2

SystemReservoir

Engineered
interaction

dissipation
κ

Hint

HHres

H = H res + H int + H

if ρ →
t→∞

ρres ⊗ |ψ̄〉〈ψ̄| exponentially on a time scale of τ ≈ 1/κ then . . . . . .

2See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique
des Houches", July 2011.
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Reservoir Engineering and coherent feedback2

SystemReservoir

Engineered
interaction

dissipation
κ

Hint

HHres

γ

H = H res + H int + H

. . . . . . ρ →
t→∞

ρres ⊗ |ψ̄〉〈ψ̄|+ ∆, if κ� γ then ‖∆‖ � 1

2See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique
des Houches", July 2011.
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Convergence issues of open-quantum systems

Continuous-time models: Lindbald master eq. (quantum Fokker-Planck eq.):

d
dt
ρ = −A(ρ) , − i

~ [H, ρ] +
∑
ν

(
LνρL†ν − (L†νLνρ+ ρL†νLν)/2

)
,

of state ρ a density operator (Hermitian, non negative, trace-class, trace one)
with H Hermitian operator and Lν arbitrary operators (usually unbounded).

When H is of finite dimension, (e−tA)t≥0 is a contraction semi-group for many
metrics ( Tr (|ρ− σ|), Tr

(√√
ρσ
√
ρ
)
, see the work of D. Petz).

Open issues motivated by robust quantum information processing:

1. characterization of the Ω-limit support of ρ: decoherence free spaces
are affine spaces where the dynamics are of Schrödinger types; they
can be reduced to a point (pointer-state);

2. Estimation of convergence rate and robustness.

3. Reservoir engineering: design of realistic H and Lν to achieve rapid
convergence towards prescribed affine spaces (protection against
decoherence).

Goal of this talk: well-posedness and convergence for the infinite
dimension system with H = 0 and Lν = ak − αk I with k ∈ N and α ∈ C.
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Quantum harmonic oscillator

I Hilbert space:
H =

{∑
n≥0 ψn|n〉, (ψn)n≥0 ∈ l2(C)

}
≡ L2(R,C)

I Operators and commutations:
a|n〉 =

√
n |n-1〉, a†|n〉 =

√
n + 1|n + 1〉;

N = a†a, N |n〉 = n|n〉;
[a,a†] = I , af (N) = f (N + I)a;
Dα = eαa†−α†a.
a = X + iP = 1√

2

(
x + ∂

∂x

)
, [X ,P] = ıI/2.

I Hamiltonian: H/~ = ωca†a + uc(a + a†).
(associated classical dynamics:
dx
dt = ωcp, dp

dt = −ωcx −
√

2uc ).

I Classical pure state ≡ coherent state |α〉
α ∈ C : |α〉 =

∑
n≥0

(
e−|α|

2/2 αn
√

n!

)
|n〉; |α〉 ≡ 1

π1/4 eı
√

2x=αe−
(x−
√

2<α)2

2

a|α〉 = α|α〉, Dα|0〉 = |α〉.

|0

|1

|2

ωc

|n

ωc
uc

...
 ..

.
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Wigner function W ρ for different values of the density operator ρ

W ρ : C 3 ξ → 2
π Tr

((
DξeiπND†

ξ

)
ρ
)
∈ [−2/π,2/π]

Re(ξ)

Im
(ξ

)

−0.6

−0.4

−0.2

0

0.2

0.4

0.6Fock state |n=0> Fock state |n=3> Coherent state |α=1.8>

Coherent state |-α> Statistical mixture of 
|-α> and |α> Cat state |-α>+|α>

-3
-3

0

0

3

3

10 / 25



Experimental Wigner functions of 2, 3 and 4-leg Schrödinger cat-states3

3Vlastakis, B.; Kirchmair, G.; Leghtas, Z.; Nigg, S. E.; Frunzio, L.; Girvin,
S. M.; Mirrahimi, M.; Devoret, M. H., Schoelkopf, R. J. "Deterministically
Encoding Quantum Information Using 100-Photon Schrödinger Cat States".
Science, 2013, -
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Master equation for a damped and driven (α ∈ R) harmonic oscillator 4

d
dt ρ = LρL† − 1

2

(
L†Lρ+ ρL†L

)
with L = a − αI

ρ can be represented by its Wigner function W ρ defined by

C 3 ξ = x + ip 7→ W ρ(ξ) = 2
π

Tr
((

eξa†−ξ∗a eiπN e−ξa†+ξ∗a
)
ρ

)
With the correspondences

∂

∂ξ
= 1

2

(
∂

∂x
− i

∂

∂p

)
,

∂

∂ξ∗
= 1

2

(
∂

∂x
+ i

∂

∂p

)
W ρa =

(
ξ − 1

2
∂

∂ξ∗

)
W ρ, W aρ =

(
ξ + 1

2
∂

∂ξ∗

)
W ρ

W ρa† =

(
ξ∗ + 1

2
∂

∂ξ

)
W ρ, W a†ρ =

(
ξ∗ − 1

2
∂

∂ξ

)
W ρ

we get the following PDE for W ρ :

∂W ρ

∂t
= 1

2

(
∂

∂x

(
(x − α)W ρ

)
+
∂

∂p

(
pW ρ

)
+ 1

4
∂2

∂x2 W ρ + 1
4
∂2

∂p2 W ρ

)
converging toward the Gaussian W ρ∞(x , p) = 2

π
e−2(x−α)2−2p2

.
4See, e.g., S. Haroche and J.M. Raimond: Exploring the Quantum:

Atoms, Cavities and Photons. Oxford University Press, 2006.
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Difficulties to get the semi-groups
(
e−tA)

t≥0 from unbounded generators A.

The minimal solution 5 of d
dt ρ = −A(ρ) need not be trace-preserving.

We can see this on this example due to Davies 6

d
dt ρ = −A(ρ) = LρL† − 1

2

(
L†Lρ+ ρL†L

)
with L =

(
a†
)2

Formally with ρ ≥ 0, pn = 〈n|ρ|n〉 ≥ 0 and Tr (ρ) =
∑

n pn = 1 we get

d
dt

Tr (ρN) = Tr (ρ2(N + 1)(N + 2)) =
∑
n≥0

pn2(n + 1)(n + 2)

≥ 2
(∑

n≥0

pnn
)2

+ 1 = 2 Tr2 (ρN) + 1

by convexity of x 7→ 2(x + 1)(x + 2) and 2(x + 1)(x + 2) ≥ 2x2 + 1 for x ≥ 0.
With z = Tr (Nρ), we have d

dt z ≥ 2z2 + 1 and thus for any initial condition
ρ0 ≥ 0, z0 ≥ 0 and z(t) reaches +∞ in finite time. This implies that Tr (ρ) is
decreasing and that the above computations have to be re-considered.

5See, e.g., chapter 4 written by F. Fagnola and R. Rebolledo in the book edited by
Attal, S.; Joye, A.; Pillet, C.-A. (Eds.) Open Quantum Systems III: Recent
Developments Springer, Lecture notes in Mathematics 1882, 2006.

6E. Davies: Quantum dynamical semigroups and the neutron diffusion equation.
Reports on Mathematical Physics, 1977, 11, 169-188
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Quantum information processing with cat-qubits 8

It is possible with quantum circuits to design an open quantum system
governed by7

d
dt ρ = LρL† − 1

2

(
L†Lρ+ ρL†L

)
+ ε
(
aρa† − Nρ+ρN

2

)
with L = a2 − α2I .

The supports of all solutions ρ(t) converge to the decoherence free space
spanned by the even and odd cat-state;

|C+
α 〉 ∝ |α〉+ |-α〉, |C−α 〉 ∝ |α〉 − |-α〉.

The corresponding PDE for W ρ is of order 4 in x and p.
A similar system where L = a4 − α4I could be very interesting for quantum
information processing where the logical qubit is encoded in the planes
spanned by even and odd cat-states:{

|C+
α 〉, |C+

iα〉
}
,
{
|C−α 〉, |C−iα〉

}
..

The corresponding PDE for W ρ is of order 8 in x and p.

7Z. Leghtas et al.: Confining the state of light to a quantum manifold by
engineered two-photon loss. Science, 2015, 347, 853-857.

8M. Mirrahimi et al: Dynamically protected cat-qubits: a new paradigm for
universal quantum computation, New Journal of Physics, 2014, 16, 045014.
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A bunch of spaces

I H =

{
|ψ〉 =

∑
n∈N ψn|n〉

∣∣∣ ψn ∈ C,
∑

n∈N |ψn|2 < +∞
}

separable

Hilbert space.

I Hf =

{
|ψ〉 =

∑
n∈N ψn|n〉

∣∣∣ ∃n̄, ∀n > n̄, ψn = 0
}

dense in H.

I Hk = {|ψ〉 =
∑

n∈N ψn|n〉 |
∑

n∈N nk |ψn|2 < +∞}} dense in H.

I K1(H) the Banach space of Hermitian trace-class operators equipped
with the trace norm: ρ ∈ K1(H) compact Hermitian operator with
spectral decomposition ρ =

∑
µ≥1 λµ|ψµ〉〈ψµ| and such that∑

µ≥1 |λµ| < +∞. The trace-norm is ‖ρ‖tr = Tr (|ρ|) =
∑∞
µ=1 |λµ|.

We have ρ = ρ+ − ρ− and |ρ| = ρ+ + ρ− with
ρ+ =

∑
µ≥1 max(0, λµ)|ψµ〉〈ψµ| and ρ− =

∑
µ≥1 max(0,−λµ)|ψµ〉〈ψµ|.

I Quantum state-space: the convex set of density operators
D =

{
ρ ∈ K1(H)

∣∣∣∑µ≥1 λµ = 1, ; λµ ≥ 0 for all µ ≥ 1
}

.

I Kf (H) =
{∑n̄

n,n′=1 fn,n′ |n〉〈n′|
∣∣∣ fn,n′ = f ∗n′,n, n̄ ∈ N

}
dense in K1(H).

I For any ρ ∈ K1(H) and any bounded operator B on H we have
Tr (Bρ) = Tr (ρB) , Tr (Bρ) ≤ Tr (|Bρ|) = ‖Bρ‖tr ≤ ‖B‖ Tr (|ρ|) = ‖B‖ ‖ρ‖tr
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Adapted Banach space for d
dt ρ = LρL† − 1

2 (L†Lρ+ ρL†L) with L = ak − αk I .

I The operator L†L with domain H2k admits a spectral decomposition
L†L =

∑∞
µ=1 dµ|gµ〉〈gµ| where

(
|gµ〉

)
µ≥1 is an Hilbert basis of H and

dµ ≥ 0.
Proof: (I + L†L)−1 is a compact Hermitian operator.

I KL(H) ,
{
ρ ∈ K1(H)

∣∣∣ Tr
(∣∣∣√I + L†L ρ

√
I + L†L

∣∣∣) < +∞
}

equipped

with the norm ‖ρ‖L = Tr
(∣∣∣√I + L†L ρ

√
I + L†L

∣∣∣) is a Banach space.

Moreover ρ ∈ KL(H) implies LρL† ∈ K1(H).
I We have [L,L†] = ak (a†)k − (a†)k ak = M with

M = (N + I)(N + 2I) . . . (N + k I) − N(N− I)+ . . . (N− (k−1)I)+ ≥ k !I .

I Tr
(
LρL†

)
satisfies d

dt Tr
(
LρL†

)
= − Tr

(
LρL†M

)
≤ −k ! Tr

(
LρL†

)
.
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Well posedness in KL(H) based on Hill-Yosida thm for Banach space 10

Consider the Cauchy problem d
dt ρ = −A(ρ) associated to the super-operator

KL(H) ⊃ DA 3 ρ 7→ A(ρ) = (L†Lρ+ ρL†L)/2− LρL† ∈ KL(H)

with L = ak − αk . For any integer k > 0, any real α > 0 and any ρ0 in the
domain of A,

1. there exists a unique C1 function [0,+∞[3 t 7→ ρ(t) ∈ KL(H), such that
ρ(t) belongs to the domain of A for all t ≥ 0 and solves the initial value
problem with ρ(0) = ρ0

2. ∀t ≥ 0, Tr (ρ(t)) = Tr (ρ0), ‖ρ(t)‖L ≤ ‖ρ0‖L and ‖A(ρ(t))‖L ≤ ‖A(ρ0)‖L.

3. If ρ0 is non-negative then ρ(t) remains also non negative.

Proof: for any λ > 0 and f ∈ KL(H), exits ρ ∈ KL(H) such that ρ+ λA(ρ) = f
and ‖ρ‖L ≤ ‖f‖L. We prove that (I + λA)−1 is a completely positive map, i.e.
a quantum (Kraus) map, from KL(H) to DA. We combine arguments due to
E. Davies9 with the fact that [L,L†] > 0. See the forthcoming special issue of
COCV or the preprint http://arxiv.org/abs/1511.03898.

9E. Davies: Quantum dynamical semigroups and the neutron diffusion
equation. Reports on Mathematical Physics, 1977, 11, 169-188

10H. Brezis: Analyse fonctionnelle. Masson, Paris, 1987.
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Exponential convergence toward the decoherence-free sub-space of dimension k

I The set of steady-states characterized by A(ρ) = 0 corresponds to
Hermitian operators ρ̄ with range included in the k -dimensional complex
vector space, the decoherence-free sub-space,

Hα,k = span
{
|αm〉

∣∣∣∣ αm = α e2iπm/k , m = 1, 2, ..., k
}
.

I Consider the unique trajectory [0,+∞[3 t 7→ ρ(t) ∈ KL(H) solution of
d
dt ρ = −A(ρ) with initial condition ρ(0) = ρ0 non-negative, of trace one
and in the domain of A. Then there exists ρ̄ρ0 ∈ KL(H) nonnegative and
of trace one, with support in Hα,k such that ρ converges to ρ̄ in KL(H).
Moreover, we have exponential convergence towards Hα,k in the sense:

Tr
(∣∣L(ρ(t)− ρ̄ρ0 )L†

∣∣) ≤ Tr
(

L|ρ0 − ρ̄ρ0 |L
†
)

e−k! t .

Proof: the Lyapunov function V (ρ) = Tr
(
LρL†

)
and d

dt V ≤ −k !V .
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Invariant and conserved quantities

There exist k2 linearly independent Hermitian bounded operators
Qm,m′ , m,m′ = 1,2, ..., k , which are invariant under d

dt ρ = −A(ρ),
i.e. for which

Tr (Qm,m′ ρt ) = Tr (Qm,m′ ρ0)

for any trajectory [0,+∞) 3 t 7→ ρt ∈ KL(H).
Moreover, the linear space of invariant Hermitian operators spanned
by {Qm,m′}m,m′=1...k contains in particular the k operators

Qcos
m =

∑
n∈N

cos
(

2πmn
k

)
|n〉〈n| for m = 0,1, ..., d k−1

2 e ;

Qsin
m =

∑
n∈N

sin
(

2πmn
k

)
|n〉〈n| for m = 1, ..., b k−1

2 c .

Proof: use the fact that ρ 7→ limt 7→+∞ e−tA(ρ) is a complete positive
map, i.e. a quantum channel and the fact that the dual of K1(H) is the
set of bounded operators.
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Reservoir with the cavity deoherence (1/κ photon life-time)11

Cavity mode (system)atom (reservoir)

R1
R2

Box of 
atoms

Aim: 
engineer atom-mode interaction,

to stabilize |-α  +|α

DC field: 
(controls atom frequency)

ENS experiment

d
dt ρ =

reservoir relaxation︷ ︸︸ ︷(
a − α)ρ(a − α)† − 1

2

(
(a − α)†(a − α)ρ+ ρ(a − α)†(a − α)

))
+ κ
(
aeiπNρe−iπNa† − 1

2(a†aρ+ ρa†a)
)︸ ︷︷ ︸

decoherence

.

11A. Sarlette, ; Brune, M.; Raimond, J.M.; P.R. "Stabilization of nonclassical
states of the radiation field in a cavity by reservoir engineering", Phys. Rev.
Lett., 2011, 107, 010402.
A. Sarlette ; Leghtas, Z.; Brune, M.; Raimond, J.; P.R. " Stabilization of
nonclassical states of one and two-mode radiation fields by reservoir
engineering." Phys. Rev. A, 2012, 86, 012114
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Robustness of the reservoir stabilizing the two-leg cat.

Since W eiπNρe−iπN
(ξ) = Wρ(−ξ) the master Lindblad equation

d
dt ρ =

reservoir relaxation︷ ︸︸ ︷(
a − α)ρ(a − α)† − 1

2

(
(a − α)†(a − α)ρ+ ρ(a − α)†(a − α)

))
+ κ
(
aeiπNρe−iπNa† − 1

2 (a†aρ+ ρa†a)
)︸ ︷︷ ︸

decoherence

.

yields to the following non local diffusion PDE (quantum
Fokker-Planck equation):

∂W ρ

∂t

∣∣∣∣
(x,p)

= 1+κ
2

(
∂

∂x

(
(x − α)W ρ

)
+
∂

∂p

(
pW ρ

)
+ 1

4 ∆W ρ

)
(x,p)

+ κ
(

(x2 + p2 + 1
2 )
(

W ρ|(−x,−p) − W ρ|(x,p)

)
+ 1

16

(
∆W ρ|(−x,−p) − ∆W ρ|(x,p)

))
− κ

(
x
2

(
∂W ρ

∂x

∣∣∣∣
(−x,−p)

+
∂W ρ

∂x

∣∣∣∣
(x,p)

)
+ p

2

(
∂W ρ

∂p

∣∣∣∣
(−x,−p)

+
∂W ρ

∂p

∣∣∣∣
(x,p)

))
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Spin-spring systems

Lindblad master equation

d
dt
ρ = − i

~ [H, ρ] +
∑
ν

(
LνρL†ν − (L†νLνρ+ ρL†νLν)/2

)
,

for composite systems made of qubit(s) (Pauli operator σx ,σy and σz )
and harmonic oscillator(s) (annihilation operator a, number operator
N) with e.g. (Hamiltonian coupling)

H = ωcN ⊗ Iq + χN2 ⊗ Iq + uc(a + a†)⊗ Iq

+
ωq
2 Ic ⊗ σz + uq Ic ⊗ σx + g(a + a†)⊗ σx

and local decoherence

L1 =
√
κ(1 + nth)a ⊗ Iq , L2 =

√
κntha† ⊗ Iq ,

L3 =
√

1
T1

Ic ⊗ (σx − iσy ), L4 =
√

1
Tφ

Ic ⊗ σz .
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Conclusion pour Jean-Michel

Bon anniversaire Jean-Michel et un grand merci pour tout
ce que tu as fait pour

1. la communauté du contrôle,

2. la théorie mathématique des systèmes,

3. et plus largement les mathématiques en France et dans le
Monde,

4. . . .
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