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Quantum feedback: the back-action of the measurement. /5/75
A typical stabilizing feedback-loop for a classical system
Y
MTicontroller u System Y
Y

Two kinds of stabilizing feedbacks for quantum systems

1. Measurement-based feedback: controller is classical;
measurement back-action on the system S is stochastic
(collapse of the wave-packet); the measured output y is a
classical signal; the control input u is a classical variable
appearing in some controlled Schrédinger equation; u(t)
depends on the past measurements y(7), 7 < t.

2. Coherent/autonomous feedback and reservoir engineering: the
system S is coupled to the controller, another quantum
system; the composite system, Hs®H controlter; IS @n
open-quantum system relaxing to some target (separable) state.



Controlling quantum degrees of freedom J
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Several applications:
» Nuclear Magnetic Resonance (NMR) applications;
» Quantum chemical synthesis;
» High resolution measurement devices (e.g. atomic/optic clocks);

» Quantum information processing: quantum computation and
quantum communication.

Physics Nobel prize 2012:

Serge Haroche David J. Wineland

Nobel prize: ground-breaking experimental methods that enable measuring
and manipulation of individual quantum systems.
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The first experimental realization of a quantum state feedback
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The photon box of the Laboratoire Kastler-Brossel (LKB):
group of S.Haroche (Nobel Prize 2012), J.M.Raimond and M. Brune

Stabilization of a quantum state with exactly n=0,1,2,3,... photon(s).
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.
Theory: I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

'Courtesy of Igor Dotsenko. Sampling period 80 p.s. 533




Three quantum features emphasized by the LKB photon box? 7
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1. Schrédinger: wave funct. |¢)) € H or density op. p ~ |¥) (1|
d i d i
— )y =—+ —p=—7 H=H H
dt|¢> hH|¢>7 dtp h[va]v o+ UM
2. Origin of dissipation: collapse of the wave packet induced by the
measurement of observable O with spectral decomp. > AP,
» measurement outcome p with proba.
P, = (¥|P,|¢) = Tr(pP,) depending on |¢), p just before
the measurement
» measurement back-action if outcome = y:

Py ) PypPy
V)= () = ===, prpr = B
= T T TRy
3. Tensor product for the description of composite systems (S, M):
» Hilbert space H = Hgs ®@ Hu
» Hamiltonian H = Hs ® Iy + Hipt + Is ® Hy
» observable on sub-system M only: O = Is ® Oy.

28. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.



Composite system built with an harmonic oscillator and a qubit.
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» System S corresponds to a quantized harmonic oscillator:

Hs = {Zd}nln oE/Z(C)}7

where |n) represents the Fock state associated to exactly n
photons inside the cavity

» Meter M is a qu-bit, a 2-level system (idem 1/2 spin
system) : 7 = C2?, each atom admits two energy levels
and is described by a wave function cy4|g) + ce|€) with
lcgl? + |ce|? = 1; atoms leaving B are all in state |g)

» State of the full system (V) € Hg @ Hy:

—+o00
W) =" Wngln) ©1g) + Wneln) ©6),  Wne, Wng € C.
n=0

Ortho-normal basis: (|n) ® |g9),|n) ® |€))nen-



S: quantum harmonic oscillator (spring system)

>

Hilbert space:

Hs = { S0 vln). (Wn)nzo € F(O)} = L3(R, C)

Quantum state space:

D={peL(Hs),p' =p, Tr(p)=1,p>0}.

Operators and commutations:

aln) = +/n|n-1),af|n) = v/n+1in+1);
N = a'a, N|n) = n|n);

[a,a'] = I, af(N) = f(N + Da;

D . eaaT—aTa

a=X+iP=- (x+ 2), X, Pl =ql)2.

Hamiltonian: Hs/h = wsa'a + u.(a + a').
(assomated classical dynamics:

% = Wcp, dt = —WeX — \/EUC)-

Classical pure state = coherent state |«)

Q€T Ja) = Tpug (6717255 In);|a) =

ala) = ala), Da|0) = |).

)

el
c (Dc'
1)
Q)
¢,
0)
%Meu/éx%aefw

Z
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M: 2-level system, i.e. a qubit (half-spin system)

Z
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Hilbert space:
Hy =C? = {cg\g> + cele), Cg, Ce € (C}.

Quantum state space:
D={pecL(Hm),p' =p, Tr(p)=1,p>0}.

Operators and commutations: ‘ e>
0. = |g)(e|, o = o' = |e)(g] Y, A
ox = 0.+ o, = |g){e| +|e)(gl; vy O
oy = io. — o, = i|g){e| — ile)(gl; ¥

oz = ovo. — o0, = |e)(e] — [9)(gl;
ox® = I, oxoy = ioy, [ox, 0y] = 2ioy, ...

Hamiltonian: Hy/h = wqo0z/2 4 Ug0x.

Bloch sphere representation:
D= {%(I—kxax—i-ycry—i—z:rz) | (x,y,2) €ER3, X2+ y2+ 22 < 1}
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The Markov model (1)
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[W)e ) Km

R»

» When atom comes out B, |W)g of the full system is separable
V)s = 1) ®g).

» Just before the measurement in D, the state is in general
entangled (not separable):

V)R, = Usm(|v) @ 19)) = (Mg|t)) @ |9) + (Melv))) ® |€)

where Ugy is a unitary transformation (Schrédinger propagator)
defining the linear measurement operators My and M, on Hs.
Since Ugy is unitary, MjMg + MM = .

10/33
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The Markov model (2)
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The unitary propagator Ugy is derived from Jaynes-Cummings
Hamiltonian Hgy, in the interaction frame.
Two kind of qubit/cavity Halmitonians:
resonant, Hgy/h = i(Q(vt)/2) (a' ® oo —a® a,),
dispersive, Hgy /h = (Q?(vt)/(26)) N ® o3,

2

where Q(x) = Qpe~ w2, x = vt with v atom velocity, Qo vacuum Rabi
pulsation, w radial mode-width and where ¢ = wq — w, is the detuning
between qubit pulsation wq and cavity pulsation we (|6] < Qo).

11/33



Z

The Markov model (3) ;j

Just before D, the field/atom state is entangled:
My|y) @ |g) + Me|y) ® |e)
Denote by 1 € {g, e} the measurement outcome in detector D: with

probability P, = (w|M M, ) we get u. Just after the measurement
outcome p = y, the state becomes separable:

WV\p=—"— (M ® ®
[W)p \/@( ) @ y) = <W ) &
Markov process (density matrix formulation p ~ ) (4)])
_MopM} with probability Py = Tr (MQPML>;
PMg

p =
i Ml with probability P, = Tr (Mopy).

Kraus map: [E (p./p) = K(p) = MgpM}, + McpM},.

12/33



A controlled Markov process (input u, hidden state p, output y) /5/75

Input u: classical amplitude of a coherent micro-wave pulse.
State p: the density operator of the photon(s) trapped in the cavity.
Output y: quantum projective measurement of the probe atom.
The ideal model reads

D, M,p M. D!
—uZ9PkT9 ", — g with probability Py = Tr (Mgpch)

Tr (Mgpkmg)

PN D, Mop MDY
ZuePkTeZu . — g with probability Pex = Tr (MepkML)

Tr (MepkM*e)

» Displacement unitary operator (u € R): D, = gua’—ua \ith
a = upper diag(v/1,v/2, .. .) the photon annihilation operator.

» Measurement Kraus operators in the linear dispersive case
M, = cos (%) and M, = sin (%): MMy + MM = |
with N = a'a = diag(0, 1,2, . ..) the photon number operator.

13/33



u = 0: Quantum Non Demolition (QND) measurement of photons. v s
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Cos(¢o~+¢n>pk COS<¢0N2+¢R N
Tr (0052 <¢0N+¢"l> p ) with prob. Tt (COSZ (M) pk)
Pk+1 =
sin( &2 +¢H Pk sin 0N+¢H) , +¢
with prob. Tr ( sin 0 PR ) p
Tr<sin2<¢0N2+¢H)pk> < ( ) )

Steady state: any Fock state p = |n)(n| (¢ € N) is a steady-state (no
other steady state when (¢g, ¢o, 7) are Q-independent)
Martingales: for any real function g, Vy(p) = Tr(g(N)p) is a
martingale:

E (Va(prs1) / pe) = Valpr)-
Convergence to a Fock state when (¢g, ¢o, 7) are Q-independent:
V(p) = —1 > ,(n|p| n)? is a super-martingale with

E (V(pis1) / k) = Vi(pi) — Qlpx)

where Q(p) > 0 and Q(p) = 0 iff, p is a Fock state.
For a realization starting from pg, the probability to converge towards
the Fock state |n)(n| is equal to Tr(|n)(A|po) = (N|po|N). 14/33




Structure of the stabilizing quantum-state feedback scheme /5/75

With a sampling time of 80 s, the controller is classical
» Goal: stabilization of the steady-state |n)(n| (controller set-point).

> At each time step k:

1. read yx the measurement outcome for probe atom k.

2. update the quantum state estimation px_1 to px from yx
3. compute uy as a function of pi (state feedback).

4. apply the micro-wave pulse of amplitude .

Observer/controller exploiting the quantum separation principle®:

1. real-time state estimation based on asymptotic observer: here
quantum filtering techniques;

2. state feedback stabilization towards a stationary regime: here
control Lyapunov techniques constructed with open-loop
martingales Tr(g(N)p) and inversion of a Laplacian matrix.

3L. Bouten and R. van Handel: On the separation principle of quantum
control. In Quantum Stochastics and Information: Statistics, Filtering and

Control, V. P Belavkin and M. I. Guta (Eds.) World Scientific, 2008.
15/33



Experimental closed-loop data

C. Sayrin et. al., Nature
477, 73-77, Sept. 2011.

Decoherence due to finite
photon life time around
70 ms)

Detection efficiency 40%
Detection error rate 10%
Delay 4 sampling periods

The quantum filter takes
into account cavity
decoherence, measure
imperfections and delays
(Bayes law).

Truncation to 9 photons

Stabilization around 3-photon state

ng = 3 photons

/

=3
N
o
I

60
Time ¢ (ms)

80 100 120 140 160
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LKB photon-box: Markov process with detection errors (1) 7
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» With pure state p = [¢)(¢|, we have

1
P+ = |¢+><¢+| - T <MﬂpML>

when the atom collapses in i = g, e with proba. Tr (MHpML).

MM},

» Detection error rates: P(y = e/u = g) = ng € [0, 1] the
probability of erroneous assignation to e when the atom
collapsesin g; P(y = g/u = e) = ne € [0, 1] (given by the
contrast of the Ramsey fringes).

Bayes law: expectation p. of |4, )(«| knowing p and the imperfect
detection y.

(1—ng)MgpM}+neMepM]
Tr((1—ng)MgpMj+neMepMY )

WgMgPMZ;JrU*’Ie)MePMl
Tr(11g Mg oMy +(1—ne)MepMY )
p does not remain pure: the quantum state p, becomes a mixed
state; |+, ) becomes physically irrelevant (not numerically).

it y = g, prob. T (1= ng)MgpM} + neMepM} );
P+ =

if y = e, prob. Tr (ngMgpM; +(1- ne)Meng).

18/33



LKB photon-box: Markov process with detection errors (2) 7
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We get
( —Ug)MgPM; +neMepM]
Tr((1—1g)MgpMj+neMepM)’

ngMgpM}+(1—ne)MepM]
Tr(ngMgPM;‘FU *WE)MeP’Wg)

with prob. Tr (( 1 — 1g)MgpM}, + neMepML);
P+ =

with prob. Tr (ngMgpM; +(1- ne)MepML).

Key point:

Tr (1 = ng)MgpM., McpM:) and Tr (ngMypM: + (1 — 1e)MepM:
(1 —ng)MgpMy + neMep My NgMgpMg + (1 — ne)Mep My,

are the probabilities to detect y = g and e, knowing p.
Generalization by merging a Kraus map K(p) = >, MupML where

=, MI,M,, = I with a left stochastic matrix (1, ,.):

ZH ny,uMupML
P+ = i
T (32, 7y Mo},

when we detect y = 1/'.

The probability to detect y = 1/ knowing pis Tr (ZM nlL/MMupML).

19/33



Photon-box quantum filter: 6 x 21 left stochastic matrix (7, ,,)
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k+1 —
P+ Tr(zﬂ, nyk,uMquML

1

) (ZH 77yk7uMquML) where

» we have atotal of m =3 x 7 = 21 Kraus operators M,,. The
"jumps" are labeled by p = (12, 1°) with
u? € {no,g,e,qgg,ge, eg, ee} labeling atom related jumps and
u® € {o,+, —} cavity decoherence jumps.

» we have only m’ = 6 real detection possibilities
y =u €{no,g,e,gg,ge, ee} corresponding respectively to no
detection, a single detection in g, a single detection in e, a
double detection both in g, a double detection one in g and the
other in e, and a double detection both in e.

u\ H (no, p1°) ‘ (9: 1°) ‘ (e, 1°) ‘ (99, 1+°) ‘ (ee, 1) (ge, 1°) (eg, pu°) ‘
no 1 11— €4 1— €4 (1 — ) (1 — ) (1 — )
g 0 es(1 = mg) €ame 2e4(1 — €o)(1 — m,) 2€4(1 — €q)me et — €)1 = my + m0)
e 0 €47y (1 — 1) 2e4(1 — €4)7g 2e4(1 — €,)(1 — 1) es(1 — €)1 — Mo + 1)
99 0 0 0 e —my)’ €5 eme(1 — ny)

ge

0

0

2e2n,(1 — m,)

2€5m(1 — 7,)

€5((1 = my)(1 = 10) + Mgme)

ee

0

0

2, 2
e,

es(t —m.)°

€ne(1 — m)
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Wigner functions of some quantum states for an harmonic oscillator &

Classical state of amplitude o € C: o) = 3~ ( e—lal?/2.a” ) |n);

Phase-cat states: V' (|a) + | — ).
Wigner function W* associated p: W? : C > ¢ — 2 Tr (e™ND_¢pD)

Fock state [n=0> Fock state In=3> Coherent state |a=1.8> 0.6
| | |
l :
° : 0.4
l °
l : 02
| T |
l ‘ l
-0
3 | Statistical mixture of |
o o>+
) Coherent‘ state |-o> o> ah d o> Cat state:| o>+Ho>
g | | | -0.2
= | |
)= - 8 a=s
-_— — [ — W —— - -0.4
| | |
l : l
-3 l 1 l -06
-3 0 3

MINES
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Stabilizing "Schrédinger cats” (|aso) + i]-ano)) / V2. 4
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atom (controller) Cavity mode (system) Aim:
engineer atom-mode interaction,
to stabilize [-ou)+|oy

—

Box of
atoms

DC field:
(controls atom frequency)

ENS experiment

Jaynes-Cumming Hamiltionian
H(t)/h = weala® Iy + wq(t)ls ® 0z/2 + iQ(t) (@' ® o —a® 0y) /2

with the open-loop control t — wq(t) combining dispersive wq # we
and resonant wq = wc interactions.

Key issues: convergence of pry1 = K(pk) = Mgpx M}, + Mop M},

4A. Sarlette et al: Stabilization of Nonclassical States of the Radiation
Field in a Cavity by Reservoir Engineering. Physical Review Letters, Volume
107, Issue 1, 2011.
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Convergence of K iterates towards (|as) + i\—aoo>)/\@

lterations pk+1 = K(pk) = MgpxM}, + Mepx M}, in the Kerr frame
p= e— i pKerreihAK,e" yields

Pﬁiq _ KKerr( Kerr) Mgerrp%err(Mgerr)T + Ml;errpierr(MI;err)T.
with M = cos(¥) cos(fn/2) + sin(¥) S‘”%ﬂ) a’ and

M = sin(¥) cos(fn.1/2) — COS(%)aSin%Q).

Assume |u| < /2,00 =0, 0, €]0, 7| for n > 0 and limp, ;o 0, = 7/2,

then (Zaki Leghtas, PhD thesis (2012))
> exists a unique common eigen-state [¢**") of My and Mg™":
Kerr _ |¢Kerr> <¢Kerr| flxed pOInt Of KKerr
> if, moreover n — 0, is increasing, liMx. o0 P& = pie.
For well chosen experimental parameters P X |aeo ) (o] @and

err —in/4
her ~ N2 /2. Since eEN |a,,) = 5 (Jas) + il-as)):

lim px = —<|aoo> + i|'aoo>) ((aool + i('aoo|)

k=00

# L) (@oo| + A ]-Cloo) {-toc |-

Z
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Model structure of open quantum systems
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Discrete-time models of open quantum systems

Four features:
1. Bayes law: P(u/ /) = P(u/u)P(i') / (X, P(u/V')P(V)),
2. Schrédinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and dissipation
are induced by the measurement of observables with
degenerate spectra.

4. Tensor product for the description of composite systems.
= Discrete-time models: Markov processes of state p, (density op.):
M Mt My oM, .
2yt Mty Mo )’ with proba. P,/ (pk) = Z;T=1 Mt o TF (MMPKML)

P = (St MM
associated to Kraus maps (ensemble average, quantum channel)

E (pxs1lon) = K(pk) =D MupicM, with >~ MM, =1

B w

and left stochastic matrices (imperfections, decoherences) (7,/,,.)-

26/33



Continuous/discrete-time Stochastic Master Equation (SME) /5/75

Discrete-time models: Markov chains

EZ: 7;“/_’#M,lp ML .
Pk = Tr(E,”Z; nu/,uMu:kML)’ with proba. P, (pk) = 3274 e T (MﬂpkML)

with ensemble averages corresponding to Kraus linear maps
E (pxi1lon) = K(pk) = D> Mok, with >~ MM, =1

Iz ©
Continuous-time models: stochastic differential systems

dpt = <—;§[H» pd+ Y LupiL] — %(Lll—uﬂt + Ptl-ll-u)> dt

+ Z \/%(Lupt +pll, — T ((Lu + Ll)pz) pt> dw,, ;

driven by Wiener processes dW, ;, with measurements y,, ;,
ayut = /n, Tr ((LV +L) px) dt + dW,, ;, detection efficiencies
1, € [0, 1] and Lindblad-Kossakowski master equations (r,, = 0):

d ; 1
GiP = —HH A+ LopLl — S(LiL,p+pLlL,)

27/33



Continuous/discrete-time diffusive SME 9
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With a single imperfect measurement
dy;=nTr ((L + L") Pr) dt + dW; and detection efficiency n € [0, 1],
the quantum state p; is usually mixed and obeys to

dpr = (~1H.pd + Lotk — L (LTLpi + piL'L) ) ot
Vi Lo ol = T (L L) )
driven by the Wiener process dW;
With It0 rules, it can be written as the following "discrete-time" Markov

model
Md.thTMTdy, + (1 —n)LpL' at

Tr (May,pcMly, + (1 = n)LpiL'dt)

Pt+dt =

with May, = 1+ (—£H — 3 (L'L)) ot + /idyiL.

28/33



Continuous/discrete-time jump SME /5/75

With Poisson process N(t), (dN(t)) = <§+T; Tr (VpeVT) ) at, and

detection imperfections modeled by § > 0 and 7 < [0, 1], the quantum
state p; is usually mixed and obeys to

dpt = (—i[H7 pil + Vo VT — %(VT Vpr + pe VT V)) dt

Opt + 7V VI ) i +
-_— — dN(t) — (6 Tr (VprV at
+<0+nTr(Vp,VT) & ( () ( T (Vir )> )

For dN(t) = 0 we have

Mop:My + (1 — )V, Vidt
Tr (MoptMg +(1—7)Vp VTdt)

Pt+dt =

with My = | — (iH + JVTV) dt.

For N(t + dt) — N(t) = 1 we have a similar transition rule
: ~ Opt + Ve V1
= =% Where p; is replaced by j; = ————————.
Ptdt = Ti(e) Pt p Y Dt G+ 7T (VoW

29/33



Continuous/discrete-time diffusive-jump SME 7
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The quantum state p; is usually mixed and obeys to
. 1 1
dpt = <—/[H, pt] + LpelT — E(LTLpt +pelTL) + Vpr VT — E(vT Vpi + pe VT V)> at
+ \/ﬁ(Lpt + ,DzLT - Tr ((L + LT)PI) pr) aw;

+ (ﬁnﬁf(vv’;‘a - p,) (an(t) — (3477 (Vorv') ) o)

For dN(t) = 0 we have

May, pt M;y,

Tr (Mdy, oM

+ (1 = n)LplLTdt + (1 —7)Vp: Vit
+ (1 —n)LpiLtdt + (1 fﬁ)thVTdt)

Ptidt =
dyt

with Mgy, = I — (iH+ LTL+ JVTV) dt + /ndy:L.
For N(t + dt) — N(t) = 1 we have a similar transition pr.at = 55 Where pr
Opt + Vo V1

t
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Continuous/discrete-time general diffusive-jump SME 7

The quantum state p; is usually mixed and obeys to

i
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dpy = (—f[H, ol + > Lupill, — LWL pr+ ol L) + VoV — 2V Vipr + 1 V)] ))

v

# 32 v (Lo ikl = T (L4 Lhoe) o0 )
z

Oupt + 3, Ty VMIPIVl/ ) (
t

o\ O+, T (VM/PtV;,)

dN,. () — (% DAL (vu/mv‘t,) ) dt>
’

w

where n,, € [0,1], Eu’ﬁu ! > 0 with Myt = Eu My, < 1 are parameters modelling measurements
imperfections.
When V., dN,,(t) = 0, we have

May, peMYy, + 52, (1 = nu)LopeLldt + 32, (1 = 7,)Viupe Vi ot

Tt (May, ptMly, + 5, (1 = mo)luprllot + 3, (1 = 7,) Vupr Vi o)

Pt+dt =

with Mgy, = I — (iH tiv, L+ s, v v,L) dt + 3, /7o dyuil, and where

Ayt = 7w T ((Ly + L) o) ot + aW,, p.

If, for some i, Ny, (t + dt) — N, (t) = 1, we have a similar transition rule p; g = Tr( j but where p; is replaced
Oupt + 3,0 M, 0t Vu/PtV:i/

w2 e T (V“/P[V::/) -

Useful for positiveness-preserving numerical schemes

by gt = —
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» Few available convergence results in the low rank case:
most of available results are for full rank density operators either
for Kraus maps (quantum channels)
pr+1 = K(pk) =3, M,,pxM,, or for Lindblad-Kossakowski
master equations :
G&p=—4Hpl+ >, LupLl — J(LiLup+ piLfL,).

» Continuous-time models with quantum input signal ?
Stochastic master equations driven by Wiener processes valid
for classical (coherent) input signals of amplitude u (see, e.g.,
the (S, L, H)-theory of quantum networks, J. Gough and M.
James, IEEE Trans. AC 2009); modelling issues for quantum
input signals such as |u) + |-u).

» The curse of dimensionality: composite quantum systems rely
on tensor products whereas composite classical systems rely on
Cartesian products . ...
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