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Quantum feedback: the back-action of the measurement.

A typical stabilizing feedback-loop for a classical system

systemcontroller

w

Two kinds of stabilizing feedbacks for quantum systems

1. Measurement-based feedback: controller is classical;
measurement back-action on the system S is stochastic
(collapse of the wave-packet); the measured output y is a
classical signal; the control input u is a classical variable
appearing in some controlled Schrödinger equation; u(t)
depends on the past measurements y(τ), τ ≤ t .

2. Coherent/autonomous feedback and reservoir engineering: the
system S is coupled to the controller, another quantum
system; the composite system, HS⊗Hcontroller , is an
open-quantum system relaxing to some target (separable) state.
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Controlling quantum degrees of freedom

Several applications:
I Nuclear Magnetic Resonance (NMR) applications;
I Quantum chemical synthesis;
I High resolution measurement devices (e.g. atomic/optic clocks);
I Quantum information processing: quantum computation and

quantum communication.
Physics Nobel prize 2012:

         Serge Haroche          David J. Wineland 
Nobel prize: ground-breaking experimental methods that enable measuring

and manipulation of individual quantum systems.
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Outline

The LKB photon box
First experimental realization of a quantum-state feedback (2011)
Why density operator ρ instead of wave function |ψ〉
Stabilization of "Schrödinger cats" by reservoir engineering

Model structure of open quantum systems

Conclusion: some open issues
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The first experimental realization of a quantum state feedback

The photon box of the Laboratoire Kastler-Brossel (LKB):
group of S.Haroche (Nobel Prize 2012), J.M.Raimond and M. Brune.

u y

1

Stabilization of a quantum state with exactly n = 0, 1, 2, 3, . . . photon(s).
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.

Theory: I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.
1Courtesy of Igor Dotsenko. Sampling period 80 µs. 5 / 33



Three quantum features emphasized by the LKB photon box2

1. Schrödinger: wave funct. |ψ〉 ∈ H or density op. ρ ∼ |ψ〉〈ψ|
d
dt
|ψ〉 = − i

~H|ψ〉, d
dt
ρ = − i

~ [H, ρ], H = H0 + uH1

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of observable O with spectral decomp.

∑
µ λµPµ:

I measurement outcome µ with proba.
Pµ = 〈ψ|Pµ|ψ〉 = Tr (ρPµ) depending on |ψ〉, ρ just before
the measurement

I measurement back-action if outcome µ = y :

|ψ〉 7→ |ψ〉+ =
Py |ψ〉√
〈ψ|Py |ψ〉

, ρ 7→ ρ+ =
PyρPy

Tr (ρPy )

3. Tensor product for the description of composite systems (S,M):
I Hilbert space H = HS ⊗HM
I Hamiltonian H = HS ⊗ IM + H int + IS ⊗ HM
I observable on sub-system M only: O = IS ⊗OM .

2S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.
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Composite system built with an harmonic oscillator and a qubit.

I System S corresponds to a quantized harmonic oscillator:

HS =

{ ∞∑
n=0

ψn|n〉
∣∣∣∣ (ψn)∞n=0 ∈ l2(C)

}
,

where |n〉 represents the Fock state associated to exactly n
photons inside the cavity

I Meter M is a qu-bit, a 2-level system (idem 1/2 spin
system) : HM = C2, each atom admits two energy levels
and is described by a wave function cg |g〉+ ce|e〉 with
|cg |2 + |ce|2 = 1; atoms leaving B are all in state |g〉

I State of the full system |Ψ〉 ∈ HS ⊗HM :

|Ψ〉 =
+∞∑
n=0

Ψng |n〉 ⊗ |g〉+ Ψne|n〉 ⊗ |e〉, Ψne,Ψng ∈ C.

Ortho-normal basis: (|n〉 ⊗ |g〉, |n〉 ⊗ |e〉)n∈N.
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S: quantum harmonic oscillator (spring system)

I Hilbert space:
HS =

{∑
n≥0 ψn|n〉, (ψn)n≥0 ∈ l2(C)

}
≡ L2(R,C)

I Quantum state space:
D = {ρ ∈ L(HS), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

I Operators and commutations:
a|n〉 =

√
n |n-1〉, a†|n〉 =

√
n + 1|n + 1〉;

N = a†a, N |n〉 = n|n〉;
[a,a†] = I , af (N) = f (N + I)a;
Dα = eαa†−α†a.
a = X + iP = 1√

2

(
x + ∂

∂x

)
, [X ,P] = ıI/2.

I Hamiltonian: HS/~ = ωca†a + uc(a + a†).
(associated classical dynamics:
dx
dt = ωcp, dp

dt = −ωcx −
√

2uc).

I Classical pure state ≡ coherent state |α〉
α ∈ C : |α〉 =

∑
n≥0

(
e−|α|

2/2 αn
√

n!

)
|n〉; |α〉 ≡ 1

π1/4 eı
√

2x=αe−
(x−
√

2<α)2

2

a|α〉 = α|α〉, Dα|0〉 = |α〉.

|0

|1

|2

ωc

|n

ωc
uc

...
 ..

.
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M: 2-level system, i.e. a qubit (half-spin system)

I Hilbert space:
HM = C2 =

{
cg |g〉+ ce|e〉, cg , ce ∈ C

}
.

I Quantum state space:
D = {ρ ∈ L(HM), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

I Operators and commutations:
σ- = |g〉〈e|, σ+ = σ-

† = |e〉〈g|
σx = σ- + σ+ = |g〉〈e|+ |e〉〈g|;
σy = iσ- − iσ+ = i |g〉〈e| − i |e〉〈g|;
σz = σ+σ- − σ-σ+ = |e〉〈e| − |g〉〈g|;
σx

2 = I , σxσy = iσz , [σx ,σy ] = 2iσz , . . .

I Hamiltonian: HM/~ = ωqσz/2 + uqσx .

I Bloch sphere representation:
D =

{
1
2

(
I + xσx + yσy + zσz

) ∣∣ (x , y , z) ∈ R3, x2 + y2 + z2 ≤ 1
}

|g

|e
ωq

uq
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The Markov model (1)

C

B

D

R 1
R 2

B R 2

I When atom comes out B, |Ψ〉B of the full system is separable
|Ψ〉B = |ψ〉 ⊗ |g〉.

I Just before the measurement in D, the state is in general
entangled (not separable):

|Ψ〉R2 = USM
(
|ψ〉 ⊗ |g〉

)
=
(
Mg |ψ〉

)
⊗ |g〉+

(
Me|ψ〉

)
⊗ |e〉

where USM is a unitary transformation (Schrödinger propagator)
defining the linear measurement operators Mg and Me on HS.
Since USM is unitary, M†gMg + M†eMe = I .
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The Markov model (2)

C

B

D

R 1
R 2

H SM

The unitary propagator USM is derived from Jaynes-Cummings
Hamiltonian HSM in the interaction frame.
Two kind of qubit/cavity Halmitonians:
resonant, HSM/~ = i

(
Ω(vt)/2

) (
a† ⊗ σ- − a ⊗ σ+

)
,

dispersive, HSM/~ =
(
Ω2(vt)/(2δ)

)
N ⊗ σz ,

where Ω(x) = Ω0e−
x2

w2 , x = vt with v atom velocity, Ω0 vacuum Rabi
pulsation, w radial mode-width and where δ = ωq − ωc is the detuning
between qubit pulsation ωq and cavity pulsation ωc (|δ| � Ω0).
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The Markov model (3)

Just before D, the field/atom state is entangled:

Mg |ψ〉 ⊗ |g〉+ Me|ψ〉 ⊗ |e〉

Denote by µ ∈ {g,e} the measurement outcome in detector D: with
probability Pµ = 〈ψ|M†µMµ|ψ〉 we get µ. Just after the measurement
outcome µ = y , the state becomes separable:

|Ψ〉D = 1√
Py

(My |ψ〉)⊗ |y〉 =

(
My√

〈ψ|M†y My |ψ〉
|ψ〉
)
⊗ |y〉.

Markov process (density matrix formulation ρ ∼ |ψ〉〈ψ|)

ρ+ =


MgρM†g

Tr(MgρM†g )
, with probability Pg = Tr

(
MgρM†g

)
;

MeρM†e
Tr(MeρM†e )

, with probability Pe = Tr
(

MeρM†e
)

.

Kraus map: E (ρ+/ρ) = K (ρ) = MgρM†g + MeρM†e.
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A controlled Markov process (input u, hidden state ρ, output y )

Input u: classical amplitude of a coherent micro-wave pulse.
State ρ: the density operator of the photon(s) trapped in the cavity.
Output y : quantum projective measurement of the probe atom.
The ideal model reads

ρk+1 =



Duk Mgρk M†gD†uk

Tr
(

Mgρk M†g
) yk = g with probability Pg,k = Tr

(
Mgρk M†g

)
Duk Meρk M†eD†uk

Tr
(

Meρk M†e
) yk = e with probability Pe,k = Tr

(
Meρk M†e

)

I Displacement unitary operator (u ∈ R): Du = eua†−ua with
a = upper diag(

√
1,
√

2, . . .) the photon annihilation operator.

I Measurement Kraus operators in the linear dispersive case
Mg = cos

(
φ0N+φR

2

)
and Me = sin

(
φ0N+φR

2

)
: M†gMg + M†eMe = I

with N = a†a = diag(0,1,2, . . .) the photon number operator.
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u = 0: Quantum Non Demolition (QND) measurement of photons.

ρk+1 =



cos
(
φ0N+φR

2

)
ρk cos

(
φ0N+φR

2

)
Tr
(

cos2

(
φ0N+φR

2

)
ρk

) with prob. Tr
(

cos2
(
φ0N+φR

2

)
ρk

)

sin
(
φ0N+φR

2

)
ρk sin

(
φ0N+φR

2

)
Tr
(

sin2
(
φ0N+φR

2

)
ρk

) with prob. Tr
(

sin2
(
φ0N+φR

2

)
ρk

)
Steady state: any Fock state ρ = |n̄〉〈n̄| (n̄ ∈ N) is a steady-state (no
other steady state when (φR , φ0, π) are Q-independent)
Martingales: for any real function g, Vg(ρ) = Tr (g(N)ρ) is a
martingale:

E (Vg(ρk+1) / ρk
)

= Vg(ρk ).

Convergence to a Fock state when (φR , φ0, π) are Q-independent:
V (ρ) = − 1

2

∑
n〈n |ρ|n〉2 is a super-martingale with

E (V (ρk+1) / ρk ) = V (ρk )−Q(ρk )

where Q(ρ) ≥ 0 and Q(ρ) = 0 iff, ρ is a Fock state.
For a realization starting from ρ0, the probability to converge towards
the Fock state |n̄〉〈n̄| is equal to Tr (|n̄〉〈n̄|ρ0) = 〈n̄|ρ0|n̄〉. 14 / 33



Structure of the stabilizing quantum-state feedback scheme

With a sampling time of 80 µs, the controller is classical

I Goal: stabilization of the steady-state |n̄〉〈n̄| (controller set-point).

I At each time step k :

1. read yk the measurement outcome for probe atom k .
2. update the quantum state estimation ρk−1 to ρk from yk
3. compute uk as a function of ρk (state feedback).
4. apply the micro-wave pulse of amplitude uk .

Observer/controller exploiting the quantum separation principle3:

1. real-time state estimation based on asymptotic observer: here
quantum filtering techniques;

2. state feedback stabilization towards a stationary regime: here
control Lyapunov techniques constructed with open-loop
martingales Tr (g(N)ρ) and inversion of a Laplacian matrix.

3L. Bouten and R. van Handel: On the separation principle of quantum
control. In Quantum Stochastics and Information: Statistics, Filtering and
Control, V. P Belavkin and M. I. Guta (Eds.) World Scientific, 2008.
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Experimental closed-loop data

C. Sayrin et. al., Nature
477, 73-77, Sept. 2011.

Decoherence due to finite
photon life time around
70 ms)

Detection efficiency 40%
Detection error rate 10%
Delay 4 sampling periods

The quantum filter takes
into account cavity
decoherence, measure
imperfections and delays
(Bayes law).

Truncation to 9 photons

Stabilization around 3-photon state
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LKB photon-box: Markov process with detection errors (1)

I With pure state ρ = |ψ〉〈ψ|, we have

ρ+ = |ψ+〉〈ψ+| =
1

Tr
(

MµρM†µ
)MµρM†µ

when the atom collapses in µ = g,e with proba. Tr
(

MµρM†µ
)

.

I Detection error rates: P(y = e/µ = g) = ηg ∈ [0,1] the
probability of erroneous assignation to e when the atom
collapses in g; P(y = g/µ = e) = ηe ∈ [0,1] (given by the
contrast of the Ramsey fringes).

Bayes law: expectation ρ+ of |ψ+〉〈ψ+| knowing ρ and the imperfect
detection y .

ρ+ =


(1−ηg)MgρM†g+ηeMeρM†e

Tr((1−ηg)MgρM†g+ηeMeρM†e )
if y = g, prob. Tr

(
(1− ηg)MgρM†g + ηeMeρM†e

)
;

ηgMgρM†g+(1−ηe)MeρM†e
Tr(ηgMgρM†g+(1−ηe)MeρM†e )

if y = e, prob. Tr
(
ηgMgρM†g + (1− ηe)MeρM†e

)
.

ρ+ does not remain pure: the quantum state ρ+ becomes a mixed
state; |ψ+〉 becomes physically irrelevant (not numerically).
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LKB photon-box: Markov process with detection errors (2)

We get

ρ+ =


(1−ηg)MgρM†g+ηeMeρM†e

Tr((1−ηg)MgρM†g+ηeMeρM†e )
, with prob. Tr

(
(1− ηg)MgρM†g + ηeMeρM†e

)
;

ηgMgρM†g+(1−ηe)MeρM†e
Tr(ηgMgρM†g+(1−ηe)MeρM†e )

with prob. Tr
(
ηgMgρM†g + (1− ηe)MeρM†e

)
.

Key point:

Tr
(

(1− ηg)MgρM†g + ηeMeρM†e
)

and Tr
(
ηgMgρM†g + (1− ηe)MeρM†e

)
are the probabilities to detect y = g and e, knowing ρ.
Generalization by merging a Kraus map K (ρ) =

∑
µ MµρM†µ where∑

µ M†µMµ = I with a left stochastic matrix (ηµ′,µ):

ρ+ =

∑
µ ηy,µMµρM†µ

Tr
(∑

µ ηy,µMµρM†µ
) when we detect y = µ′.

The probability to detect y = µ′ knowing ρ is Tr
(∑

µ ηµ′,µMµρM†µ
)

.
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Photon-box quantum filter: 6× 21 left stochastic matrix (ηµ′,µ)

ρk+1 = 1
Tr(
∑
µ ηyk ,µMµρk M†µ)

(∑
µ ηyk ,µMµρk M†µ

)
where

I we have a total of m = 3× 7 = 21 Kraus operators Mµ. The
"jumps" are labeled by µ = (µa, µc) with
µa ∈ {no,g,e,gg,ge,eg,ee} labeling atom related jumps and
µc ∈ {o,+,−} cavity decoherence jumps.

I we have only m′ = 6 real detection possibilities
y = µ′ ∈ {no,g,e,gg,ge,ee} corresponding respectively to no
detection, a single detection in g, a single detection in e, a
double detection both in g, a double detection one in g and the
other in e, and a double detection both in e.

µ′ \ µ (no, µc ) (g, µc ) (e, µc ) (gg, µc ) (ee, µc ) (ge, µc ) (eg, µc )

no 1 1 − εd 1 − εd (1 − εd )
2 (1 − εd )

2 (1 − εd )
2

g 0 εd (1 − ηg ) εdηe 2εd (1 − εd )(1 − ηg ) 2εd (1 − εd )ηe εd (1 − εd )(1 − ηg + ηe)

e 0 εdηg εd (1 − ηe) 2εd (1 − εd )ηg 2εd (1 − εd )(1 − ηe) εd (1 − εd )(1 − ηe + ηg )

gg 0 0 0 ε2
d
(1 − ηg )

2 ε2
d
η2

e
ε2

d
ηe(1 − ηg )

ge 0 0 0 2ε2
d
ηg (1 − ηg ) 2ε2

d
ηe(1 − ηe) ε2

d
((1 − ηg )(1 − ηe) + ηgηe)

ee 0 0 0 ε2
d
η2

g
ε2

d
(1 − ηe)

2 ε2
d
ηg (1 − ηe)
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Wigner functions of some quantum states for an harmonic oscillator

Classical state of amplitude α ∈ C: |α〉 =
∑

n≥0

(
e−|α|

2/2 αn
√

n!

)
|n〉;

Phase-cat states: N
(
|α〉+ | − α〉

)
.

Wigner function W ρ associated ρ: W ρ : C 3 ξ → 2
π Tr

(
eiπND−ξρDξ

)

Re(ξ)

Im
(ξ

)

−0.6

−0.4

−0.2

0

0.2

0.4

0.6Fock state |n=0> Fock state |n=3> Coherent state |α=1.8>

Coherent state |-α> Statistical mixture of 
|-α> and |α> Cat state |-α>+|α>

-3
-3

0

0

3

3
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Stabilizing "Schrödinger cats"
(
|α∞〉+ i |-α∞〉

)
/
√

2. 4

Cavity mode (system)atom (controller)

R1
R2

Box of 
atoms

Aim: 
engineer atom-mode interaction,

to stabilize |-α  +|α

DC field: 
(controls atom frequency)

ENS experiment

Jaynes-Cumming Hamiltionian

H(t)/~ = ωca†a ⊗ IM + ωq(t)IS ⊗ σz/2 + iΩ(t)
(
a† ⊗ σ- − a ⊗ σ+

)
/2

with the open-loop control t 7→ ωq(t) combining dispersive ωq 6= ωc
and resonant ωq = ωc interactions.
Key issues: convergence of ρk+1 = K (ρk ) = Mgρk M†g + Meρk M†e

4A. Sarlette et al: Stabilization of Nonclassical States of the Radiation
Field in a Cavity by Reservoir Engineering. Physical Review Letters, Volume
107, Issue 1, 2011.
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Convergence of K iterates towards
(
|α∞〉+ i |-α∞〉

)
/
√

2

Iterations ρk+1 = K (ρk ) = Mgρk M†g + Meρk M†e in the Kerr frame

ρ = e−ihKerr
N ρKerreihKerr

N yields

ρKerr
k+1 = K Kerr(ρKerr

k ) = MKerr
g ρKerr

k (MKerr
g )† + MKerr

e ρKerr
k (MKerr

e )†.

with MKerr
g = cos( u

2 ) cos(θN/2) + sin( u
2 ) sin(θN/2)√

N
a† and

MKerr
e = sin( u

2 ) cos(θN+1/2)− cos( u
2 ) a sin(θN/2)√

N
.

Assume |u| ≤ π/2, θ0 = 0, θn ∈]0, π[ for n > 0 and limn 7→+∞ θn = π/2,
then (Zaki Leghtas, PhD thesis (2012))

I exists a unique common eigen-state |ψKerr〉 of MKerr
g and MKerr

e :
ρKerr
∞ = |ψKerr〉〈ψKerr| fixed point of K Kerr.

I if, moreover n 7→ θn is increasing, limk 7→+∞ ρKerr
k = ρKerr

∞ .

For well chosen experimental parameters, ρKerr
∞ ≈ |α∞〉〈α∞| and

hKerr
N ≈ πN2/2. Since e−i π2 N2 |α∞〉 = e−iπ/4

√
2

(
|α∞〉+ i |-α∞〉

)
:

lim
k 7→+∞

ρk = 1
2

(
|α∞〉+ i |-α∞〉

)(
〈α∞|+ i〈-α∞|

)
6= 1

2 |α∞〉〈α∞|+ 1
2 |-α∞〉〈-α∞|.
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Discrete-time models of open quantum systems

Four features:

1. Bayes law: P(µ′/µ) = P(µ/µ′)P(µ′) /
(∑

ν′ P(µ/ν′)P(ν′)
)
,

2. Schrödinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and dissipation
are induced by the measurement of observables with
degenerate spectra.

4. Tensor product for the description of composite systems.

V Discrete-time models: Markov processes of state ρ, (density op.):

ρk+1 =
∑m
µ=1 ηµ′,µMµρk M†µ

Tr(
∑m
µ=1 ηµ′,µMµρk M†µ)

, with proba. Pµ′(ρk ) =
∑m
µ=1 ηµ′,µ Tr

(
Mµρk M†µ

)
associated to Kraus maps (ensemble average, quantum channel)

E (ρk+1|ρk ) = K (ρk ) =
∑
µ

Mµρk M†µ with
∑
µ

M†µMµ = I

and left stochastic matrices (imperfections, decoherences) (ηµ′,µ).
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Continuous/discrete-time Stochastic Master Equation (SME)

Discrete-time models: Markov chains
ρk+1 =

∑m
µ=1 ηµ′,µMµρk M†µ

Tr(
∑m
µ=1 ηµ′,µMµρk M†µ)

, with proba. Pµ′(ρk ) =
∑m
µ=1 ηµ′,µ Tr

(
Mµρk M†µ

)
with ensemble averages corresponding to Kraus linear maps

E (ρk+1|ρk ) = K (ρk ) =
∑
µ

Mµρk M†µ with
∑
µ

M†µMµ = I

Continuous-time models: stochastic differential systems

dρt =

(
− i

~ [H, ρt ] +
∑
ν

LνρtL†ν −
1
2

(L†νLνρt + ρtL†νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL†ν − Tr

(
(Lν + L†ν)ρt

)
ρt

)
dWν,t

driven by Wiener processes dWν,t , with measurements yν,t ,
dyν,t =

√
ην Tr

(
(Lν + L†ν) ρt

)
dt + dWν,t , detection efficiencies

ην ∈ [0,1] and Lindblad-Kossakowski master equations (ην ≡ 0):

d
dt
ρ = − i

~ [H, ρ] +
∑
ν

LνρL†ν −
1
2

(L†νLνρ+ ρL†νLν)
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Continuous/discrete-time diffusive SME

With a single imperfect measurement
dyt =

√
η Tr

(
(L + L†) ρt

)
dt + dWt and detection efficiency η ∈ [0,1],

the quantum state ρt is usually mixed and obeys to

dρt =
(
− i

~ [H, ρt ] + LρtL† − 1
2

(L†Lρt + ρtL†L)
)

dt

+
√
η

(
Lρt + ρtL† − Tr

(
(L + L†)ρt

)
ρt

)
dWt

driven by the Wiener process dWt

With Itō rules, it can be written as the following "discrete-time" Markov
model

ρt+dt =
MdytρtM†dyt

+ (1− η)LρtL†dt

Tr
(

MdytρtM†dyt
+ (1− η)LρtL†dt

)
with Mdyt = I +

(
− i

~H − 1
2

(
L†L

))
dt +

√
ηdytL.
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Continuous/discrete-time jump SME

With Poisson process N(t), 〈dN(t)〉 =
(
θ + η Tr

(
VρtV †

) )
dt , and

detection imperfections modeled by θ ≥ 0 and η ∈ [0,1], the quantum
state ρt is usually mixed and obeys to

dρt =
(
−i[H, ρt ] + VρtV † − 1

2
(V †Vρt + ρtV †V )

)
dt

+

(
θρt + ηVρtV †

θ + η Tr (VρtV †)
− ρt

)(
dN(t)−

(
θ + η Tr

(
VρtV †

) )
dt
)

For dN(t) = 0 we have

ρt+dt =
M0ρtM

†
0 + (1− η)VρtV †dt

Tr
(

M0ρtM
†
0 + (1− η)VρtV †dt

)
with M0 = I −

(
iH + 1

2 V †V
)

dt .
For N(t + dt)− N(t) = 1 we have a similar transition rule

ρt+dt = •
Tr(•) where ρt is replaced by ρ̃t =

θρt + ηVρtV †

θ + η Tr (VρtV †)
.
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Continuous/discrete-time diffusive-jump SME

The quantum state ρt is usually mixed and obeys to

dρt =

(
−i[H, ρt ] + LρtL† −

1
2
(L†Lρt + ρtL†L) + VρtV † −

1
2
(V †Vρt + ρtV †V )

)
dt

+
√
η

(
Lρt + ρtL† − Tr

(
(L + L†)ρt

)
ρt

)
dWt

+

(
θρt + ηVρtV †

θ + η Tr (VρtV †)
− ρt

)(
dN(t)−

(
θ + η Tr

(
VρtV †

))
dt
)

For dN(t) = 0 we have

ρt+dt =
Mdyt ρtM†dyt

+ (1− η)LρtL†dt + (1− η)VρtV †dt

Tr
(

Mdyt ρtM†dyt
+ (1− η)LρtL†dt + (1− η)VρtV †dt

)
with Mdyt = I −

(
iH + 1

2 L†L + 1
2 V †V

)
dt +

√
ηdytL.

For N(t + dt) − N(t) = 1 we have a similar transition ρt+dt =
•

Tr(•) where ρt

is replaced by ρ̃t =
θρt + ηVρtV †

θ + η Tr (VρtV †)
.
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Continuous/discrete-time general diffusive-jump SME
The quantum state ρt is usually mixed and obeys to

dρt =

(
−i[H, ρt ] +

∑
ν

Lνρt L
†
ν −

1
2 (L
†
νLνρt + ρt L

†
νLν ) + Vµρt V

†
µ −

1
2 (V
†
µVµρt + ρt V

†
µVµ)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρt L

†
ν − Tr

(
(Lν + L†ν )ρt

)
ρt

)
dWν,t

+
∑
µ

 θµρt +
∑
µ′ ηµ,µ′Vµ′ρt V

†
µ′

θµ +
∑
µ′ ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) − ρt


dNµ(t)−

(
θµ +

∑
µ′
ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) )

dt


where ην ∈ [0, 1], θµ, ηµ,µ′ ≥ 0 with ηµ′ =

∑
µ ηµ,µ′ ≤ 1 are parameters modelling measurements

imperfections.
When ∀µ, dNµ(t) = 0, we have

ρt+dt =
Mdyt ρt M

†
dyt

+
∑
ν (1− ην )Lνρt L

†
νdt +

∑
µ(1− ηµ)Vµρt V

†
µdt

Tr
(

Mdyt ρt M
†
dyt

+
∑
ν (1− ην )Lνρt L

†
νdt +

∑
µ(1− ηµ)Vµρt V

†
µdt
)

with Mdyt = I −
(

iH + 1
2
∑
ν L†νLν + 1

2
∑
µ V†µVµ

)
dt +

∑
ν
√
ηνdyνt Lν and where

dyν,t =
√
ην Tr

(
(Lν + L†ν ) ρt

)
dt + dWν,t .

If, for some µ, Nµ(t + dt) − Nµ(t) = 1, we have a similar transition rule ρt+dt = •
Tr(•) but where ρt is replaced

by ρ̃t =
θµρt +

∑
µ′ ηµ,µ′Vµ′ρt V

†
µ′

θµ +
∑
µ′ ηµ,µ′ Tr

(
Vµ′ρt V

†
µ′
) .

Useful for positiveness-preserving numerical schemes
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Conclusion: some open issues

I Few available convergence results in the low rank case:
most of available results are for full rank density operators either
for Kraus maps (quantum channels)
ρk+1 = K (ρk ) =

∑
µ Mµρk M†µ, or for Lindblad-Kossakowski

master equations :
d
dt ρ = − i

~ [H, ρ] +
∑
ν LνρL†ν − 1

2 (L†νLνρ+ ρtL†νLν).

I Continuous-time models with quantum input signal ?
Stochastic master equations driven by Wiener processes valid
for classical (coherent) input signals of amplitude u (see, e.g.,
the (S,L,H)-theory of quantum networks, J. Gough and M.
James, IEEE Trans. AC 2009); modelling issues for quantum
input signals such as |u〉+ |-u〉.

I The curse of dimensionality: composite quantum systems rely
on tensor products whereas composite classical systems rely on
Cartesian products . . . .
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