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First and second "quantum revolution" 1

▶ Current technologies based on the �rst quantum revolution with
transistors and lasers: manipulation and control of a large number
of identical objects described by quantum statistics.

▶ Emerging quantum technologies based on the second quantum
revolution: manipulation and control of an individual object whose
temporal evolution follows the Schrodinger di�erential equation. .

1Dowling, J. & Milburn, G.: Quantum technology: the second quantum

revolution. Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 2003, 361, 1655-1674.
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Nobel Prize in Physics 2012 (second quantum revolution)

         Serge Haroche          David J. Wineland 
" This year's Nobel Prize in Physics honours the experimental inventions

and discoveries that have allowed the measurement and control of

individual quantum systems. They belong to two separate but related

technologies: ions in a harmonic trap and photons in a cavity"

From the Scienti�c Background on the Nobel Prize in Physics 2012 compiled by the
Class for Physics of the Royal Swedish Academy of Sciences, 9 October 2012.
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Quantum technologies

Entanglement and coherence, essential but fragile quantum resources for

▶ communications and cryptography: random generator, distribution
of encryption keys via a quantum channel of transmission by BB84
protocol 2 . . . .

▶ computation and simulation: factorization of large RSA numbers
and discrete logarithm (Digital Signature Standard) by polynomial
algorithms; combinatorial optimization and machine learning 3. . .

▶ metrology: clock, inertial sensor, gravimetry 4. . .

Major di�culty: how to design machines which exploit quantum
properties on a large scale, and e�ciently protect them from external
perturbations and noises (decoherence), which tend to suppress the
quantum advantage?

2https://www.idquantique.com/quantum-safe-security/overview/
3D-Wave, Rigetti, Google, IBM, Amazon WS, Pasqal, Alice&Bob, . . .
4Onera, Thales, https://www.muquans.com/
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Investigated technologies for quantum computation 5

© OBrien

Superconduc�ng
circuits

Photons

© S. Kuhr

Ultra-cold 
neutral/Rydberg 

atoms 

© Bla� & Wineland

Trapped ions

© Pe�a

Quantum dots

© IBM

Requirements:
• scalable modular architecture;
• control software from the very beginning.

5Courtesy of Walter Riess, IBM Research - Zurich.
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Issues underlying this talk

Quantum Error Correction (QEC) is based on an elementary discrete-time
feedback loop: a static-output feedback neglecting the �nite bandwidth of the
measurement and actuation processes.

▶ Current experiments: 1
100

to 1
1000

are typical error probabilities during
elementary gates (manipulations) involving few physical qubits.

▶ High-order error-correcting codes with an important overhead; more than
1000 physical qubits to encode a controllable logical qubit6.

▶ Today, no such controllable logical qubit has been built.

▶ Key issue: reduction by several magnitude orders such error rates, far
below the threshold required by actual QEC, to build a controllable
logical qubit encoded in a reasonable number of physical qubits and
protected by QEC.

Control engineering can play a crucial role to built a controllable logical qubit
protected by much more elaborated feedback schemes increasing precision
and stability.

6A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland (2012): Surface
codes: Towards practical large-scale quantum computation. Phys. Rev.
A,86(3):032324.
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The simplest classical error correction code

• Single bit error model: the bit b ∈ {0, 1} �ips with probability p < 1/2
during ∆t (for usual DRAM: p/∆t ≤ 10−14 s−1).
• Multi-bit error model: each bit bk ∈ {0, 1} �ips with probability
p < 1/2 during ∆t; no correlation between the bit �ips.
•Use redundancy to construct with several physical bits bk of �ip
probability p, a logical bit bL with a �ip probability pL < p.
• The simplest solution, the 3-bit code (sampling time ∆t):

t = 0: bL = [bbb] with b ∈ {0, 1}
t = ∆t: measure the three physical bits of bL = [b1b2b3]

(instantaneous) :

1. if all 3 bits coincide, nothing to do.
2. if one bit di�ers from the two other ones, �ip this bit

(instantaneous);

• Since the �ip probability laws of the physical bits are independent, the
probability that the logical bit bL (protected with the above error
correction code) �ips during ∆t is pL = 3p2 − 2p3 < p since p < 1/2.
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Dynamics of open quantum systems based on three quantum features 7

1. Schrödinger (ℏ = 1): wave funct. |ψ⟩ ∈ H, density op. ρ ∼ |ψ⟩⟨ψ|
d

dt
|ψ⟩ = −iH|ψ⟩, H = H0 + uH1 = H†,

d

dt
ρ = −i [H, ρ].

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of O = O† with spectral decomp.

∑
y λyPy :

▶ measurement outcome y with proba.
Py = ⟨ψ|Py |ψ⟩= Tr (ρPy ) depending on |ψ⟩, ρ just before the
measurement

▶ measurement back-action if outcome y :

|ψ⟩ 7→ |ψ⟩+ =
Py |ψ⟩√
⟨ψ|Py |ψ⟩

, ρ 7→ ρ+ =
PyρPy

Tr (ρPy )

3. Tensor product for the description of composite systems (S ,C ):

▶ Hilbert space H = Hs ⊗Hc

▶ Hamiltonian H = Hs ⊗ Ic + Hsc + Is ⊗ Hc

▶ observable on sub-system C only: O = Is ⊗ Oc .
7S. Haroche and J.M. Raimond (2006). Exploring the Quantum: Atoms,

Cavities and Photons. Oxford Graduate Texts.
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Qubit (2-level system, half-spin) 8

▶ Hilbert space with |0⟩ ≜ |e⟩ and |1⟩ ≜ |g⟩:
HM = C2 =

{
cg |g⟩+ ce |e⟩, cg , ce ∈ C

}
.

▶ Quantum state space:
D = {ρ ∈ L(HM), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

▶ Operators and commutations:
σ- = |g⟩⟨e|, σ+ = σ-

† = |e⟩⟨g |
X ≡ σx = σ- + σ+ = |g⟩⟨e|+ |e⟩⟨g |;
Y ≡ σy = iσ- − iσ+ = i |g⟩⟨e| − i |e⟩⟨g |;
Z ≡ σz = σ+σ- − σ-σ+ = |e⟩⟨e| − |g⟩⟨g |;
σx

2 = I, σxσy = iσz, [σx, σy] = 2iσz, . . .

▶ Hamiltonian: HM = ωqσz/2+ uqσx.

▶ Bloch sphere representation:

D =
{

1
2

(
I+ xσx + yσy + zσz

) ∣∣ (x , y , z) ∈ R3, x2 + y2 + z2 ≤ 1
}

|g

|e
ωq

uq

8 See S. M. Barnett, P.M. Radmore (2003): Methods in Theoretical
Quantum Optics. Oxford University Press.
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The 3-qubit bit-�ip code (Peter Shor (1995))10

• Local bit-�ip errors: each physical qubit |ψ⟩ = α|0⟩+ β|1⟩ becomes
X|ψ⟩ = α|1⟩+ β|0⟩ 9 with probability p < 1/2 during ∆t.
(for actual super-conducting qubit p/∆t > 103 s−1).
• t = 0: |ψL⟩ = α|0L⟩+ β|1L⟩ ∈ C2 ⊗ C2 ⊗ C2 ≡ C8 with |0L⟩ = |000⟩ and
|1L⟩ = |111⟩.
• t = ∆t: |ψL⟩ becomes with

1 �ip:

 α|100⟩+ β|011⟩
α|010⟩+ β|101⟩
α|001⟩+ β|110⟩

; 2 �ips:

 α|110⟩+ β|001⟩
α|101⟩+ β|010⟩
α|011⟩+ β|100⟩

; 3 �ips: α|111⟩+ β|000⟩.

• Key fact: 4 orthogonal planes Pc = span(|000⟩, |111⟩), P1 = span(|100⟩, |011⟩),
P2 = span(|010⟩, |101⟩) and P3 = span(|001⟩, |110⟩).
• Error syndromes: 3 commuting observables S1 = I⊗ Z⊗ Z, S2 = Z⊗ I⊗ Z and
S3 = Z⊗ Z⊗ I with spectrum {−1,+1} and outcomes (s1, s2, s3) ∈ {−1,+1}.

-1- s1 = s2 = s3: Pc ∋ |ψL⟩ =
{

α|000⟩+ β|111⟩ 0 �ip
β|000⟩+ α|111⟩ 3 �ips

; no correction

-2- s1 ̸= s2 = s3: P1 ∋ |ψL⟩ =
{

α|100⟩+ β|011⟩ 1 �ip
β|100⟩+ α|011⟩ 2 �ips

; (X⊗ I⊗ I)|ψL⟩ ∈ Pc .

-3- s2 ̸= s3 = s1: P2 ∋ |ψL⟩ =
{

α|010⟩+ β|101⟩ 1 �ip
β|010⟩+ α|101⟩ 2 �ips

; (I⊗ X⊗ I)|ψL⟩ ∈ Pc .

-4- s3 ̸= s1 = s2: P3 ∋ |ψL⟩ =
{

α|001⟩+ β|110⟩ 1 �ip
β|001⟩+ α|110⟩ 2 �ips

; (I⊗ I⊗ X)|ψL⟩ ∈ Pc .

9
X = |1⟩⟨0| + |0⟩⟨1| and Z = |0⟩⟨0| − |1⟩⟨1|.

10
M.A Nielsen, I.L. Chuang (2000): Quantum Computation and Quantum Information.Cambridge

University Press. 11 / 53



The 3-qubit phase-�ip code

• Local phase-�ip error: each physical qubit |ψ⟩ = α|0⟩+ β|1⟩ becomes
Z|ψ⟩ = α|0⟩ − β|1⟩ 11 with probability p < 1/2 during ∆t.
• Since X = HZH and Z = HXH (H2 = I), use the 3-qubit bit �ip code in the frame
de�ned by H:

|0⟩ 7→
|0⟩+ |1⟩

√
2

≜ |+⟩, |1⟩ 7→
|0⟩ − |1⟩

√
2

≜ |−⟩, X 7→ HXH = Z = |+⟩⟨+| + |−⟩⟨−|.

• t = +: |ψL⟩ = α|+L⟩ + β|−L⟩ with |+L⟩ = | + ++⟩ and |−L⟩ = | − −−⟩.
• t = ∆t: |ψL⟩ becomes with

1 �ip:

 α| − ++⟩ + β| + −−⟩
α| + −+⟩ + β| − +−⟩
α| + +−⟩ + β| − −+⟩

; 2 �ips:

 α| − −+⟩ + β| + +−⟩
α| − +−⟩ + β| + −+⟩
α| + −−⟩ + β| − ++⟩

; 3 �ips: α| − −−⟩ + β| + ++⟩.

• Key fact: 4 orthogonal planes Pc = span(| + ++⟩, | − −−⟩), P1 = span(| − ++⟩, | + −−⟩,
P2 = span(| + −+⟩, | − +−⟩) and P3 = span(| + +−⟩, | − −+⟩).
• Error syndromes: 3 commuting observables S1 = I⊗ X⊗ X, S2 = X⊗ I⊗ X and S3 = X⊗ X⊗ I with
spectrum {−1,+1} and outcomes (s1, s2, s3) ∈ {−1,+1}.

-1- s1 = s2 = s3: Pc ∋ |ψL⟩ =

{
α| + ++⟩ + β| − −−⟩ 0 �ip
β| + ++⟩ + α| − −−⟩ 3 �ips

; no correction

-2- s1 ̸= s2 = s3: P1 ∋ |ψL⟩ =

{
α| − ++⟩ + β| + −−⟩ 1 �ip
β| − ++⟩ + α| + −−⟩ 2 �ips

; (Z ⊗ I ⊗ I)|ψL⟩ ∈ Pc .

-3- s2 ̸= s3 = s1: P2 ∋ |ψL⟩ =

{
α| + −+⟩ + β| − +−⟩ 1 �ip
β| + −+⟩ + α| − +−⟩ 2 �ips

; (I ⊗ Z ⊗ I)|ψL⟩ ∈ Pc .

-4- s3 ̸= s1 = s2: P3 ∋ |ψL⟩ =

{
α| + +−⟩ + β| − −+⟩ 1 �ip
β| + +−⟩ + α| − −+⟩ 2 �ips

; (I ⊗ I ⊗ Z)|ψL⟩ ∈ Pc .

11
X = |1⟩⟨0| + |0⟩⟨1|, Z = |0⟩⟨0| − |1⟩⟨1| and H =

(
|0⟩+|1⟩√

2

)
⟨0| +

(
|0⟩−|1⟩√

2

)
⟨1|.
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The 9-qubit bit-�ip and phase-�ip code (Shor code (1995))

• Take the phase �ip code |+++⟩ and | − −−⟩. Replace each |+⟩ (resp. |−⟩) by
|000⟩+|111⟩√

2
(resp.

|000⟩−|111⟩√
2

).

New logical qubit |ψL⟩ = α|0L⟩+ β|1L⟩ ∈ C29 ≡ C512:

|0L⟩ =
(
|000⟩+|111⟩

)(
|000⟩+|111⟩

)(
|000⟩+|111⟩

)
2
√
2

, |1L⟩ =
(
|000⟩−|111⟩

)(
|000⟩−|111⟩

)(
|000⟩−|111⟩

)
2
√
2

• Local errors: each of the 9 physical qubits can have a bit-�ip X, a phase �ip Z or a
bit �ip followed by a phase �ip ZX = iY 12 with probability p during ∆t.
• Denote by Xk (resp. Yk and Zk ), the local operator X (resp. Y and Z) acting on
physical qubit no k ∈ {1, . . . , 9}. Denote by Pc = span(|0L⟩, |1L⟩) the code space.
One get a family of the 1+ 3× 9 = 28 orthogonal planes:

Pc ,
(
XkPc

)
k=1,...,9

,
(
YkPc

)
k=1,...,9

,
(
ZkPc

)
k=1,...,9

.

• One can always construct error syndromes to obtain, when there is only one error
among the 9 qubits during ∆t, the number k of the qubit and the error type it has
undergone (X, Y or Z). These 28 planes are then eigen-planes by the syndromes.
• If the physical qubit k is subject to any kind of local errors associated to arbitrary

operator Mk = g I+ aXk + bYk + cZk (g , a, b, c ∈ C), |ψL⟩ 7→ Mk |ψL⟩√
⟨ψL|M

†
k
Mk |ψL⟩

, the

syndrome measurements will project the corrupted logical qubit on one of the 4 planes
Pc , XkPc , YkPc or ZkPc . It is then simple by using either I, Xk , Yk or Zk , to recover
up to a global phase the original logical qubit |ψL⟩.

12
X = |1⟩⟨0| + |0⟩⟨1|, Z = |0⟩⟨0| − |1⟩⟨1| and Y = i|1⟩|0⟩ − i|0⟩|1⟩.
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QEC: 2D redundancy to correct bit-�ip and phase-�ip errors
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Practical open issues with usual QEC

• For a logical qubit relying on n physical qubits, the dimension of the
Hilbert has to be larger than 2(1+ 3n) to recover a single but arbitrary

qubit error: 2n ≥ 2(1+ 3n) imposing n ≥ 5 (H = C25 = C32)

• E�cient constructions of quantum error-correcting codes: stabilizer
codes, surface codes where the physical qubits are located on a
2D-lattice, topological codes, . . .

• Fault tolerant computations: computing on encoded quantum states;
fault-tolerant operations to avoid propagations of errors during encoding,
gates and measurement; concatenation and threshold theorem, . . .

• Actual experiments: 10−3 is the typical error probability during
elementary gates involving few physical qubits.

• High-order error-correcting codes with an important overhead; more

than 1000 physical qubits to encode a logical qubit 13 H ∼ C21000 .
13A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland (2012): Surface

codes: Towards practical large-scale quantum computation. Phys. Rev.
A,86(3):032324.
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Classical I/O dynamics based on Stochastic Master Equation (SME) 14

QUANTUM WORLD

decoherence
Hilbert space (dissipation) CLASSICAL WORLD

Continuous-time models: stochastic di�erential systems (Itō formulation)
density operator ρ (ρ† = ρ, ρ ≥ 0, Tr (ρ) = 1) as state (ℏ ≡ 1 here):

dρt =
(
− i [H0 + utH1, ρt ] +

∑
ν=d,m

LνρtL
†
ν −

1

2
(L†
νLνρt + ρtL

†
νLν)

)
dt

+
√
ηm

(
Lmρt + ρtL

†
m − Tr

(
(Lm + L†

m)ρt
)
ρt

)
dWt

driven by the Wiener process Wt , with measurement yt ,

dyt =
√
ηm Tr

(
(Lm + L†

m) ρt
)
dt + dWt detection e�ciencies ηm ∈ [0, 1].

Measurement backaction: dρ and dy share the same noises dW . Very
di�erent from the usual Kalman I/O state-space description.

14A. Barchielli, M. Gregoratti (2009): Quantum Trajectories and
Measurements in Continuous Time: the Di�usive Case. Springer Verlag.
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SME well adapted to super-conducting Josephson circuits

Classical model ( Cl
C+Cl

= ϵ≪ 1):

d

dt
Φ = 1

C
Q+ 2ϵu − ϵ2

√
ℓ
c
Φ∗
L

sin
(

1
Φ∗

Φ
)

d

dt
Q = −Φ∗

L
sin

(
1
Φ∗

Φ
)

with y = u − ϵ
√
ℓ
c
Φ∗
L

sin
(

1
Φ∗

Φ
)
.

Hs(Φ,Q) =
1
2C
Q2 − Φ2∗

L
cos

(
1
Φ∗

Φ
)
with nonlinearity (Φ∗ < (L/C)1/4):

▶ anharmonic spectrum: frequency transition between the ground and �rst
excited states larger than frequency transition between �rst and second
excited states, . . .

▶ qubit model based on restriction to these two slowest energy levels, |g⟩
and |e⟩, with pulsation ωq ∼ 1/

√
LC .

Two weak coupling regimes of the transmon qubit15:

▶ resonant, in/out wave pulsation ωq;

▶ o�-resonant, in/out wave pulsation ωq +∆ with |∆| ≪ ωq.
15J. Koch et al. (2007): Charge-insensitive qubit design derived from the

Cooper pair box. Phys. Rev. A, 76:042319.
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A key physical example with super-conducting Josephson circuits 16

Superconducting qubit
dispersively coupled
to a cavity traversed
by a microwave signal
(input/output theory).
The back-action on the
qubit state of a single
measurement of one
output �eld quadrature
y is described by a
simple SME for the qubit
density operator ρ, 2 × 2
Hermitian ≥ 0 matrix.

dρt =
(
− i

2
[ωqZ, ρt ] + γ(ZρZ− ρt)

)
dt

+
√
ηγ

(
Zρt + ρtZ− 2 Tr (Zρt) ρt

)
dWt

with yt given by dyt = 2
√
ηγ Tr (Zρt) dt + dWt where γ ≥ 0 is related to

the measurement strength and η ∈ [0, 1] is the detection e�ciency.

16M. Hatridge et al. (2013): Quantum Back-Action of an Individual
Variable-Strength Measurement. Science, 339, 178-181.
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Another formulation of di�usive SME 17

With a single imperfect measurement dyt =
√
η Tr

(
(L+ L†) ρt

)
dt + dWt and

detection e�ciency η ∈ [0, 1], the quantum state ρt obeys to

dρt =
(
−i [H0 + utH1, ρt ] + LρtL

† − 1

2
(L†Lρt + ρtL

†L)
)
dt

+
√
η

(
Lρt + ρtL

† − Tr
(
(L+ L†)ρt

)
ρt

)
dWt

driven by the Wiener process dWt

With Itō rules, it can be written as the following "discrete-time" Markov model

ρt+dt ≜ ρt + dρt =
Mut ,dytρtM

†
ut ,dyt

+ (1− η)LρtL
†dt

Tr
(
Mut ,dytρtM

†
ut ,dyt

+ (1− η)LρtL†dt
)

with Mut ,dyt = I−
(
i(H0 + utH1) + 1

2

(
L†L

))
dt +

√
ηLdyt .

17PR (2014): Models and Feedback Stabilization of Open Quantum Systems. Proc.
of Int. Congress of Mathematicians, vol. IV, pp 921�946, Seoul.
(http://arxiv.org/abs/1407.7810).
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Key characteristics of quantum SME (1)

Measured output map dyt =
√
η Tr

(
(L+ L†) ρt

)
dt + dWt and

measurement backaction described by

ρt+dt ≜ ρt + dρt =
Mut ,dytρtM

†
ut ,dyt

+ (1− η)LρtL
†dt

Tr
(
Mut ,dytρtM

†
ut ,dyt

+ (1− η)LρtL†dt
)

▶ if ρ0 density operator, then, for all t > 0, ρt remains a density

operator

The dynamics preserve the cone of non-negative Hermitian
operators.

▶ Positivity and trace preserving numerical scheme for quantum

Monte-Carlo simulations.

▶ When η = 1, rank(ρt) ≤ rank(ρ0) for all t ≥ 0. In particular if ρ0 is
a rank one projector, then ρt remains a rank one projector (pure
state).
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Key characteristics of quantum SME (2)

dρt =
(
−i [H0 + uH1, ρt ] + LρtL

† − 1

2
(L†Lρt + ρtL

†L)
)
dt

+
√
η

(
Lρt + ρtL

† − Tr
(
(L+ L†)ρt

)
ρt

)
dWt

with measured output map dyt =
√
η Tr

(
(L+ L†) ρt

)
dt + dWt

▶ Invariance of the SME structure under unitary transformations.
A time-varying change of frame ρ̃ = U†

t ρUt with Ut unitary.
The new density operator ρ̃ obeys to a similar SME where
H̃0 + uH̃1 = U†

t (H0 + uH0)Ut + iU†
t

(
d
dt
Ut

)
and L̃ = U†

t LUt .

▶ Ensemble average. "L1-contraction" of Lindblad dynamics

d

dt
ρ = −i [H0 + uH1, ρt ] + LρtL

† − 1

2
(L†Lρt + ρtL

†L)

generating a contraction semi-group for many distances (nuclear
distance18, Hilbert metric on the cone of non negative operators19).

▶ If the non-negative Hermitian operator A satis�es the operator inequality

i [H0 + uH1,A] + L†AL− 1

2
(L†LA+ AL†L) ≤ 0

then V (ρ) = Tr (Aρ) is a super-martingale (Lyapunov function).
18

D.Petz (1996). Monotone metrics on matrix spaces. Linear Algebra and its Applications, 244,
81-96.

19
R. Sepulchre, A. Sarlette, PR (2010). Consensus in non-commutative spaces. IEEE-CDC.
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Measurement-based feedback

QUANTUM WORLD

CLASSICAL WORLD

classical 
controller 

decoherenceclassical
input

classical
output

quantum measurement

classical
reference

SME

▶ P-controller (Markovian feedback20) for ut dt = k dyt , the ensemble
average closed-loop dynamics of ρ remains governed by a linear Lindblad
master equation.

▶ PID controller: no Lindblad master equation in closed-loop for dynamics
output feedback

▶ Nonlinear hidden-state stochastic systems: Lyapunov state-feedback21;
many open issues on convergence rates, delays, robustness, . . .

▶ Short sampling times limit feedback complexity
20

H. Wiseman, G. Milburn (2009). Quantum Measurement and Control. Cambridge University Press.
21

See e.g.: C. Ahn et. al (2002): Continuous quantum error correction via quantum feedback
control. Phys. Rev. A 65;
M. Mirrahimi, R. Handel (2007): Stabilizing feedback controls for quantum systems. SIAM Journal on
Control and Optimization, 46(2), 445-467;
G. Cardona, A. Sarlette, PR (2019): Continuous-time quantum error correction with noise-assisted
quantum feedback. IFAC Mechatronics & Nolcos Conf.
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First MIMO measurement-based feedback for a superconducting qubit 22

FM

Rabi

b)

~
~

FM

~
~

~

Rabi

JPC

outin

Drift

,
a)

c)

3 inputs

2 outputs

22P. Campagne-Ibarcq, . . . , PR, B. Huard (2016): Using Spontaneous
Emission of a Qubit as a Resource for Feedback Control. Phys. Rev. Lett.
117(6).
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Coherent (autonomous) feedback (dissipation engineering)

Quantum analogue of Watt speed governor: a dissipative mechanical
system controls another mechanical system 23

QUANTUM WORLD

CLASSICAL WORLD

Hilbert space 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

quantum
interaction

Optical pumping (Kastler 1950), coherent
population trapping (Arimondo 1996)

Dissipation engineering, autonomous
feedback: (Zoller, Cirac, Wolf, Verstraete,
Devoret, Schoelkopf, Siddiqi, Martinis,
Raimond, Brune,. . . , Lloyd, Viola, Ticozzi,
Leghtas, Mirrahimi, Sarlette, PR, ...)

(S,L,H) theory and linear quantum
systems: quantum feedback networks
based on stochastic Schrödinger equation,
Heisenberg picture (Gardiner, Yurke,
Mabuchi, Genoni, Sera�ni, Milburn,
Wiseman, Doherty, . . . , Gough, James,
Petersen, Nurdin, Yamamoto, Zhang,
Dong, . . . )

Stability analysis: Kraus maps and Lindblad propagators are always
contractions (non commutative di�usion and consensus).

23J.C. Maxwell (1868): On governors. Proc. of the Royal Society, No.100.
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Coherent feedback involves tensor products and many time-scales

The closed-loop Lindblad master equation on H = Hs ⊗Hc :

d

dt
ρ = −i

[
Hs ⊗ Ic + Is ⊗ Hc + Hsc , ρ

]
+

∑
ν

DLs,ν⊗Ic (ρ) +
∑
ν′

DIs⊗Lc,ν′ (ρ)

with DL(ρ) = LρL† − 1
2

(
L†Lρ+ ρL†L

)
and operators made of tensor products.

• Consider a convex subset Ds of steady-states for original system S : each
density operator ρs on Hs belonging to Ds satisfy i [Hs , ρs ] =

∑
ν DLs,ν (ρs).

• Designing a realistic quantum controller C (Hc , Lc,ν′) and coupling
Hamiltonian Hsc stabilizing Ds is non trivial. Realistic means in particular
relying on physical time-scales and constraints:

▶ Fastest time-scales attached to Hs and Hc (Bohr frequencies) and
averaging approximations: ∥Hs∥, ∥Hc∥ ≫ ∥Hsc∥,

▶ High-quality oscillations: ∥Hs∥ ≫ ∥L†
s,νLs,ν∥ and ∥Hc∥ ≫ ∥L†

c,ν′Lc,ν′∥.
▶ Decoherence rates of S much slower than those of C :

∥L†
s,νLs,ν∥ ≪ ∥L†

c,ν′Lc,ν′∥: model reduction by quasi-static
approximations (adiabatic elimination, singular perturbations).
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QEC: 2D redundancy to correct bit-�ip and phase-�ip errors
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 APPROACH: HARDWARE SHORTCUTS TO QEC 
Idea 1: Hardware‐efficient delocalization: bosonic codes

• Infinite dimensinal Hilbert space of a single quantum harmonic oscillator to encode information non‐locally.

GKP code
Cat code (Quantic & Yale)



Mirrahimi et al., New Journal of Physics, 2014.

 APPROACH: HARDWARE SHORTCUTS TO QEC
Idea 2: Autonomous error correction through control by dissipativity

• Engineer nonlinear dissipative mechanisms that stabilize the manifold of quantum states where the

information is encoded.



Quantum harmonic oscillator (spring system) 8

▶ Hilbert space:

HS =
{∑

n≥0 ψn|n⟩, (ψn)n≥0 ∈ l2(C)
}

≡ L2(R,C)

▶ Quantum state space:
D = {ρ ∈ L(HS ), ρ

† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

▶ Operators and commutations:
a|n⟩ =

√
n |n-1⟩, a†|n⟩ =

√
n + 1|n + 1⟩;

N = a†a, N|n⟩ = n|n⟩;
[a, a†] = I, af (N) = f (N+ I)a;

Dα = eαa
†−α†a.

a = Q+iP√
2

= 1√
2

(
q + ∂

∂q

)
, [Q,P] = ıI.

▶ Hamiltonian: HS = ωca†a+ uc(a+ a†).

(associated classical dynamics: dq
dt

= ωcp,
dp
dt

= −ωcq − uc ).

▶ Classical pure state ≡ coherent state |α⟩

α ∈ C : |α⟩ =
∑

n≥0

(
e−|α|2/2 αn

√
n!

)
|n⟩; |α⟩ ≡ 1

π1/4
eı

√
2qℑαe−

(q−
√
2ℜα)2

2

a|α⟩ = α|α⟩, Dα|0⟩ = |α⟩.

▶ Wigner function of a density operator ρ:
C ∋ α = q+ip√

2
7→ W ρ(q, p) = Tr

(
e iπN Dα ρ D−α

)

|0

|1

|2

ωc

|n

ωc
uc

...
 ..

.
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Wigner function24 of |0L⟩ ≜ | −
√
2π⟩

24For ψ ∈ L2(R,C): W |ψ⟩⟨ψ|(q, p) = 1
π

∫ +∞
−∞ ψ∗(q − u

2

)
ψ
(
q + u

2

)
e−2ipudu.
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Wigner function25 of |1L⟩ ≜ |
√
2π⟩

25For ψ ∈ L2(R,C): W |ψ⟩⟨ψ|(q, p) = 1
π

∫ +∞
−∞ ψ∗(q − u

2

)
ψ
(
q + u

2

)
e−2ipudu.
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Wigner function26 of |+L⟩ = |−
√
2π⟩+|

√
2π⟩√

2
("Schrödinger phase cat")

26For ψ ∈ L2(R,C): W |ψ⟩⟨ψ|(q, p) = 1
π

∫ +∞
−∞ ψ∗(q − u

2

)
ψ
(
q + u

2

)
e−2ipudu.
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Wigner function27 of |−L⟩ = |−
√
2π⟩−|

√
2π⟩√

2
("Schrödinger phase cat")

27For ψ ∈ L2(R,C): W |ψ⟩⟨ψ|(q, p) = 1
π

∫ +∞
−∞ ψ∗(q − u

2

)
ψ
(
q + u

2

)
e−2ipudu.
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Driven damped oscillator
coupled to a pendulum. 

Courtesy of Raphaël Lescanne

MAIN IDEA IN A CLASSICAL PICTURE



There are 2 steady states in 
which we can encode 
information

0 1

Courtesy of Raphaël Lescanne

A BI‐STABLE SYSTEM



Stabilization regardless of the state

0 1

Neither the drive nor the dissipation
can distinguish between 0 and 1

Courtesy of Raphaël Lescanne

Important to preserve
quantum coherence

MAIN IDEA IN A CLASSICAL PICTURE



Super-conducting circuit stabilizing a cat-qubit 28

28R. Lescanne, ..., M. Mirrahimi, M. and Z. Leghtas: Exponential
suppression of bit-�ips in a qubit encoded in an oscillator. 2020, Nat. Phys. ,
Vol. 16, p. 509-513.
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March 2022 experimental results (collaboration with startup Alice&Bob)

X 100 000
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Classical analysis of the circuit stabilizing a cat-qubit(1)

Classical Hamiltonian of two harmonic oscillators of pulsations ωa ̸= ωb

H(qa, pa, qb, pb, t) =
ωa
2
(q2a+p2a )+

ωb
2
(q2b+p2b )+2g cos

(√
2ϕaqa+

√
2ϕbqb+(2ωa−ωb)t

)
including oscillatory non-linear coupling (|g | ≪ ωa, ωb) and parameters
1 ≫ ϕaϕb > 0. Dynamical Hamilton equations

d

dt
qa = ωapa,

d

dt
pa = −ωaqa + 2ig

√
2ϕa sin

(√
2ϕaqa +

√
2ϕbqb + (2ωa − ωb)t

)
d

dt
qb = ωbpb,

d

dt
pb = −ωbqb − κbpb + 2ig

√
2ϕb sin

(√
2ϕaqa +

√
2ϕbqb + (2ωa − ωb)t

)
+ v cosωbt + w sinωbt

including weak damping rate 0 < κb ≪ ωb and resonant drive |v |, |w | ≪ ωb.
With complex variable za = (qa + ipa)/

√
2 and zb = (qb + ipb)/

√
2 one gets

d

dt
za = −iωaza + 2igϕa sin

(
ϕa(za + z∗a ) + ϕb(zb + z∗b ) + (2ωa − ωb)t

)
d

dt
zb = −iωbzb − κb

2
(zb − z∗b ) + 2igϕb sin

(
ϕa(za + z∗a ) + ϕb(zb + z∗b ) + (2ωa − ωb)t

)
+ ue−iωbt − u∗e iωbt

with (w + iv)/2
√
2 = u ∈ C.
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Classical analysis of the circuit stabilizing a cat-qubit (2)

d

dt
za = −iωaza + 2igϕa sin

(
ϕa(za + z∗a ) + ϕb(zb + z∗b ) + (2ωa − ωb)t

)
d

dt
zb = −iωbzb − κb

2
(zb − z∗b ) + 2igϕb sin

(
ϕa(za + z∗a ) + ϕb(zb + z∗b ) + (2ωa − ωb)t

)
+ ue−iωbt − u∗e iωbt

The time-varying change of variables za = z̄ae−iωat and zb = z̄be
−iωbt yields to

d

dt
z̄a = 2igϕae

iωat sin
(
ϕa(z̄ae

−iωat + z̄∗a e
+iωat) + ϕb(z̄be

−iωbt + z̄∗b e
+iωbt) + (2ωa − ωb)t

)
d

dt
z̄b = −κb

2
(z̄b − z̄∗b e

2iωbt) + u − u∗e2iωbt

+ 2igϕbe
iωbt sin

(
ϕa(z̄ae

−iωat + z̄∗a e
+iωat) + ϕb(z̄be

−iωbt + z̄∗b e
+iωbt) + (2ωa − ωb)t

)
.

First order averaging based on asymptotic expansion up-to order 3 versus ϕa, ϕb ≪ 1

(weak non-linearity) gives with g2 =
gϕ2aϕb

2

d

dt
z̄a = 2g2z̄

∗
a z̄b,

d

dt
z̄b = u − g2z̄

2
a − κb

2
z̄b.

2 stable steady-states z̄a, z̄b) = (±α, 0) with α2 = u/g2, an unstable one (0, 2u/κb).
When κb ≫ |g2|, z̄b relaxes rapidly to u − g2z̄2a (singular perturbations). The slow
evolution of z̄a obeys to

d

dt
z̄a = − 4g2

2

κb
z̄∗a (z̄

2
a − α2)

41 / 53



Quantum analysis of the circuit stabilizing a cat-qubit (1)

Quantum Hamiltonian: two commuting annihilation operators a = (qa +
∂
∂pa

)/
√
2 and

b = (qb + ∂
∂pb

)/
√
2 with [a, a†] = I, [b, b†] = I

H1(t) = ωaa
†a+ ωbb

†b+ ge i(2ωa−ωb)t exp
(
iϕa(a+ a†) + iϕb(b+ b†)

)
+ ge−i(2ωa−ωb)t exp

(
− iϕa(a+ a†) + iϕb(b+ b†)

)
.

Change of frame for d
dt
ρ1 = −i [H1(t), ρ1]: new density operator

ρ2 = exp
(
iωata

†a+ iωbtb
†b

)
ρ1 exp

(
−iωata

†a− iωbtb
†b

)
is governed by d

dt
ρ2 = −i [H2(t), ρ2] with

H2(t) = ge i(2ωa−ωb)t exp
(
iϕa(e

−iωata+ e iωata†) + iϕb(e
−iωbtb+ e iωbtb†)

)
+ h.c.

Expansion up-to order 3 versus ϕa, ϕb ≪ 1:

H2(t) = ge i(2ωa−ωb )t
(
I+iϕa

(
e−iωata+e iωata

†)−ϕ2a
2

(
e−iωata+e iωata

†)2− iϕ3a
3

(
e−iωata+e iωata

†)3)
. . .(

I + iϕb
(
e−iωbtb + e iωbtb

†) −
ϕ2b
2

(
e−iωbtb + e iωbtb

†)2 −
iϕ3b
6

(
e−iωbtb + e iωbtb

†)3) + h.c.
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Quantum analysis of the circuit stabilizing a cat-qubit (2)

H2(t) = ge i(2ωa−ωb)t . . .(
I+ iϕa

(
e−iωata+ e iωata†

)
− ϕ2a

2

(
e−iωata+ e iωata†

)2 − iϕ3a
3

(
e−iωata+ e iωata†

)3)
. . .(

I+ iϕb
(
e−iωbtb+ e iωbtb†

)
− ϕ2b

2

(
e−iωbtb+ e iωbtb†

)2 − iϕ3b
6

(
e−iωbtb+ e iωbtb†

)3)
+ h.c.

Only two secular terms (i.e. non-oscillatory): −ig2a
2b† and its

hermitian conjugate ig2
(
a†
)2
b where g2 = gϕ2aϕb/2. Justify the following

approximate time-invariant Hamiltonian for H2 (rotating wave

approximation): :

H2(t) ≈ −ig2a
2b† + ig2

(
a†
)2
b.

Finer approximations via high-order averaging techniques.
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Quantum analysis of the circuit stabilizing a cat-qubit (3)

Cat-qubit stored in oscillator a, controller based on a damped oscillator b
stabilizing against one decoherence channel (bit-�p):

d

dt
ρ = −

[
g2a

2b†−g2
(
a†
)2
b , ρ

]
+
[
ub†−u∗b , ρ

]
+κb

(
bρb†−(b†bρ+ρb†b)/2

)
= −

[
g2
(
a2−α2)b†−g∗

2

(
(a†)2− (α)2

)
b , ρ

]
+κb

(
bρb†− (b†bρ+ρb†b)/2

)
with α ∈ C such that α2 = u/g2, the drive amplitude u ∈ C applied to mode b
and 1/κb > 0 the life-time of photon in mode b.
Any density operators ρ̄ = ρ̄a ⊗ |0⟩⟨0|b is a steady-state as soon as the support
of ρ̄a belongs to the two dimensional vector space spanned by the
quasi-classical wave functions |α⟩ and |-α⟩ (range(ρ̄a) ⊂ span{|α⟩, |-α⟩})
(Schrödinger cat-qubit).
Usually κb ≫ |g2|, mode b relaxes rapidly to vaccuum |0⟩⟨0|b, can be
eliminated adiabatically (singular perturbations, second order corrections) to
provides the slow evolution of mode a 29

d

dt
ρa =

4|g2|2
κb

(
(a2−α2)ρa(a

2−α2)†−((a2−α2)†(a2−α2)ρa+ρa(a
2−α2)†(a2−α2))/2

)
.

29For a mathematical proof of convergence analysis in an adapted Banach space,
see : R. Azouit, A. Sarlette, PR: Well-posedness and convergence of the Lindblad
master equation for a quantum harmonic oscillator with multi-photon drive and
damping. 2016, ESAIM: COCV , Vol. 22, No. 4, p. 1353 -1369. 44 / 53



Wigner function of |
√
2π⟩

Bit-�ip and phase-�ip errors correspond to local di�usion on W ρ(q, p) :
| ±

√
2π⟩ robust versus local di�usion
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Wigner function of
(
|
√
2π⟩+ |-

√
2π⟩

)
/
√
2

Bit-�ip and phase-�ip errors correspond to local di�usion on W ρ(q, p) :(
|
√
2π⟩ ± |-

√
2π⟩

)
/
√
2 not robust versus di�usion
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Wigner function of the GKP �nite energy grid-state |0L⟩ 30

30|0L⟩ ≡ e−ϵq
2 ∑

k e
− (q−2k

√
π)2

ϵ with ϵ = 1
30
.
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Wigner function of the GKP �nite energy grid-state |1L⟩ 31

31|1L⟩ ≡ e−ϵq
2 ∑

k e
− (q−(2k+1)

√
π)2

ϵ with ϵ = 1
30
.
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Wigner function of the GKP�nite energy grid-state |+L⟩ 32

32|+L⟩ ≡ e−ϵq
2 ∑

k e
(q−k

√
π)2

ϵ ≡ e−ϵp
2 ∑

k e
(p−2k

√
π)2

ϵ .
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Wigner function of the GKP �nite energy grid-state |−L⟩ 33

33|−L⟩ ≡ e−ϵq
2 ∑

k (−1)ke−
(q−k

√
π)2

ϵ ≡ e−ϵp
2 ∑

k e
− (p−(2k+1)

√
π)2

ϵ .
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Quantum feedback engineering for robust quantum information processing

QUANTUM WORLD

CLASSICAL WORLD
Hilbert space 

classical 
controller 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

classical
input

classical
output

quantum measurement

classical
reference

quantum
interaction

To protect quantum information stored in system S (alternative to usual QEC):
▶ fast stabilization and protection mainly achieved by a quantum controller

(coherent feedback stabilizing decoherence-free sub-spaces);

▶ slow decoherence and perturbations mainly tackled by a classical controller
(measurement-based feedback "�nishing the job")

Underlying mathematical methods for high-precision dynamical modeling and
control based on stochastic master equations (SME):

▶ High-order averaging methods and geometric singular perturbations for coherent
feedback.

▶ Stochastic control Lyapunov methods for exponential stabilization via
measurement-based feedback.
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Quantic research group ENS/Inria/Mines/CNRS, March 2022
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