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PM machines: usual models
In the (a, 3) frame the dynamic equations read?:

2 (9) =3 (30) 1)

gt (/\Zs + C;ejnp9> = Us — RSZS

where

» * stands for complex-conjugation, y = v/—1 and np, is the
number of pairs of poles.

» 0 is the rotor mechanical angle, J and 7, are the inertia and
load torque, respectively.

> 15 = 1sq + Jusp (F€SP Us = Usq + JUsg) iS the stator current
(resp. voltage): complex quantities.

» A= (Lg + Lg)/2 with inductances Ly = Ly > 0 (no saliency
here).

» The stator flux is ¢s = \is + pe? with the constant ¢ > 0

___representing to the rotor flux due to permanent magnets.

2See, e.g., J. Chiasson: Modeling and High Performance Control of
Electric Machines, Wiley-IEEE Press, 2005.



PM machines: Euler-Lagrange setting®
Lagrangian: sum of kinetic and magnetic Lagrangian L¢ + Lpm:

J o A
Le= 59 , Lm= >
where 7 = ¢/) > 0 is the permanent magnetizing current.
Euler-Lagrange setting: with additional variable gs € C defined
by %qs = 15, take the Lagrangian £ = L; + L as a real

function of g = (6, Gsa, Gss) and § = (8, 1sa, 1s3):

= n02
15 + 2697

. J . A .
£(q,q) = 592 +5 ((zm +7¢08 Mpb)? + (155 + 78in np0)2>

Then the dynamics (3 real ODE) read:
a oLy _ oL _ _ .
at \ a0 00 — ~ 'L
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o <<9t'7m) = 9sa — Usa — Rstsa, o (3%@) T 9Gss Usg — Rsisp
3See, e.g., R. Ortega, A. Loria, P.J. Nicklasson, and H. Sira-Ramirez.

Passivity—Based Control of Euler—Lagrange Systems. Communications and
Control Engineering. Springer-Verlag, Berlin, 1998.




Euler-Lagrange equation with complex variables*
Two generalized coordinates g; and g» correspond to a point
g = g1 + Jq in the complex plane (3 = v/—1). The Lagrangian
L£(91, 92,41, ge) is a real function and the Euler-Lagrange
equations are

d(oLy_ocL o d oLy oL
dt \ 9g ogy dt \ 9 oq

Using the complex notation q
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Since 29L — 9L _ 0L oL

aq — g1 Jog> “ogqr — 8q1 +=78q2 we get

d ( oL oL ) oL oL
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at \ a4, +J8q2 aa, +Jaq2 that reads o ( >
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A usual method borrowed from quantum physics: see, e.g.,
C. Cohen-Tannoudiji, J. Dupont-Roc, and G. Grynberg. Photons and Atoms:
Introduction to Quantum Electrodynamics. Wiley, 1989.



PM machines: Lagrangian with complex stator currents

With %qs =15 (gs complex cyclic variables) and the Lagrangian
) *\ J N2 A - 1Np0 * =~—JNpb
[,(9,9,25,15)—59 +§<zs+zejp)(zs+ze p)

the usual equations

gt (Je) = n,S ((Azef"p‘))* zs)—q, gt (Aos + ze?”p")) — Us — Rats
read

d /oL oL d /oL

a(55) =5 2 (5g) ~ e
since Sz = 0 and g—é = 8%,



PM machines: structure of any dynamical models

More generally, the magnetic Lagrangian £, is a real value
function of 0, 15 and «} that is %—Z periodic versus 6. Thus any
Lagrangian Ly representing a 3-phases permanent magnet
machine admits the following form
J 2 *

Loy = 59 +Lm (07 s, zs)
Consequently, any model (with saliency, magnetic-saturation,
space-harmonics, ...) of permanent magnet machines admits
the following structure (J independent of 6 here):

dt (J9> “ o0 P dt (2 o

) = Us — Rsis

with ¢ = 2%§£7 as stator flux.



PM machines: saliency effects

With a positive magnetic Lagrangian of the form

Lm= % (Zs + 597”99) <z§ + Te‘]”f’9> —% ((’Lzejnpe)z + (zse‘”’ﬁﬂ)z)

where A = (Ly+ Lg)/2 and = (Lg — Lg)/2 (inductances
Ly > 0 and Ly > 0), we recover the usual model with saliency:

d

dt

((jt ()\zs + /\Ze]”pe—,uz;e%”pa) = Us — Rg1s.

(Jé) = npS ((Mz + Afe*ﬂ”ﬁe—msefzj”"g)ls) o



PM machines: magnetic-saturation and saliency effects
Inductances depend on the currents as, e.g.,

= A(Jus +7€7]) = A (\/(Zs +76070) (v + 569”’39)>

where 15 + 787%% stands for total magnetizing current. With

magnetic Lagrangien
2 2
g(@yw)+@¢ﬂw)>
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the dynamics read (A = A\ +
9 (08) = s (1 (13 + 7 ) — e 7)) —
CC;; ( (ZS + Ze]npe) N “ZZeZane) = Us — Rsts

Similarly x could also depend on |5 + 77|,



Induction machines: usual models
Dynamics with complex stator and rotor currents:

2 ()0 (i)

jt (LrZr + Lmzsefjnpe) = —Rn,
gt (Lszs + Lmz,e7”ﬂ’9> = Us — Rats
where

» 1 € C (resp. 15 € C) is the rotor (resp. stator) current;
us € C is the stator voltage

» Rs > 0and R, > 0 are stator and rotor resistances.

» Ls >0, L, >0and Ly, are the inductances satisfying
LsL, > L2 for physical reasons (positive magnetic
Lagrangien). They are constant here.

» the stator (resp. rotor) flux is ¢s = Lsts + Lmz,€7%Y (resp.
¢r = Lry + Lmzse_]npe)-



Induction machines: Lagrangian with complex currents
The Lagrangian of the usual model is

— J )2 Lm p np9 LfS

Em—Ee +? Zs+Lre] ?
where L =Ly + Ligsand Ly = Ly + Ly with Ly, > 0 and

0 < Ly, Lis < L. More generally, a physically consistent model

should be obtained with a Lagrangian of the form

J -
Ly = 592 + Lm(0,2r,17,1s,15)
where L, is the magnetic Lagrangien expressed with the rotor
angle and currents. It is %—Z periodic versus 6. Any physically

admissible model reads (J independent of 6)

2 |
+?r\1'r\2 + 2 fesl?

d /. _ OLm d _ d., _
at (J‘9> =50 TL, a(ﬁr = —R, EQZ)S = Us — Rgs,
where the rotor and stator fluxes are given by
QZ)I’_ZTﬁv ¢S_2 8Z§ .



Induction machines: magnetic-saturation
With positive inductances of the form

Lm:Lm<’Ls+7/r§np

9)7 Ls:Lm+Lfs’ Lr:Lm+Lfr

the magnetic Lagrangien remains positive

Lo (s + 176])
2

Ly Ls
+ ?rzrzf + ?stzs

2
Em = ‘Zs + Zre]npe

and the saturation model reads

d

dt
d

dt
ccr’ft (/\m (ls + zre”"’g) + /-fszs> = Us — Rsis

JO) = npS (Amuie %) — 1,
CORLE )

(Am (lr +1577 ) + Lfrlr) = —Rp,

|zs+zre

with Ay, = Ly + |L’ function of [us 4 1,€7%?|.



Induction machines: space-harmonics and magnetic-saturation.
Add contribution of space harmonics to magnetic Lagrangien:

Lm (‘ZS +Zrejnp9‘)

15 +1 (:‘Jn"g2
2 S r

Lg Lgs
+2 rr+ 22513

L
+ ?V (zszﬁ e 17wl 4 z’s‘zreﬂ”’””"@)

with L, > 0 a small parameter (|L,| < L) and o, = +1
depending on arithmetic conditions®. The dynamical model is
changed as follows:

% (JG) = NS ((/\meﬂ"”e + Lyal,z/efjg”””pe) zﬁzs) — T

gl‘ (/\m (zr + 15870 ) + Loy + Lyzseﬂ"”””"e) = —Rn,
d
P (Am (2s + 1,670 ) + Lists + Luzreﬁ”””""e) = Us — Rsis

5See H.R. Fudeh and C.M. Ong: Modeling and analysis of induction
machines containing space harmonics. Part-l: modeling and transformation.
IEEE Transactions on Power Apparatus and Systems, 102:2608-2615; 1983.



Sensorless control of PM machines

Sensorless control: a load torque 7, constant but unknown,
control inputs us and measured outputs 25 ©

Physical models including saliency and magnetic saturation
associated to Lagrangian Ley = 462 + Lm (0,1s,1%),

d /N _ OLm d (. 0Lm\
E(JG)_ 0 b dt (2 6z§>_us_RsZS

can be always written in state-space form

d
&X = f(X,U), Y = h(X)

where X = (71, 0,0, R(1s), 3(1s)) with U = (R(us), S(Us)),
Y = (R(1s), S(1s)) and 7, = 0.

8For a nice exposure see J. Holtz: Sensorless control of induction motor
drives. Proc. of the IEEE, 90(8):1359—-1394, 2002.



Sensorless control around zero stator frequency
A stationary regime at zero stator frequency corresponds then
to a steady state (X, U, Y) satisfying f(X, U) = 0, Y = h(X).
For a PM machines we get

OLm
00

(9)255 7’2) —TL= Oa s = Z_S

to recover (0,15, ) from the stationary values us and 7s. This
implies severe observability difficulties:

» to any constant input and output us and 75 satisfying
Us = Rsrs correspond a one dimensional family of steady
states parameterized by the scalar variable ¢ with
= %m(¢76,75), 0=¢, 15=1Ts

» the linear tangent systems around such steady-states are
not observable;

The situation is similar for induction machines: including

space-harmonic and magnetic-saturation does not canceled
such lack of observability.



Concluding remarks

» Extensions to network of machines and generators
connected via long lines can also be developed with similar
variational principles and Euler-Lagrange equations with
complex currents and voltages (ODE or PDE).

» Observability issues at zero stator frequency: a strong
motivation for theoretical works on the following specific
stabilization problem involving an unknown constant
parameter p: take %x = f(x,u,p), y = h(x) a nonlinear
system where {(x,p) | f(x,u,p) =0,h(x) =y} isa
smooth curve; take any (X, p) on this equilibrium curve;
under which conditions is it possible to construct (without
knowing p) a (dynamic) output feedback stabilizing x
around X in a robust way.
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