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Outline :

Lagrangian dynamics £ = 3g;;(¢)d'¢/ — U(q) with position mea-
sures y = q. Asymptotic estimation of ¢ = v, independent of the
coordinates chosen on the configuration space gq.

1. The Euclidian case: ¢ = —grad,U.
2. The non Euclidian case: V;q = —grad,U.

3. Observer convergence : contraction tools.



T he Euclidian case

LLagrangian: £ = %(12 — U(q) where ¢' are Euclidian coordinates:

d(oc\_oc . ._ U
dt \ogt]  9gt’ == oqt
Nonlinear observer via input injection:

L p . N U p .

¢ =7 —-a(q"—q¢"), V=-——(q) -8 —7q").

0q*

Error dynamics, § = ¢ — ¢*, 9* = ©* — v* (stable for a, 3 > 0):
i =7 —af, U =-B7"

What is going on when the q’i’s are not Euclidian coordinates?
The same system but in another frame ¢ = ¢(Q):

L= 2g(@QQ - UG(Q) with (g;)) = D" D
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Configuration space and local coordinates.

The goal is to have a design method that is independent of the
coordinates chosen on the configuration space. This is not the
case if we use classical design with observers of the form

z = f(z) + k(h(Z) —y)

for nonlinear system z = f(x), y = h(x).



Intrinsic interpretation of the dynamics

The positive definite matrix (g;;(¢q)) define a scalar product on
the tangent space at g to the configuration manifold (Riemannian
manifold): we can measure distances and transport vectors along
geodesics.



Intrinsic formulation
. » y . . U y .
¢ =70 —-a(qd —q"), V= _a—qi(q) - 6(q"—¢").

The components cji—qi are related to the gradient of the geodesic
distance between the point ¢ and gq:

qd —q = grad;F(q,q)
where F' is the half square of the geodesic distance between ¢
and q.

The injection term can be done via parallel transport: grad,U(q)
iIs a tangent vector at q. To have a tangent vector at ¢, we take

7 14—g(9radaU(q)).

It remains the term %* that corresponds in fact the covariant
derivative of v along the curve followed by g: Vaﬁ when you

gather ¥ with " gyroscopic like terms” .



Intrinsic formulation

é\ — 6_agraqu(q7 C,/I\)a VE]\’I/} — _77/q—>§(graqu(Q))_Bgraqu(qa q)
For the metric g;; we have in local coordinates:
(VY =0+ T (@§",  gradU(q) = ¢”8,,U,

and the parallel transport along the geodesic joining q to q is de-
fined by solving a linear differential equation along this geodesic.

The Christoffel symbols I‘;'.k are given by

i lgiz ik 9gjt _ 99jik
Ik o 0ql ~ OqF O

where g% are the entries of (g;;)~ 1.



Invariant observer representation




A first order approximation

The intrinsic formulation

é\ — 6_agrad§F(Q7 E]\)v vc’]‘@ — _7'//(]—>Ej(graqu(Q))_Bgrad(’jF(Q7 q)

is not very useful in practice. But when q is close to ¢ we have
the following explicit approximation

¢ =0 -a(@-q)

0" = - @V — 0,U(q) — Ti()(0,U(@)) (G — ¢") =BG — ¢).
We know that when the metric is Euclidian, i.e., when exist local
coordinates such that g;; = 9,5, such observer is asymptotically
stable around any trajectories (q, q).



Summarize of the Euclidian case (dimg=1 and U = 0)

L= L= 39(q)q?

{ e

¢ .
|

v
O

qg=7v—a(g—q) g = v — agrad;F(q,q)
v=0-73(G—q) Vv = 0 — pgrad;F(q,q)
F(q,q) = 2(3— ) F(q,q) = 3dg(q,3)?

gradzF(q,q) = q—q



An example

g-coordinate

=7 —a(d—q)
0—-08(7—4q)
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U — a9 radAF(q, q)
0 — BgradzF(q,q)
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— B 7(n7F—1Inr)
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Convergence ?

When the metric (g;;) is Euclidian (flat space), we know that

é\ — ﬁ—agraqu(q, q\)a v(’j’z}\ — _7'//q—>c’j(graqu(Q))_ﬁgradEjF(q7q\)
IS convergent as soon as the gains a,8 > 0. It is not the case
when the metric is not flat, i.e., when the Riemann curvature
tensor R (order 4) is not identically zero (Gauss theorem): for

any tangent vector &, ¢ at ¢, R(&,¢) is a linear application on the
tangent space at ¢. In local coordinates, we have

{R(&, O} = Rlyeh¢tny?
where Rj.kl are the components of the curvature tensor:
8I‘;.k ol

T . gl TP __rt rp
gkl — dq dqk —I_rplrjk I_Pkrjl'
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Jacobi equation

Take a geodesic dynamics (no potential): V;g = 0. Denoted by
¢ the first variation of geodesic (£ corresponds to dq): it obeys
the Jacobi equation
D2¢
D6 R(4.€)d
2 (g,€)q
where the operator D/Dt = V. corresponds to the covariant

derivation along ¢t — ¢(t). Moreover £ — R(q,£)q is a symmetric
operator. Thus we can write formally

R(q,§)q = grad:W(¢), with W(g) = (R(q,£)q,8) /2.

Formally the quadratic form W is positive (positive curvature) &
oscillates and when it admits a negative part, ¢ diverges expo-
nentially (the geodesic flow is unstable).
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Jacobi equation (end)

Formally, the Jacobi equation

D2
D—tg = —grad:W(¢)

is stable when the quadratic form, the potential W is positive
(positive sectional curvature K ) and £ oscillates. When the
potential W admits a negative part, £ diverges exponentially (the
geodesic flow is unstable).

K>0

TN
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The convergent observer in the non Euclidian case

The locally convergent observer of the mechanical system
q="v
Vv = 5(q,1)
IS then
= v — a gradzF(q, q)
Ve =T, ,55(q,t) — B gradzF (g, q) + R(v,9radzF'(q, q))v

where we have added a curvature term to compensate the effect
of a non Euclidian metric.

) Q).
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The approximate observer in the non Euclidian case

Since
{gradzF}' =g —q' + O(||g — ql|*)
{T))qqwt = w' = Th(uw! (G — ¢") + O0(llg — qlI?)

we have the following approximate observer

§=v—a(“i—qi) -
o' = - (@G + S (g, 1) — T() S (¢, )G — ¢) — B@G — ¢")

+ R;-kl(q)fz?k(q — "),

of the mechanical system

q'i ’Ui
=~ ()vv" + 5'(q, t)
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First order variation.

The linearized dynamics around ¢: as for the Jacobi equation, use
D/Dt = Vé instead of d/dt. Denote by £ = §q and ¢ the covariant
variation of the estimated velocity. Then tedious computations
in local coordinates gives, when written in intrinsic manner:

Vi€ = ¢ —aVegradgF'(q, q)
Vil = ~R(G07+ Ve (7)/4—35(0,t) ) — 6Ve0radzF (3. )
which gives when g = g

e _ D¢

Dt_C_a€7 E:_Bg
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Convergence analysis: local contraction for a good metric
on the tangent bundle.
D¢

Dg B D¢
TS o=

For o, > 0, A = ( 1) is Hurwitz. There exists a positive

—
C

b
Equipped the tangent bundle with the following metric

definite quadratic form Q = such that A'Q + QA = —1I.

a b
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Convergence analysis: the metric on the tangent bundle.

a b

In local coordinates (¢*, v%), the length of the small vector (8¢, 6v*)

tangent to (q,v) is
. . a . .
V<5q , (0v" + I‘}‘d(q)vk(Sql)i:l...n) =5 9% 6q" 6q’
+ ¢ gij (60° + T (q)vFsq") 5¢
b . | | .
+ 5 9ij (60" + r (@) v*sgh) (807 + 7, (q)v*dq")

This defines a Riemannian structure on the tangent bundle. In
the local coordinates (¢*, v%), the metric is a 2n x 2n matrix with
entries function of ¢ and wv.
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Convergence analysis: local contraction around q.

Set X = (¢q,v). Denote by G(X) the matrix defining the metric
and by X = T(X, X) the observer.

By construction X = T (X, X) corresponds to the true dynamics.
The above developments prove in fact that, for X = X, we have
the following matrix inequality

T
oG - oY . . (0T
— T(X, X))+ | — G(X)+G(X) | —=
0X|x ( ) ( X (X,X)) (X)+G( )<3X (X,X)
proving that the observer dynamics is a contraction when the

estimated position q is close to the real one gq.

) < —AG(X).
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The Ball and Beam system: equations

7:':’074

6 = v,

. 2 :
Ur = rvp< —SIiN 0
. —2r

vy =

1+ r2 7T

.
+ 2

u
Ccos 6
+1

+ 72
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The approximated invariant observer

—a(f —1r)

P =0,
0 =y — a(d — 0)

. - COSs O —
b = 70y — (sin@ 4 (7 — )" . “)

1 -1 5,
(0= 6) + 5 +f2v9<r—r>)

—ﬁ@—ry+(

-~

r COS O rCOS6O —u

% = 1+A2(%+”7°9) <1+r2 1+A2 ((A R
~ 1 ~ —1
—B(6—-06) + ( 520 = 0) + T raya (7 - r>>

+ (6= ) sin 9))

(1+72)3 (1+
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Perfect incompressible fluid

T he configuration space M is the Lie group of volume preserv-
ing diffeomorphisms on €2, a bounded connected domain of R3
(J.J.Moreau, V. Arnol'd, ...).

U =T, M is the Lie algebra of vector fields in €2 of zero diver-
gence and tangent to the boundary 0fS2.

M is The scalar product on U is derived from the Kinetic energy,
<T,E>= ///Qﬂ’(af;) - &(x)dx
and is invariant through the right translations (g € M):
Rg: he M —hoge M
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T he covariant derivation is

Vi€ = + (T-V)E+ Vn

with #(t,s) and £(t,«) in U. The gradient field Vn is completely
defined by the fact that V,gg must belong to U (it is solution of
a Laplace equation in 2 with Neuman conditions on 0%2).

If U(t,s) € U is solution of the Euler equation, i.e., Vgﬁz 0, the
curve t — cb}? IS a geodesic on M where cb}? is the flow of the
vector field U

The large nabla “N/ " is used for the covariant derivation on M
and the small nabla “V" for the gradient operator in the 3-D
Euclidian space R3.
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Here the role of g is played by the flow ¢, the role of v by the
vector field v. The analogue of the first order approximation of

the invariant observer reads:

8&5 = 7 - T

a(ta $) — U(ta ¢(t7 33)) T ae(t, Qb(t, w))
85 > — > — — ~ > ~
— =-Vn—((#-ad)-V)T—pe+(&-V)Vp— (7- V)Vi

ot
where

Y

!

e ¢ € U corresponds to the position errors g—gq, i.e., g;(t, o(t,z))
&(t,z) — &(t,z). The gradient field Vn ensures % cU.

e the term (€-V)Vp — (¥- V)V# corresponds to the curvature
term R(9,§ — q)v (PR 1992); the gradient field Vp is such
that Vp+ (¢ V)U € U and V7 such that Vi 4+ (¢v-V)e e U.
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Conclusion

e Observer design locally convergent and independent of the
coordinates used on the configuration space. Practically, the
gain scheduling is automatically done via geometric object
such a the Christoffel symbol and the curvature tensor

e Possible extension to other nonlinear system via an adapted
notion of error.
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