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Model of classical systems
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For the harmonic oscillator of pulsation w with measured
position y, controlled by the force u and subject to an additional
unknown force w.
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Feedback for classical systems
lw perturbation

observer/controller, system measure
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set pointl

feedback

Proportional Integral Derivative (PID) for g—;y =—wly+u+w
with the set point v = ysp

u= _Kp(y —,Vsp) - Kd%(y - }’sp) - Kint/ (y - YSp)

with the positive gains (Kp, Ky, Kint) tuned as follows
0<Q~w,0<é~1,0<ex 1:

Kp = an Kd = 25907 ’ Kint = 698



Feedback for the quantum system S

Key issue: back-action due to the measurement process.

Measurement-based feedback: measurement back-action on S is
stochastic (collapse of the wave-packet); controller is
classical; the control input u is a classical variable
appearing in some controlled Schrédinger equation; u
depends on the past measures.

Coherent feedback: the system S is coupled to another quantum
system (the controller); the composite system, S ®
controller, is an open-quantum system relaxing to some
target (separable) state (related to reservoir
engineering).

This talk is devoted to the first experimental realization of a
measurement-based state feedback. It has been done at
Laboratoire Kastler Brossel of Ecole Normale Supérieure by the
Cavity Quantum ElectroDynamics (CQED) group of Serge Haroche.?

2C. Sayrin et al.: Real-time quantum feedback prepares and stabilizes
photon number states. Nature, 477:73—-77, 2011.



The closed-loop CQED experiment

e Control input u = Ae"®; measure output y € {g, e}.
e Sampling time 80 us long enough for numerical computations.

3Courtesy of Igor Dotsenko



The ideal Markov chain for the wave function |1) 4
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Input ug, state [vx) = -, Y% [N), output yj:

My, |y .
[Vkg1/2) = /V’yyk||¢:>>||7 k1) = Dy, |ks1/2)  with

> Yk = g (resp. &) with probability [|Mg [vx) |2 (resp. [|Me [vx) ||?);
» measurement Kraus operators My = cos (%) and

M = sin (422 ): MMy + MEM, = 1 with

N = afa = diag(0, 1,2, ...) the photon number operator;

» displacement unitary operator (u € R): D, = gua' —ua with
a = upper diag(v/1,v/2, .. .) the photon annihilation operator.

4S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.




The ideal Markov chain for the density operator p = |¢) (|

Diagonal elements of p, p™ = (n| p|n) = |"|2, form the photon
number distribution.

Dy, MgpxM} DY,
Tr (Mgo)
Dy, MepiMLD),
Tr (Mepk/\/l;)

Yk = g with probability py x = Tr (MgpkM;)

Pk+1 =
Yi = € with probability pe x = Tr (MepkM;)

» Displacement unitary operator (v € R): D, = gua' —ua with
a = upper diag(v/1,v/2, .. .) the photon annihilation operator.

» Measurement Kraus operators My = cos (%) and
M = sin (28545 ): MiMg + M{M, = 1 with
N = afa = diag(0, 1,2, ...) the photon number operator.



Open-loop behavior (u = 0)
An experimental open-loop trajectory starting from coherent state
po = [tho) (tho| with 7 = 3 photons: |yho) = ™23 o/ % |n).

» A fast convergence towards |n) (n| for some n,

» followed by a slow relaxation towards vacuum |0) (O|:
decoherence due to finite photon life time around 70 ms (not
included into the ideal model).

My, pkM],
To(My, Pk My, )
convergence when ¢ /7 is irrational ®

Open-loop stability of px 1 = explaining this fast

» forany n, pi" = (n| pk |n) is a martingale: IE (pf7, | px) = pi";

» almost all realizations starting from py converge towards a
photon number state |n) (n|; the probability to converge towards
|n) (n| is given by the initial population pg".

This convergence characterizes a Quantum Non Demolition (QND)
measurement of photons (counting photons without destroying them).

SH. Amini et al., IEEE Trans. Automatic Control, in press;2012.



Closed-loop experimental data Stabilization around 3-photon state

e Initial state coherent state . mg=3photons
with n = 3 photons

e State estimation via a
quantum filter of state p§*.
e Lyapunov state feedback
ux = f(pk) stabilizing
towards |n) (A

e pi is replaced by its
estimate p¢' in the
feedback (quantum
separation principle)

Sampling period 80 us
Experience imperfections:

o detection efficiency 40% 100 E Tlnj\zot(mg)eo
e detection error rate 10% \\

« delay: 4 steps e
e truncation to 9 photons

o finite photon life time
e atom occupancy 30%




Fidelity as control Lyapunov function

In ® we propose the following stabilizing state feedback law
based on the fidelity towards the target state |n),

u = f(p) =: Argmin  V(D,pD})

ve[—0,U]

where V(p) =1 — F(|R) (A],p) =1 — p" and T > 0 is small.
Two important issues.
» The state p is not directly measured; output delay is of 4

steps: it was solved by a quantum filter taking into account
the delay.

» Vis maximum and equal to 1 for any p = |n) (n| with n # n:
no distinction between n = n+ 1 (close to the target) and
n+ 1000 (far from the target). This issue has been solved
by changing the Lyapunov function V.

8]. Dotsenko et al.: Quantum feedback by discrete quantum non-demolition
measurements: towards on-demand generation of photon-number states.
Physical Review A80:013805, 2009.



Lyapunov-based feedback (goal photon number 71) *
Vip) =>,(—€(n]|pl n)2 +on{(n|p |n>) is a strict control Lyapunov
function with ¢ > 0 small enough,

%‘fzﬁ11§_%» it n=0;
n . —
on = Zu:n+11;_% !an[J,n—'ﬂ;
0, if n=n;
Srhit T Mfne A+, 4ol
and the feedback u = f(p) =: Argmin V., (DUij,) (@ > 0 small).

vE[—0,U]
In closed-loop, V(p) becomes a strict super-martingale:

E (V(pks1 | o) = V(o) — Qlpx)

with Q(p) continuous, positive and vanishing only when p = |n) (A|.
This feedback law yields

» global stabilization for any finite dimensional approximation
consisting in truncation to "™ < 400 photons.

» global approximate stabilization for N = +oo.
"H. Amini et al.: CDC-2011.




The control Lyapunov function used for the photon box n™@* = 9.

Coefficients g, of the control Lyapunov function
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Global approximate stabilization ("™ = +o00) 8

» The feedback u = Argmin V., (DUpDI,> ensures a strict
veE[—0,U]
closed-loop Lyapunov function

Ve(p) = > (=e(nlo| n)> + on (nl pn))

n>0

with o, ~ log n, for nlarge (high photon-number cut-off).

» Foranyn > 0and C > 0, existe > 0 and u > 0 (small),
such that, for any initial value po with Vi.(po) < C, p"
converges almost surely towards a number inside [1 — 7, 1].
With Tt (px) = 1, and px = pl. > 0, this means, that almost
surely, for k large enough, pi is close (weak-* topology) to
the goal Fock state p = |n) (n.

8R. Somaraju, M. Mirrahimi, P.R.: CDC 2011
http://arxiv.org/abs/1103.1724



Design of the strict control Lyapunov function®

Exploit open-loop stability: for each n, {n|p| n) is a martingale;
Vip)=—1>,(nlp| n)? is a super-martingale with

E (V(pks1) / pi) = V(o) — Qlpx)
where Q(p) > 0 and Q(p) = 0 iff, p is a Fock state.

For closing the loop take o, such that

U Zan<n ‘DupDZ n>
n

1. is strongly convex for p = |n) (N

2. is strongly concave for p = |n) (n|, n # n.

This is achieved by inverting the Laplacian matrix associated to the
control Hamiltionan H = «(a — a'). Remember that D, = e~*“,

9H. Amini et al., CDC 2011,http://arxiv.org/abs/1103:1365



Estimation of px from the past measures y, <, via a quantum filter

DUk MykpkM;k DLk

Pk+1 = i
Tr (Myk Pk MYk)
pest — DUk MYkp‘f(StM}"rk le
k+1 Tr (M estMT )
P My,

» Assume we know pyx and ug. Outcome of measure no k, yy,
defines the jump operator M,, and we can compute pk1.

» Quantum filter and real-time estimation: initialize the estimation
p**! to some initial value p§* and update at step k with measured
jumps yx and the known controls .

» Quantum separation principle for stabilization towards a pure
state'®: assume that the feedback u = f(p) ensures global
asymptotic convergence towards a pure state; then, if
ker(p§) C ker(po), the feedback ux = f(p§*) ensures also global
asymptotic convergence towards the same pure state.

°Bouten, van Handel, 2008.



A modified quantum filter with a measure delayed by one step
Without delay the stabilizing feedback reads

Myk pfst MT

With delay, we have only access to yx_1 and the stabilizing feedback
uses the Kraus map K(p) = MypM} + MopMj:

U = Argmin V(DVK(piS‘)D‘T,)

This is the same feedback law but with another state estimation at

] M. oeStpt
step k: K(p§") instead of — NPk

r(MYk p?StM;k) '

» System theoretical interpretation: K(p5*) stands for the the
prediction of cavity state at step k. This prediction is in average
(expectation value) since yx € {g, e} can take two values.

» Quantum physics interpretation: K(p§*) corresponds to
tracing over the atom that has already interacted with the cavity
(entangled with cavity state) but that has not been measured at
step k.

A delay of two steps involves two iterations of such Kraus maps, ...



Conclusion: measurement-based versus coherent feedback.

» Classical state-feedback stabilization: continuous time systems
with QND measurement (possible extension of M. Mirrahimi and
R. van Handel, SIAM JOC, 2007), filtering stability (Belavkin
seminal contributions, see also van Handel, ...).

» Stabilization by coherent feedback: similarly to the Watt
regulator where a mechanical system is controlled by another
one, the controller is a quantum system coupled to the original
one (Mabuchi, Nurdin, Gough, James, Petersen, ...); related to
"quantum circuit” theory (see last chapters of Gardiner-Zoller
book and the courses of Michel Devoret at Collége de France);

» Coherent feedback is closely related to reservoir engineering:
exploit and design the measurement process (here operators
M,,) and its intrinsic back-action to ensure convergence of the
ensemble-average dynamics towards a unique pure state
(Ticozzi, Viola, ...)



Watt regulator: a classical analogue of quantum coherent feedback. '

The first variations of speed éw
and governor angle 66 obey to

Gow = —ash

2
8560 = —NGd0 — Q(50 — bow)

with (a, b, A, Q) positive param-
eters.

Low = ~NL 6w — Q2 Gow — abQ?ow = 0
Characteristic polynomial P(s) = s + As? + Qs + abQ? with
roots having negative real parts iff A > ab: governor damping
must be strong enough to ensure asymptotic stability of the
closed-loop system.

1J.C. Maxwell: On governors. Proc. of the Royal Society;No.100, 1868.



Reservoir engineering stabilizing Schrédinger cats for the photon box 12

Wigner functions of the various states that can be produced by
such reservoir based on composite dispersive/resonant
atom/cavity interaction.

0 Re®) 3

23arlette et al: PRL 107:010402,2011 and PRA to appear in 2012. -



Control of a QND Markov chain with delay

MM
' —T —TT
e (MY M)

Pkt = M (pk) =

» To each measurement outcome p is attached the Kraus operator
My € C9*9 depending on p and also on a scalar control input

u € R. For each u, Yy MUTMY = |, and we have the Kraus
map K¥(p) = Y0, MYpMYt

> uk is a random variable taking values p in {1,--- , m} with
probability p27 = Tr (M,‘jk—*pk/v/ﬁk—”)

» For u = 0, the measurement operators Mg are diagonal in the

same orthonormal basis {|n) | ne {1,---,d}}, therefore
M2 =25, Cunln) (n| with . » € C.
» Forall ny # nyin {1,--- ,d}, there exists € {1,--- , m} such

that |C,..n, [2 # [ Cum?.



Open-loop convergence px1 = MY, (pk)

For any initial condition pg,

» with probability one, px converges to one of the d states |n) (n|
withne {1,---,d}.

» the probability of convergence towards the state |n) (n| depends
only on po and is given by (n| po |n) .

Proof based on

» the martingales (n|p |n)

» the super-martingale V(p) := Zn( Ll ) satisfying

E (V(px+1)lpx) = V(pk) = —=Qlpx) < 0

. 2 2 2
With Q(p) = § Yo, B0 0, ((Splflelnh — Ienallolein) )™,

» Q(p) =0iff exists ne€ {1,...,d} such that p = |n) (n|.



Feedback stabilization of px.1 = M7 (pk) towards |7) (7|

> Vo(p) = 320, o (n| p|n) with o, > O chosen such that o7 = 0
and for any n # n, the second-order u-derivative of
Vo(KY(|n) (n|)) at u = 0 is strictly negative (K" is the Kraus
map): set of linear equations in o, solved by inverting an
irreducible M-matrix (Perron-Frobenius theorem).

» The function (¢ > 0 small enough):
Ve(p) = Vo(p) — ;zg:1(<n| p|n))? still admits a unique global
minimum at |n) (n|; for u close to 0, u — V.(KY(|n) (n|)) is
strongly concave for any n # n and strongly convexe for n = n.

> The delay of  steps: stabilize the state x = (p, 81, -, 5-) (B
control input u delayed / steps) towards x = (|n) (n|,0,...,0)
using the control-Lyapunov function

W, (x) = V(K5 (KP%(...... K (p)...))).

For u and e small enough, the feedback

ux = (i) =: argmin(E (We (xis1)xi U = €) )

§e[-0,0]

ensures global stabilization towards ¥.



Quantum separation principle

» Estimate the hidden state p by p** satisfying
Pt =My ()

where p obeys to pky1 = M~ (px) with the stabilizing
feedback uy = f(p§", Ux_1,. .., Uk—,) computed using p*
instead of p.

» If ker(pg') C ker(po), px and p%' converge almost surely
towards the target state |n) (1.
Proof based on'3:
> (N[ px [N) € [0,1],
> linearity of IE ((n| pk |) |po, p§) versus po,
» decomposition pg* = vpo + (1 — v)p§ with v €]0, 1.

3Bouten, van Handel, 2008.



Imperfect measurements: the new "observable” state p

» The left stochastic matrix n: 7,/ € |0, 1] is the probability of
having the imperfect outcome 1’ € {1,..., m'} knowing that the
perfectoneis p € {1,...,m}.

> ok = E (pklpo, 11y, - - - h_1- Uz, ..., Uk—r—1) ObeYS t0'*

Pk1 = LZTT(ﬁk)v where

u () — L@ i u(5) — S5m , uspput.

> Li(p) = (L, ?) with L), () = 321 M MMy

» u} is a random variable taking values p’ in {1,---, m’} with
k

probability pZﬁj,{k =Tr (sz,‘f(ﬁk)).
> E (Prs11pk = ps Uk—r = u) = K4(p)
» Assumption: for all ny # np in {1,--- , d}, there exists

e {1 m st T (LS (1) (ne])) # T (LS (1) (el )

Open-loop convergence of py towards |n) (n| with prob. (n| po |n).
“R. Somaraju et al., ACC 2012 (http:/arxiv.org/abs/1109:5344)




Feedback stabilization of px, 1 = L% " (px) towards |n) (7|

» With the previous function V.(p) = Vo(p) — 5 2:1((n\ pln)?
stabilize x = (p, p1, - , 5-) towards x = (|n) (n|,0,...,0) using
the control-Lyapunov function

W.(X) = V(KA (KP(...... K (p)...))).

» For u and e small enough, the feedback

uk = f(xx) =: argmin (B (W(Xk+1) Xk, Uk = §))
56[7[17[]]

ensures global stabilization of X, towards ¥.

» Since ﬁk =E (Pk‘POvU{)a s 7/14(_17 U_r,..., Uk,-r,‘])
convergences towards the pure state |n) (n|, px converges also
towards the same pure state.



Quantum separation principle

» Estimate the hidden state p by p*' satisfying
Pt =Lyt (%)

where
» pk Obeys to
Uk—
Pt = My (px)

with the stabilizing feedback
Uk = f(’p‘i&‘»l’ Ug—1,.. -, uka)

computed using p* instead of p.
» . = " with probability 1, ,,, .
2

» Filter stability: F(pk, o) = <Tr< \/ﬁkﬁf‘\/ﬁk)> is
always a sub-martingale®.
» If ker(pg') C ker(po), px and p3' converge almost surely

towards the target state |n) (n|.
SPR., IEEE Trans. Automatic Control, 2011.




Closed-loop experimental data Stabilization around 3-photon state

e Initial state coherent state . mg=3photons
with n = 3 photons

e State estimation via a
quantum filter of state p§*.
e Lyapunov state feedback
ux = f(pk) stabilizing
towards |n) (A

e pi is replaced by its
estimate p¢' in the
feedback (quantum
separation principle)

Sampling period 80 us
Experience imperfections: 0 40 60 100 T,
o detection efficiency 40% Time ¢ (ms)
e detection error rate 10% \\

e delay 4 sampling periods , e
e truncation to 9 photons

o finite photon life time
e atom occupancy 30%




The left stochastic matrix for the LKB photon box'®

For each control input v,

» we have a total of m =3 x 7 = 21 Kraus operators. The

jumps are labeled by 1 = (1@, u°) with

u? € {no,g,e,qgg,ge, eg, ee} labeling atom related jumps
and 1€ € {o,+, —} cavity decoherence jumps.

» we have only m’ = 6 real detection possibilities
uw' € {no,g,e,qgg, ge, ee} corresponding respectively to no
detection, a single detection in g, a single detection in e, a
double detection both in g, a double detection one in g and
the other in e, and a double detection both in e.

[\ [ (o,p®) T (g:p%) [ (ep® T (99,:4% [ (ee,p®) [ (ge ) or(eg
no 1 1-e4 1-e4 (1-601)2 (1-€d)2 (1'60’)2
g 0 eq(1-ng) €de 2¢eg(1-e4)(1-ng) 2¢g(1-eq)ne eg(1-eq)(1-ng -
e 0 €dg ed(1-ne) 2eg(1-eq)ng 2¢q(1-¢9)(1-1¢) ed(1-€4)(1-1e -
a9 0 0 0 2 (1-ng)? g Zne(1-ng)
ge 0 0 0 2e5mg(1-ng) 2¢2ne(1-ne) & ((1-ng)(1-ne)
ee 0 0 0 5%"73 e§(1—ne)2 E?ﬂ?g“"’]e)

8R. Somaraju et al.: ACC 2012 (http://arxiv.org/abs/1109:5344)
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