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Dynamics of open quantum systems based on three quantum features 1

1. Schrödinger (ℏ = 1): wave funct. |ψ⟩ ∈ H, density op. ρ ∼ |ψ⟩⟨ψ|
d

dt
|ψ⟩ = −iH|ψ⟩, H = H0 + uH1 = H†,

d

dt
ρ = −i [H, ρ].

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of O = O† with spectral decomp.

∑
y λyPy :

▶ measurement outcome y with proba.
Py = ⟨ψ|Py |ψ⟩= Tr (ρPy ) depending on |ψ⟩, ρ just before the
measurement

▶ measurement back-action if outcome y :

|ψ⟩ 7→ |ψ⟩+ =
Py |ψ⟩√
⟨ψ|Py |ψ⟩

, ρ 7→ ρ+ =
PyρPy

Tr (ρPy )

3. Tensor product for the description of composite systems (S ,C ):

▶ Hilbert space H = Hs ⊗Hc

▶ Hamiltonian H = Hs ⊗ Ic + Hsc + Is ⊗ Hc

▶ observable on sub-system C only: O = Is ⊗ Oc .
1S. Haroche and J.M. Raimond (2006). Exploring the Quantum: Atoms,

Cavities and Photons. Oxford Graduate Texts.
3 / 53



Di�usive stochastic master equation2

QUANTUM WORLD

decoherence

quantum state

Hilbert space (dissipation) CLASSICAL WORLD

t 7→ ρt continuous time function (not di�erentiable), solution of

dρt = −i
[
H0+uH1, ρt

]
dt+

 ∑
ν=d,m

LνρtL
†
ν − 1

2
(L†νLνρt + ρtL

†
νLν)

 dt+. . .

. . .+
√
η
(
Lmρt + ρtL

†
m − Tr(Lmρt + ρtL

†
m)ρt

)
dWt ,

where η ∈ [0, 1] and the same Wiener process Wt is shared by the state
dynamics and the output map

dyt =
√
η Tr(Lmρt + ρtL

†
m) dt + dWt .

2A. Barchielli and M. Gregoratti. Quantum Trajectories and Measurements
in Continuous Time: the Di�usive Case. Springer Verlag, 2009.
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Jump stochastic master equation 3

t 7→ ρt piecewise smooth time function, solution of

dρt =
(
−i [H, ρt ] + VρtV

† − 1
2
(V†Vρt + ρtV

†V)
)
dt

+

(
θ̄ρt + η̄VρtV

†

θ̄ + η̄ Tr (VρtV†)
− ρt

)(
dyt −

(
θ̄ + η̄ Tr

(
VρtV

†) ) dt)
where θ̄ ≥ 0 (shot-noise rate) and η̄ ∈ [0, 1] (detection e�ciency) and
where the counting detector outcome dyt ∈ {0, 1} with

▶ dyt = 0 with probability 1−
(
θ̄ + η̄ Tr

(
VρtV

†) ) dt and then

ρt+dt = ρt +
(
− i [H, ρt ] + VρtV

† − 1
2
(V†Vρt + ρtV

†V)

+ η̄
(
Tr
(
VρtV

†
)
ρt − VρtV

†)) dt
▶ dyt = 1 with probability

(
θ̄ + η̄ Tr

(
VρtV

†) ) dt, and then

ρt+dt =
θ̄ρt + η̄VρtV

†

θ̄ + η̄ Tr (VρtV†)
.

3see, e.g., J. Dalibard, Y. Castin, and K. Mølmer. Wave-function approach
to dissipative processes in quantum optics. Phys. Rev. Lett., 68(5):580�583,
February 1992. 5 / 53



LKB photon box4

C

B

D

R1
R2

▶ Dispersive qubit/photon interaction: Hint = −χ
(
|e⟩⟨e| − |g⟩⟨g |

)
⊗ n (with

χ a constant parameter) yields e−iTHint , the Schrödinger propagator
during the time T > 0, given with θ = χT by

Uθ = |g⟩⟨g | ⊗ e−iθn + |e⟩⟨e| ⊗ e iθn.

▶ resonant qubit/photon interaction: Hint = i ω
2

(
|g⟩⟨e| ⊗ a† − |e⟩⟨g | ⊗ a

)
(with ω a constant parameter) yields e−iTHint , the Schrödinger propagator
during the time T > 0, given with θ = ωT/2 by

Uθ = |g⟩⟨g | ⊗ cos(θ
√
n) + |e⟩⟨e| ⊗ cos(θ

√
n+ I)

+ |g⟩⟨e| ⊗ sin(θ
√
n)√

n
a† − |e⟩⟨g | ⊗ a

sin(θ
√
n)√

n
.

4LKB for Laboratoire Kastler Brossel.
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Photons measured by dispersive qubits (1)
C

B

D

R1
R2

U =
(((

|g⟩−|e⟩√
2

)
⟨g |+

(
|g⟩+|e⟩√

2

)
⟨e|
)
⊗ I
)

(
|g⟩⟨g | ⊗ e−iθn + |e⟩⟨e| ⊗ e iθn

)
(((

|g⟩+|e⟩√
2

)
⟨g |+

(
−|g⟩+|e⟩√

2

)
⟨e|
)
⊗ I
)

applied on |Ψ⟩ = |g⟩ ⊗ |ψ⟩ yields
U (|g⟩|ψ⟩) = |g⟩ cos(θn)|ψ⟩+ |e⟩ i sin(θn)|ψ⟩.

Markov process induced by the passage of qubit number k:

|ψk+1⟩ =


cos(θn)|ψk⟩√

⟨ψk | cos2(θn)|ψk⟩
if yk = g with probability ⟨ψk | cos2(θn)|ψk⟩ ;

i sin(θn)|ψk⟩√
⟨ψk | sin2(θn)|ψk⟩

if yk = e with probability ⟨ψk | sin2(θn)|ψk⟩ ;

where yk ∈ {g , e} classical signal produced by measurement of qubit k.
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Photons measured by dispersive qubits (2)

The density operator formulation (ρ ≡ |ψ⟩⟨ψ| ):

ρk+1 =


MgρkM

†
g

Tr
(
MgρkM

†
g

) if yk = g with probability Tr
(
MgρkM

†
g

)
;

MeρkM
†
e

Tr
(
MeρkM

†
e

) if yk = e with probability Tr
(
MeρkM

†
e

)
;

with measurement Kraus operators Mg = cos(θn) and Me = sin(θn). Notice
that M†

gMg +M†
eMe = I.

For θ/π irrational, almost sure convergence towards a Fock state |n̄⟩⟨n̄| for
some n̄ based on the Lyapunov function (super-martingale)

V (ρ) =
∑

0≤n1<n2

√
⟨n1|ρ|n1⟩⟨n2|ρ|n2⟩

that converges in average towards 0 since

E
(
V (ρk+1)

∣∣∣ ρk) ≤
(

max
0≤n1<n2

| cos(θ(n1 ± n2)|
)

V (ρk).

Probability that a realisation converges towards |n̄⟩⟨n̄| given by its initial
population ⟨n̄|ρ0|n̄⟩
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Photons measured by resonant qubits (1)
C

B

D

R1
R2

Wave function |Ψ⟩ of the composite qubit/photon system just before D:(
|g⟩⟨g | cos(θ

√
n) + |e⟩⟨e| cos(θ

√
n+ I)

+ |g⟩⟨e| sin(θ
√
n)√

n
a† − |e⟩⟨g |a sin(θ

√
n)√

n

)
|g⟩|ψ⟩

= |g⟩ cos(θ
√
n)|ψ⟩ − |e⟩ a sin(θ

√
n)√

n
|ψ⟩

Resulting Markov process associated to the measurement of the observable
σz = |e⟩⟨e| − |g⟩⟨g | with classical output signal y ∈ {g , e}:

|ψk+1⟩ =


cos(θ

√
n)|ψk⟩√

⟨ψk | cos2(θ
√
n)|ψk⟩

if yk = g with probability ⟨ψk | cos2(θ
√
n)|ψk⟩ ;

−
a
sin(θ

√
n)√

n
|ψk⟩√

⟨ψk | sin2(θ
√
n)|ψk⟩

if yk = e with probability ⟨ψk | sin2(θ
√
n)|ψk⟩ ;
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Photons measured by resonant qubits (2)

Density operator formulation;

ρk+1 =


MgρkM

†
g

Tr
(
MgρkM

†
g

) if yk = g with probability Tr
(
MgρkM

†
g

)
;

MeρkM
†
e

Tr
(
MeρkM

†
e

) if yk = e with probability Tr
(
MeρkM

†
e

)
;

with measurement Kraus operators Mg = cos(θ
√
n) and Me = a sin(θ

√
n)√

n
. Notice

that, once again, M†
gMg +M†

eMe = I.

For θ
√
n/π irrational for all n, almost surely towards vacuum state |0⟩⟨0|.

Results from the following the Lyapunov function (super-martingale)

V (ρ) = Tr (nρ)

since
E
(
V (ρk+1)

∣∣∣ ρk) = V (ρk)− Tr
(
sin2(θ

√
n)ρk

)
.
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Measurement errors (1)

With measurement imperfections, use Bayes rule by taking as quantum state,
the expectation value of ρk+1 knowing ρk and the information provides by the
imperfect measurement outcome.
Assume detector D broken. From

ρk+1 =


MgρkM

†
g

Tr
(
MgρkM

†
g

) if yk = g with probability Tr
(
MgρkM

†
g

)
;

MeρkM
†
e

Tr
(
MeρkM

†
e

) if yk = e with probability Tr
(
MeρkM

†
e

)
;

we get the quantum channel:

ρk+1 = K(ρk) ≜ E
(
ρk+1

∣∣∣ ρk) = MgρkM
†
g +MeρkM

†
e .
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Measurement errors (2)

When the qubit detector D, producing the classical measurement signal
yk ∈ {g , e}, has errors characterized by the error rate ηe ∈ (0, 1) (resp.
ηg ∈ (0, 1)) the probability of detector outcome g (resp. e) knowing that the
perfect outcome is e (resp. g), Bayes law gives directly

ρk+1 =



E
(
ρk+1

∣∣∣ yk = g , ρk
)
=

(1−ηg )MgρkM
†
g+ηeMeρkM

†
e

Tr
(
(1−ηg )MgρkM

†
g+ηeMeρkM

†
e

)
with probability P(yk = g |ρk) = Tr

(
(1− ηg )MgρkM

†
g + ηeMeρkM

†
e

)
,

E
(
ρk+1

∣∣∣ yk = e, ρk
)
=

ηgMgρkM
†
g+(1−ηe )MeρkM

†
e

Tr
(
ηgMgρkM

†
g+(1−ηe )MeρkM

†
e

)
with probability P(yk = e|ρk) = Tr

(
ηgMgρkM

†
g + (1− ηe)MeρkM

†
e

)
Notice that a broken detector corresponds to ηe = ηg = 1/2 and one recovers
the above quantum channel.
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Stochastic Master Equation (SME) in discrete-time

General structure of discrete-time SME based on a quantum channel with the
following Kraus decomposition (which is not unique)

K(ρ) =
∑
µ

MµρM
†
µ where

∑
µ

M†
µMµ = I

and a left stochastic matrix (ηy,µ) where y corresponds to the di�erent
imperfect measurement outcomes. With Ky (ρ) =

∑
µ ηy,µMµρM

†
µ, ones gets

the following SME:

ρk+1 =
Kyk (ρk)

Tr (Kyk (ρk))
where yk = y with probability Tr (Ky (ρk))

Notice that K =
∑

y Ky since η is left stochastic.

Here the Hilbert space H is arbitrary and can be of in�nite dimension, the
Kraus operator Mµ are bounded operator on H and ρ is a density operator on
H (Hermitian, trace-class with trace one, non-negative). When the index y or
µ are continuous, discrete sums are replaced by integrals and probabilities by
probability densities.
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Qubits measured by dispersive photons (discrete-time) (1)

Probe photon in the coherent state |i α√
2
⟩ with α > 0. Just before D the

composite qubit/photon wave function |Ψ⟩ reads:(
|g⟩⟨g |e−iθn + |e⟩⟨e|e iθn

)
|ψ⟩|i α√

2
⟩ = ⟨g |ψ⟩ |g⟩ |ie−iθ α√

2
⟩+ ⟨e|ψ⟩ |e⟩ |ie iθ α√

2
⟩.

Measurement outcome y ∈ R corresponding to observable

Q =
a+ a†√

2
≡
∫ +∞

−∞
q|q⟩⟨q|dq where ⟨q|q′〉 = δ(q − q′).

Since |ie±iθ α√
2
⟩ = 1

π1/4

∫ +∞
−∞ e iqα cos θe−

(q±α sin θ)2

2 |q⟩dq, we have

⟨g |ψ⟩ |g⟩ |ie−iθ α√
2
⟩+ ⟨e|ψ⟩ |e⟩ |ie iθ α√

2
⟩

= 1

π1/4

∫ +∞

−∞
e iqα cos θ

(
e−

(q−α sin θ)2

2 ⟨g |ψ⟩ |g⟩+ e−
(q+α sin θ)2

2 ⟨e|ψ⟩ |e⟩
)
|q⟩dq.

Thus

|ψk+1⟩ = e iykα cos θ e−
(yk−α sin θ)2

2 ⟨g |ψk⟩ |g⟩+ e−
(yk+α sin θ)2

2 ⟨e|ψk⟩ |e⟩√
e−(yk−α sin θ)2 | ⟨g |ψk⟩ |2 + e−(yk+α sin θ)2 | ⟨e|ψk⟩ |2

where yk ∈ [y , y + dy ] with prob. e−(y−α sin θ)2 |⟨g|ψk⟩|2+e−(y+α sin θ)2 |⟨e|ψk⟩|2√
π

dy .
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Qubits measured by dispersive photons (discrete-time) (2)

Density operator formulation

ρk+1 =
MykρkM

†
yk

Tr
(
MykρkM

†
yk

) where yk ∈ [y , y + dy ] with probability Tr
(
MyρkM

†
y

)
dy

and measurement Kraus operators

My = 1

π1/4
e−

(y−α sin θ)2

2 |g⟩⟨g |+ 1

π1/4
e−

(y+α sin θ)2

2 |e⟩⟨e|.

Notice that

Tr
(
MyρM

†
y

)
=

1√
π
e−(y−α sin θ)2⟨g |ρ|g⟩+ 1√

π
e−(y+α sin θ)2⟨e|ρ|e⟩

and
∫ +∞
−∞ M†

yMy dy = |g⟩⟨g |+ |e⟩⟨e| = I.
For α ̸= 0, almost sure convergence towards |g⟩ or |e⟩ deduced from Lyapunov
function

V (ρ) =
√

⟨g |ρ|g⟩⟨e|ρ|e⟩ with E
(
V (ρk+1)

∣∣∣ ρk) = e−α
2 sin2 θ V (ρk).
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Qubits measured by dispersive photons (discrete-time) (3)

Detection imperfections: probability density of y knowing perfect detection q is

a Gaussian given by 1√
πσ

e−
(y−q)2

σ for some error parameter σ > 0. Then the

above Markov process becomes

ρk+1 =
Kyk (ρk)

Tr (Kyk (ρk))

where

Ky (ρ) =

∫ ∞

−∞

1√
πσ

e−
(y−q)2

σ MqρM
†
q dq

Standard computations using

Mq = 1

π1/4
e−

(q−α sin θ)2

2 |g⟩⟨g |+ 1

π1/4
e−

(q+α sin θ)2

2 |e⟩⟨e|

show that

Ky (ρ) =
1√

π(1+σ)

(
e−

(y−α sin θ)2

1+σ ⟨g |ρ|g⟩|g⟩⟨g |+ e−
(y+α sin θ)2

1+σ ⟨e|ρ|e⟩|e⟩⟨e|

+e−
y2

1+σ
−(α sin θ)2(⟨e|ρ|g⟩|e⟩⟨g |+ ⟨g |ρ|e⟩|g⟩⟨e|

))
.
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Continuous-time di�usive limit (1)

Density operator formulation (perfect detection)

ρk+1 =
MykρkM

†
yk

Tr
(
MykρkM

†
yk

) where yk ∈ [y , y + dy ] with probability Tr
(
MyρkM

†
y

)
dy

and measurement Kraus operators

My = 1

π1/4
e−

(y−α sin θ)2

2 |g⟩⟨g |+ 1

π1/4
e−

(y+α sin θ)2

2 |e⟩⟨e|.

Since

E
(
yk

∣∣∣ ρk = ρ
)
≜ y = −α sin θ Tr (σzρ) , E

(
y2k

∣∣∣ ρk = ρ
)
≜ y2 = 1/2+(α sin θ)2.

When 0 < α sin θ = ϵ≪ 1, we have up-to third order terms versus ϵy ,

MyρM
†
y

Tr
(
MyρM

†
y

) =
(cosh(ϵy)− sinh(ϵy)σz)ρ(cosh(ϵy)− sinh(ϵy)σz)

cosh(2ϵy)− sinh(2ϵy) Tr (σzρ)

≈ ρ− ϵy(σzρ+ ρσz) + (ϵy)2(ρ+ σzρσz)

1− 2ϵy Tr (σzρ) + 2(ϵy)2

= ρ+(ϵy)2
(
σzρσz−ρ

)
+
(
σzρ+ρσz−2 Tr (σzρ) ρ

)(
−ϵy−2(ϵy)2 Tr (σzρ)

)
.
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Continuous-time di�usive limit (2)

Replacing ϵ2y2 by its expectation value one gets, up to third order in ϵy and ϵ:
MyρM

†
y

Tr
(
MyρM

†
y

) ≈ ρ+ ϵ2

2

(
σzρσz−ρ

)
+
(
σzρ+ρσz−2 Tr (σzρ) ρ

)(
−ϵy−ϵ2 Tr (σzρ)

)
.

Set ϵ2 = 2dt and ϵy = −2 Tr (σzρ) dt − dW . Since by construction

E
(
ϵyk

∣∣∣ ρk = ρ
)
= −ϵ2 Tr (σzρ) and E

(
(ϵyk)

2
∣∣∣ ρk = ρ

)
= ϵ2 + ϵ4

one has E
(
dW

∣∣∣ ρ) = 0 and E
(
dW 2

∣∣∣ ρ) = dt up to order 4 versus ϵ. Thus

for dt very small, we recover the following di�usive SME5

ρt+dt = ρt +dt
(
σzρtσz−ρ

)
+
(
σzρt +ρtσz−2 Tr (σzρt) ρ

)(
dyt −2 Tr (σzρt) dt

)
with dyt = 2 Tr (σzρt) dt+dWt replacing −ϵy and dy2t = dW 2

t = dt (Ito rules).
5
Convergence in distribution when dt 7→ 0+: tightness property

∀T > 0, ∃M > 0, ∀dt > 0, ∀k, k1, k2 ∈ {0, . . . , [T/dt]}, E
(
∥ρk1 − ρk∥

2∥ ∥ρk2 − ρk∥
2
∣∣∣ ρ0) ≤ M(k1−k2) dt,

and (Markov generator) convergence of
E
(
f (ρk+1

∣∣∣ ρk=ρ

)
−f (ρ)

dt
towards E

(
dft

∣∣∣ ρt = ρ
)
/dt for any

C2 real function f .
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Continuous-time di�usive limit (3)

With measurement errors parameterized by σ > 0, the partial Kraus map

Ky (ρ) =
1√

π(1+σ)

(
e−

(y−ϵ)2

1+σ ⟨g |ρ|g⟩|g⟩⟨g |+ e−
(y+ϵ)2

1+σ ⟨e|ρ|e⟩|e⟩⟨e|

+e−
y2

1+σ
−ϵ2(⟨e|ρ|g⟩|e⟩⟨g |+ ⟨g |ρ|e⟩|g⟩⟨e|

))
yields E

(
yk

∣∣∣ ρk) ≜ y = −ϵ Tr (σzρ) and E
(
y2k

∣∣∣ ρk) ≜ y2 = (1+ σ)/2+ ϵ2.

Similar approximations with ϵ2 = 2dt and dt very small, yield an SME with
detection e�ciency η = 1

1+σ
:

ρt+dt = ρt + dt
(
σzρtσz − ρ

)
+

√
η
(
σzρt + ρtσz − 2 Tr (σzρt) ρ

)
dWt

with dyt =
√
η Tr (σzρt + ρtσz) + dWt ∼ −ϵy/

√
1+ σ.

Convergence towards either |g⟩ or |e⟩ (QND measurement of the qubit) based

on Lyapunov fonction V (ρ) =
√
1− Tr (σzρ)

2 and Ito rules:

dV = − zdz√
1− z2

− dz2

2(1− z2)3/2
= − zdz√

1− z2
− 2η2Vdt

where z = Tr (σzρ), dz = 2η(1− z2)dW and dz2 = 4η2(1− z2)2dt. Since

E
(
dz
∣∣∣ z) = 0, V̄t = E

(
V (zt)

∣∣∣ z0) solution of d
dt
V̄t = −2η2V̄t .
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Di�usive SME6

General form of di�usive SME with Ito formulation:

dρt =

(
−i [H, ρt ] +

∑
ν

LνρtL
†
ν −

1

2
(L†
νLνρt + ρtL

†
νLν)

)
dt

+
∑
ν

√
ην
(
Lνρt + ρtL

†
ν − Tr

(
(Lν + L†

ν)ρt
)
ρt
)
dWν,t ,

dyν,t =
√
ην Tr

(
Lνρt + ρtL

†
ν

)
dt + dWν,t

with e�ciencies ην ∈ [0, 1] and dWν,t being independent Wiener processes.
Equivalent formulation with Ito rules:

ρt+dt =
MdytρtM

†
dyt

+
∑
ν(1− ην)LνρtL

†
νdt

Tr
(
MdytρtM

†
dyt

+
∑
ν(1− ην)LνρtL

†
νdt
)

with Mdyt = I+
(
−iH− 1

2

∑
ν L

†
νLν
)
dt +

∑
ν

√
ηνdyν,tLν . Moreover

dyν,t = sν,t
√
dt follows the following probability density knowing ρt :

P
(
(sν,t ∈ [sν , sν + dsν ])ν | ρt

)
= Tr

(
Ms

√
dt ρtM

†
s
√
dt

+
∑
ν

(1− ην)LνρtL
†
νdt

)∏
ν

e
−

s2ν
2 dsν√
2π

.

6A. Barchielli and M. Gregoratti. Quantum Trajectories and Measurements
in Continuous Time: the Di�usive Case. Springer Verlag, 2009.
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Kraus maps and numerical schemes for di�usive SME7

Linearity/positivity/trace preserving numerical integration scheme for

dρt =

(
−i [H, ρt ] +

∑
ν

LνρtL
†
ν −

1

2
(L†νLνρt + ρtL

†
νLν)

)
dt

+
∑
ν

√
ην
(
Lνρt + ρtL

†
ν − Tr

(
(Lν + L†ν)ρt

)
ρt
)
dWν,t ,

dyν,t =
√
ην Tr

(
Lνρt + ρtL

†
ν

)
dt + dWν,t

With M0 = I+
(
− iH− 1

2

∑
ν L

†
νLν

)
dt, S = M†

0M0 +
(∑

ν L
†
νLν

)
dt set

M̃0 = M0S
−1/2, L̃ν = LνS

−1/2.

Sampling of dyν,t = sν,t
√
dt according to the following probability law:

P
(
(sν,t ∈ [sν , sν + dsν ])ν | ρt

)
= Tr

(
M̃s

√
dtρtM̃

†
s
√

dt
+
∑
ν

(1− ην)L̃νρt L̃
†
νdt

)∏
ν

e
−

s2ν
2 dsν√
2π

.

where M̃dyt = M̃0 +
∑
ν
√
ηνdyν,t L̃ν . Exact Kraus-map formulation:

ρt+dt =
M̃dyt ρtM̃

†
dyt

+
∑
ν(1− ην)L̃νρt L̃

†
νdt

Tr
(
M̃dyt ρtM̃

†
dyt

+
∑
ν(1− ην)L̃νρt L̃

†
νdt
) .

7
A. Jordan, A. Chantasri, PR, and B.Huard. Anatomy of �uorescence: quantum trajectory statistics

from continuously measuring spontaneous emission. Quantum Studies: Mathematics and Foundations,
3(3):237�263, 2016. 29 / 53
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Qubits measured by photons (resonant) (1)

Probe photon is in the vacuum state |0⟩. Composite qubit/photon wave
function |Ψ⟩ before D:(

|g⟩⟨g | cos(θ
√
n) + |e⟩⟨e| cos(θ

√
n+ I)

+ |g⟩⟨e| sin(θ
√
n)√

n
a† − |e⟩⟨g |a sin(θ

√
n)√

n

)
|ψ⟩|0⟩

=
(
⟨g |ψ⟩ |g⟩+ cos θ ⟨e|ψ⟩ |e⟩

)
|0⟩+ sin θ ⟨e|ψ⟩ |g⟩|1⟩.

With measurement observable n =
∑

n≥0 n|n⟩⟨n|, outcome y ∈ {0, 1} reads
(density operator formulation)

ρk+1 =


M0ρkM

†
0

Tr
(
M0ρkM

†
0

) if yk = 0 with probability Tr
(
M0ρkM

†
0

)
;

M1ρkM
†
1

Tr
(
M1ρkM

†
1

) if yk = 1 with probability Tr
(
M1ρkM

†
1

)
;

measurement Kraus operators M0 = |g⟩⟨g |+ cos θ|e⟩⟨e| and M1 = sin θ|g⟩⟨e|.
Almost convergence analysis when cos2(θ) < 1 towards |g⟩ via the Lyapunov
function (super martingale)

V (ρ) = Tr (|e⟩⟨e|ρ) since E
(
V (ρk+1)

∣∣∣ ρk) = cos2 θ V (ρk).
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Towards jump SME (1)

Since Tr
(
M0ρM

†
0

)
= 1− sin2 θ Tr (σ-ρσ+) and

Tr
(
M1ρM

†
1

)
= sin2 θ Tr (σ-ρσ+), one gets with sin2 θ = dt and y ∼ dN, an

SME driven by Poisson process dNt ∈ {0, 1} of expectation value
Tr (σ-ρtσ+) dt knowing ρt :

dρt =
(
σ-ρtσ+ − 1

2
(σ+σ-ρt + ρtσ+σ-)

)
dt

+

(
σ-ρtσ+

Tr (σ-ρtσ+)
− ρt

)(
dNt −

(
Tr (σ-ρtσ+)

)
dt
)
.

At each time-step, one has the following choice:

▶ with probabilty 1− Tr (σ-ρtσ+) dt, dNt = Nt+dt − Nt = 0 and

ρt+dt =
M0ρtM

†
0

Tr
(
M0ρtM

†
0

)
with M0 = I− dt

2
σ+σ-.

▶ with probability Tr (σ-ρtσ+) dt, dNt = Nt+dt − Nt = 1 and

ρt+dt =
M1ρtM

†
1

Tr
(
M1ρtM

†
1

)
with M1 =

√
dt σ-.
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Towards jump SME (2)

With left stochastic matrix

(
1− θ̄dt 1− η̄
θ̄dt η̄

)
including shot noise of rate

θ̄ ≥ 0 and detection e�ciency η̄ ∈ [0, 1]:
▶ dNt = Nt+dt − Nt = 0 and

ρt+dt =
(1− θ̄dt)M0ρtM

†
0 + (1− η̄)M1ρtM

†
1

Tr
(
(1− θ̄dt)M0ρtM

†
0 + (1− η̄)M1ρtM

†
1

)
=

M0ρtM
†
0 + (1− η̄)M1ρtM

†
1

Tr
(
M0ρtM

†
0 + (1− η̄)M1ρtM

†
1

) + O(dt2).

with probability

1−
(
θ̄+η̄ Tr (σ-ρtσ+)

)
dt = Tr

(
(1− θ̄dt)M0ρtM

†
0 + (1− η̄)M1ρtM

†
1

)
+O(dt2)

and where M0 = I− dt
2
σ+σ- and M1 =

√
dt σ-.

▶ dNt = Nt+dt − Nt = 1 and

ρt+dt =
θ̄ dtM0ρtM

†
0 + η̄M1ρtM

†
1

Tr
(
θ̄ dtM0ρtM

†
0 + η̄M1ρtM

†
1

) =
θ̄ρt + η̄σ-ρtσ+

θ̄ + η̄ Tr (σ-ρtσ+)
+ O(dt)

with probability

(θ̄ + η̄ Tr (σ-ρtσ+)
)
dt = Tr

(
θ̄ dtM0ρtM

†
0 + η̄M1ρtM

†
1

)
+ O(dt2)
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Towards jump SME (3)

Jump SME with shot noise rate θ̄ and detection e�ciency η̄

dρt =
(
σ-ρtσ+ − 1

2
(σ+σ-ρt + ρtσ+σ-)

)
dt

+

(
θ̄ρt + η̄σ-ρtσ+

Tr
(
θ̄ρt + η̄σ-ρtσ+

) − ρt

)(
dNt −

(
θ̄ + η̄ Tr (σ-ρtσ+)

)
dt
)
.

corresponds to the following choices

▶ dNt = Nt+dt − Nt = 0

ρt+dt =
M0ρtM

†
0 + (1− η̄)M1ρtM

†
1

Tr
(
M0ρtM

†
0 + (1− η̄)M1ρtM

†
1

)
with probability 1−

(
θ̄ + η̄ Tr (σ-ρtσ+)

)
dt,

▶ dNt = Nt+dt − Nt = 1 and

ρt+dt =
θ̄ρt + η̄σ-ρtσ+

θ̄ + η̄ Tr (σ-ρtσ+)

with probability 1−
(
θ̄ + η̄ Tr (σ-ρtσ+)

)
dt,

where M0 = I− dt
2
(σ+σ- + I) and M1 =

√
dt σ-.
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Jump SME in continuous-time8 (1)
General structure of a Jump SME in continuous time with counting process Nt with

increment expectation value knowing ρt given by ⟨dNt⟩ =
(
θ̄ + η̄ Tr

(
VρtV †) ) dt,

with θ̄ ≥ 0 (shot-noise rate) and η̄ ∈ [0, 1] (detection e�ciency):

dρt =
(
−i [H, ρt ] + VρtV

† − 1
2
(V†Vρt + ρtV

†V)
)
dt

+

(
θ̄ρt + η̄VρtV†

θ̄ + η̄ Tr
(
VρtV†

) − ρt

)(
dNt −

(
θ̄ + η̄ Tr

(
VρtV

†
))

dt
)
.

Here H and V are operators on an underlying Hilbert space H, H being Hermitian. At
each time-step between t and t + dt, one has the following recipe

▶ dNt = 0 with probability 1−
(
θ̄ + η̄ Tr

(
VρtV†) ) dt

ρt+dt =
M0ρtM

†
0 + (1− η̄)VρtV†dt

Tr
(
M0ρtM

†
0 + (1− η̄)VρtV†dt

)
where M0 = I −

(
iH + 1

2
V†V

)
dt.

▶ dNt = 1 with probability
(
θ̄ + η̄ Tr

(
VρtV†) ) dt,

ρt+dt =
θ̄ρt + η̄VρtV†

θ̄ + η̄ Tr
(
VρtV†

) .
8
J. Dalibard, Y. Castin, and K. Mølmer. Wave-function approach to dissipative processes in

quantum optics. Phys. Rev. Lett., 68(5):580�583, 1992.
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General mixed di�usive/jump SME (1)
Combine in a single SME Wiener and Poisson noises induced by di�usive and counting
measurements:

dρt =
(
−i [H, ρt ] + LρtL

† − 1
2
(L†Lρt + ρtL

†L) + VρtV
† − 1

2
(V†Vρt + ρtV

†V)
)
dt

+
√
η

(
Lρt + ρtL

† − Tr
(
(L+ L†)ρt

)
ρt

)
dWt

+

(
θ̄ρt + η̄VρtV†

θ̄ + η̄ Tr
(
VρtV†

) − ρt

)(
dNt −

(
θ̄ + η̄ Tr

(
VρtV

†
))

dt
)

With dyt =
√
η Tr

(
(L+ L†) ρt

)
dt + dWt and dNt = 0 with probability

1−
(
θ̄ + η̄ Tr

(
VρtV†) ) dt. Kraus-map equivalent formulation:

▶ for dNt = 0 of probability 1−
(
θ̄ + η̄ Tr

(
VρtV†) ) dt

ρt+dt =
Mdyt ρtM

†
dyt

+ (1− η)LρtL†dt + (1− η̄)VρtV†dt

Tr
(
Mdyt ρtM

†
dyt

+ (1− η)LρtL†dt + (1− η̄)VρtV†dt
)

with Mdyt = I −
(
iH+ 1

2
L†L+ 1

2
V†V

)
dt +

√
ηdytL.

▶ for dNt = 1 of probability
(
θ̄ + η̄ Tr

(
VρtV†) ) dt:

ρt+dt =
Mdyt ρ̃tM

†
dyt

+ (1− η)Lρ̃tL†dt + (1− η̄)Vρ̃tV†dt

Tr
(
Mdyt ρ̃tM

†
dyt

+ (1− η)Lρ̃tL†dt + (1− η̄)Vρ̃tV†dt
) with ρ̃t =

θ̄ρt + η̄VρtV†

θ̄ + η̄ Tr
(
VρtV†

)
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General mixed di�usive/jump SME (2)9

dρt =

−i [H, ρt ] +
∑
ν

LνρtL
†
ν − 1

2
(L†νLνρt + ρtL

†
νLν ) +

∑
µ

VµρtV
†
µ − 1

2
(V†

µVµρt + ρtV
†
µVµ)

 dt

+
∑
ν

√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν + L

†
ν )ρt

)
ρt

)
dWν,t

+
∑
µ

 θ̄µρt +
∑

µ′ η̄µ,µ′Vµ′ρtV
†
µ′

θ̄µ +
∑

µ′ η̄µ,µ′ Tr
(
Vµ′ρtV

†
µ′
) − ρt


dNµ,t −

(
θ̄µ +

∑
µ′
η̄µ,µ′ Tr

(
Vµ′ρtV

†
µ′
) )

dt


where ην ∈ [0, 1], θ̄µ, η̄µ,µ′ ≥ 0 with η̄µ′ =

∑
µ η̄µ,µ′ ≤ 1. The equivalent Kraus-map formulation

▶ When ∀µ, dNµ,t = 0 (probability 1 −
∑

µ

(
θ̄µ + η̄µ Tr

(
VµρtV

†
µ

) )
dt) we have

ρt+dt =
Mdyt

ρtM
†
dyt

+
∑

ν (1 − ην )LνρtL
†
νdt +

∑
µ(1 − η̄µ)VµρtV

†
µdt

Tr
(
Mdyt

ρtM
†
dyt

+
∑

ν (1 − ην )LνρtL
†
νdt +

∑
µ(1 − η̄µ)VµρtV

†
µdt
)

with Mdyt
= I −

(
iH + 1

2

∑
ν L†νLν + 1

2

∑
µ V†

µVµ

)
dt +

∑
ν
√
ηνdyνtLν and where

dyν,t =
√
ην Tr

(
(Lν + L†ν ) ρt

)
dt + dWν,t .

▶ If, for some µ, dNµ,t = 1 (probability
(
θ̄µ +

∑
µ′ η̄µ,µ′ Tr

(
Vµ′ρtV

†
µ′
) )

dt) we have

ρt+dt =
Mdyt

ρ̃tM
†
dyt

+
∑

ν (1 − ην )Lν ρ̃tL
†
νdt +

∑
µ′ (1 − η̄µ′ )Vµ′ ρ̃tV

†
µ′ dt

Tr
(
Mdyt

ρ̃tM
†
dyt

+
∑

ν (1 − ην )Lν ρ̃tL
†
νdt +

∑
µ′ (1 − η̄µ′ )Vµ′ ρ̃tV

†
µ′ dt

)

with ρ̃t =
θ̄µρt+

∑
µ′ η̄

µ,µ′Vµ′ρtV
†
µ′

θ̄µ+
∑

µ′ η̄
µ,µ′ Tr

(
V
µ′ρtV

†
µ′

) .
9
H. Amini, C. Pellegrini, and PR. Stability of continuous-time quantum �lters with measurement

imperfections. Russian Journal of Mathematical Physics, 21(3):297�315�, 2014. 40 / 53
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Discrete-time models of open quantum systems

Four features10:

1. Bayes law: P(µ′/µ) = P(µ/µ′)P(µ′) /
(∑

ν′ P(µ/ν′)P(ν′)
)
,

2. Schrödinger equations de�ning unitary transformations.

3. Randomness, irreversibility and dissipation induced by the
measurement of observables with degenerate spectra.

4. Entanglement and tensor product for composite systems.

⇛ Discrete-time models with parameter p
Take a set of operators Mp

µ satisfying
∑

µ(M
p
µ)

†Mp
µ = I and a left

stochastic matrices (ηpyt,µ). Consider the following Markov process of
state ρ (density op.)and measured output y:

ρt+1 =
Kp
yt
(ρt)

Tr(Kp
yt
(ρt))

, with proba. Pyt(ρt) = Tr
(
Kp
yt
(ρt)

)
with Kp

y(ρ) =
∑m

µ=1 η
p
y,µM

p
µρ(M

p
µ)

†. It is associated to the Kraus map
(ensemble average, quantum channel)

E
(
ρt+1|ρt

∣∣∣ =
)
Kp(ρt) =

∑
y

Kp
y(ρt) =

∑
µ

Mp
µρt(M

p
µ)

†.

10See the book of S. Haroche and J.M. Raimond.
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Computation of the likelihood function via the adjoint state (1)

▶ Denote by Pn(ρ, p) the probability of getting measurement

trajectory n, (y
(n)
t )t=0,...,T , knowing the initial state ρ

(n)
0 = ρ and

parameter p.

▶ Since ρ
(n)
t+1 =

Kp

y
(n)
t

(
ρ
(n)
t

)
Tr

(
Kp

y
(n)
t

(
ρ
(n)
t

)) with Tr
(
Kp

y
(n)
t

(
ρ
(n)
t

))
the probability

of having detected y
(n)
t knowing ρ

(n)
t and p, a direct use of Bayes

law yields

Pn(ρ, p) =
T∏
t=0

Tr
(
Kp

y
(n)
t

(
ρ
(n)
t

))
= Tr

(
Kp

y
(n)
T

◦ . . . ◦ Kp

y
(n)
0

(ρ)
)
.
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Computation of the likelihood function via the adjoint state (2)

▶ With adjoint map Kp∗
y (∀A,B, Tr

(
Kp
y(A) B

)
≡ Tr

(
A Kp∗

y (B)
)
):

Pn(ρ, p) = Tr

(
Kp

y
(n)
T

◦ . . . ◦ Kp

y
(n)
0

(ρ) I

)
= Tr

(
ρ Kp∗

y
(n)
0

◦ . . . ◦ Kp∗
y
(n)
T

(I)

)
.

▶ Normalized adjoint quantum �lter11 E
(n)
t =

Kp∗

y
(n)
t

(
E
(n)
t+1

)
Tr

(
Kp∗

y
(n)
t

(
E
(n)
t+1

)) with

E
(n)
T+1 = I/ Tr (I), we get

Pn(ρ, p) =
0∏

t=T

Tr

(
Kp∗
y
(n)
t

(
E

(n)
t+1

))
Tr
(
ρE (n)

0

)
≜ gn(Y, p) Tr

(
ρE (n)

0

)
.

▶ A simple expression of the gradients:

∇ρ log Pn =
E

(n)
0

Tr
(
ρE (n)

0

) , ∇p log Pn·δp =
T∑

t=0

Tr

(
E

(n)
t+1

(
∇pKp

y
(n)
t

(
ρ
(n)
t

)
· δp
))

Tr

(
E

(n)
t+1 Kp

y
(n)
t

(
ρ
(n)
t

)) ,

11M. Tsang. Time-symmetric quantum theory of smoothing. PRL 2009.
S. Gammelmark, B. Julsgaard, and K. Mølmer. Past quantum states of a
monitored system. PRL 2013.
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MaxLike tomography based on N trajectories data Y =
{
y
(n=1,...,N)
t=0,...,T

}
From Pn(ρ, p) = gn(Y, p) Tr

(
ρE (n)

0

)
we have

P(ρ, p) ≜
N∏
n=1

Pn(ρ, p) =

(
N∏

n=1

gn(Y, p)

)(
N∏

n=1

Tr
(
ρE (n)

0

))
.

▶ MaxLike state tomography: p is known and ρML maximizes

ρ 7→
N∑

n=1

log
(
Tr
(
ρE (n)

0

))
a concave function on the convex set of density operators ρ:
a well structured convex optimization problem.

▶ MaxLike process tomography: ρ is known
and pML maximizes p 7→ f (p) = logP(ρ, p) those gradient is given by

∇pf (p) · δp =
∑N

n=1

∑T
t=0

Tr

(
E

(n)
t+1

(
∇pKp

y
(n)
t

(
ρ
(n)
t

)
·δp
))

Tr

(
E

(n)
t+1 Kp

y
(n)
t

(
ρ
(n)
t

)) ,

The Hessian ∇2
pf can be computed similarly (Fisher information).
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Stability issues

▶ For ρk+1 = K(ρk), contraction for many distances12 (nuclear norm,
�delity,. . . )

▶ Adjoint map (unital map) Ak+1 = K∗(Ak) contracts spectrum
13:

λmin(Ak) ≤ λmin(Ak+1) ≤ λmax(Ak+1) ≤ λmax(Ak).

▶ Quantum �lter ρ̂k+1 =
Kyk

(ρ̂k )

Tr(Kyk
(ρ̂k ))

where yk is governed by

ρk+1 =
Kyk

(ρk )

Tr(Kyk
(ρk ))

with ρ̂0 ̸= ρ0: �delity Tr2
(√√

ρ̂kρk
√
ρ̂k
)
is always a

sub-martingale14

▶ Convergence issues around �ltering and parameter estimation along
quantum trajectories: seminal works of Belavkin in continuous-time,
Van-Handel thesis at Caltech 2007. See also recent works of Nina Amini,
Maël Bompais, Tristan Benoit and Clément Pellegrini.

12D. Petz. Monotone metrics on matrix spaces. Linear Algebra and its
Applications, 244:81�96, 1996.

13R. Sepulchre, A. Sarlette, and PR.. Consensus in non-commutative spaces.
In Decision and Control (CDC), 2010 49th IEEE Conference on, pages
6596�6601, 2010.

14PR. Fidelity is a sub-martingale for discrete-time quantum �lters. IEEE
Transactions on Automatic Control, 56(11):2743�2747, 2011.

47 / 53



Outline

Intoduction

Discrete-time SME
Photons measured by dispersive qubits
Photons measured by resonant qubits
Measurement errors
Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME
Qubits measured by dispersive photons (discrete-time)
Continuous-time di�usive limit
Di�usive SME
Kraus maps and numerical schemes for di�usive SME

Continuous-time Poisson SME
Qubits measured by photons (resonant interaction)
Towards jump SME
Jump SME in continuous-time

Continous-time Wiener/Poisson SME

Conclusion
Filtering and parameter estimation
Feedback schemes

48 / 53



Measurement-based feedback

QUANTUM WORLD

CLASSICAL WORLD

classical 
controller 

decoherenceclassical
input

classical
output

quantum measurement

classical
reference

SME

▶ P-controller (Markovian feedback15) for ut dt = k dyt , the ensemble
average closed-loop dynamics of ρ remains governed by a linear Lindblad
master equation.

▶ PID controller: no Lindblad master equation in closed-loop for dynamics
output feedback

▶ Nonlinear hidden-state stochastic systems: Lyapunov state-feedback16;
many open issues on convergence rates, delays, robustness, . . .

▶ Short sampling times limit feedback complexity
15

H. Wiseman, G. Milburn (2009). Quantum Measurement and Control. Cambridge University Press.
16

See e.g.: C. Ahn et. al (2002): Continuous quantum error correction via quantum feedback
control. Phys. Rev. A 65;
M. Mirrahimi, R. Handel (2007): Stabilizing feedback controls for quantum systems. SIAM Journal on
Control and Optimization, 46(2), 445-467;
G. Cardona, A. Sarlette, PR (2019): Continuous-time quantum error correction with noise-assisted
quantum feedback. IFAC Mechatronics & Nolcos Conf.

49 / 53



Coherent (autonomous) feedback (dissipation engineering)

Quantum analogue of Watt speed governor: a dissipative mechanical
system controls another mechanical system 17

QUANTUM WORLD

CLASSICAL WORLD

Hilbert space 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

quantum
interaction

Optical pumping (Kastler 1950), coherent
population trapping (Arimondo 1996)

Dissipation engineering, autonomous
feedback: (Zoller, Cirac, Wolf, Verstraete,
Devoret, Schoelkopf, Siddiqi, Martinis,
Mølmer, Raimond, Brune,. . . , Lloyd, Viola,
Ticozzi, Leghtas, Mirrahimi, Sarlette, PR,
...)

(S,L,H) theory and linear quantum
systems: quantum feedback networks
based on stochastic Schrödinger equation,
Heisenberg picture (Gardiner, Yurke,
Mabuchi, Genoni, Sera�ni, Milburn,
Wiseman, Doherty, . . . , Gough, James,
Petersen, Nurdin, Yamamoto, Zhang,
Dong, . . . )

Stability analysis: Kraus maps and Lindblad propagators are always
contractions (non commutative di�usion and consensus).

17J.C. Maxwell (1868): On governors. Proc. of the Royal Society, No.100.
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Coherent feedback involves tensor products and many time-scales

The closed-loop Lindblad master equation on H = Hs ⊗Hc :

d

dt
ρ = −i

[
Hs ⊗ Ic + Is ⊗ Hc + Hsc , ρ

]
+
∑
ν

DLs,ν⊗Ic (ρ) +
∑
ν′

DIs⊗Lc,ν′ (ρ)

with DL(ρ) = LρL† − 1
2

(
L†Lρ+ ρL†L

)
and operators made of tensor products.

• Consider a convex subset Ds of steady-states for original system S : each
density operator ρs on Hs belonging to Ds satisfy i [Hs , ρs ] =

∑
ν DLs,ν (ρs).

• Designing a realistic quantum controller C (Hc , Lc,ν′) and coupling
Hamiltonian Hsc stabilizing Ds is non trivial. Realistic means in particular
relying on physical time-scales and constraints:

▶ Fastest time-scales attached to Hs and Hc (Bohr frequencies) and
averaging approximations: ∥Hs∥, ∥Hc∥ ≫ ∥Hsc∥,

▶ High-quality oscillations: ∥Hs∥ ≫ ∥L†
s,νLs,ν∥ and ∥Hc∥ ≫ ∥L†

c,ν′Lc,ν′∥.
▶ Decoherence rates of S much slower than those of C :

∥L†
s,νLs,ν∥ ≪ ∥L†

c,ν′Lc,ν′∥: model reduction by quasi-static
approximations (adiabatic elimination, singular perturbations).
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Quantum feedback engineering for robust quantum information processing

QUANTUM WORLD

CLASSICAL WORLD
Hilbert space 

classical 
controller 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

classical
input

classical
output

quantum measurement

classical
reference

quantum
interaction

To protect quantum information stored in system S (alternative to usual QEC):
▶ fast stabilization and protection mainly achieved by a quantum controller

(coherent feedback stabilizing decoherence-free sub-spaces);

▶ slow decoherence and perturbations mainly tackled by a classical controller
(measurement-based feedback "�nishing the job")

Underlying mathematical methods for high-precision dynamical modeling and
control based on stochastic master equations (SME):

▶ High-order averaging methods and geometric singular perturbations for coherent
feedback.

▶ Stochastic control Lyapunov methods for exponential stabilization via
measurement-based feedback.
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