

Lake Como School of Advanced Studies September 19-23, 2022 Quantum characterization and control of quantum complex systems

Quantum Stochastic Master Equations (SME) based on preprint to appear in Annual Reviews in Control https://arxiv.org/abs/2208.07416

pierre.rouchon@minesparis.psl.eu Quantic research team Laboratoire de Physique de l'Ecole Normale Supérieure, Mines Paris-PSL, Inria, ENS-PSL, Université PSL, CNRS. 1/53

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0)

[Photons measured by resonant qubits](#page-9-0)

[Measurement errors](#page-12-0)

[Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0)

[Towards jump SME](#page-31-0)

[Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

Dynamics of open quantum systems based on three quantum features $1 - 2$

1. Schrödinger $(\hbar = 1)$: wave funct. $|\psi\rangle \in \mathcal{H}$, density op. $\rho \sim |\psi\rangle \langle \psi|$

$$
\frac{d}{dt}|\psi\rangle = -iH|\psi\rangle, \quad H = H_0 + uH_1 = H^{\dagger}, \quad \frac{d}{dt}\rho = -i[H,\rho].
$$

- 2. Origin of dissipation: collapse of the wave packet induced by the measurement of $\mathsf{O}=\mathsf{O}^\dagger$ with spectral decomp. $\sum_{\mathsf{y}} \lambda_{\mathsf{y}} \mathsf{P}_{\mathsf{y}}$:
	- \blacktriangleright measurement outcome y with proba. $\mathbb{P}_{\mathsf{v}} = \langle \psi | \mathsf{P}_{\mathsf{v}} | \psi \rangle = \mathsf{Tr}(\rho \mathsf{P}_{\mathsf{v}})$ depending on $|\psi\rangle$, ρ just before the measurement
	- \blacktriangleright measurement back-action if outcome y:

$$
|\psi\rangle \mapsto |\psi\rangle_+ = \frac{\mathsf{P}_y|\psi\rangle}{\sqrt{\langle \psi|\mathsf{P}_y|\psi\rangle}}, \quad \rho \mapsto \rho_+ = \frac{\mathsf{P}_y\rho\mathsf{P}_y}{\mathsf{Tr}\left(\rho\mathsf{P}_y\right)}
$$

- 3. Tensor product for the description of composite systems (S, C) :
	- ► Hilbert space $\mathcal{H} = \mathcal{H}_s \otimes \mathcal{H}_c$
	- ▶ Hamiltonian $H = H_s \otimes I_c + H_{sc} + I_s \otimes H_c$
	- ▶ observable on sub-system C only: $0 = I_s \otimes O_c$.

¹S. Haroche and J.M. Raimond (2006). Exploring the Quantum: Atoms, Cavities and Photons. Oxford Graduate Texts.

I PSL⊯

Diffusive stochastic master equation²

 $t \mapsto \rho_t$ continuous time function (not differentiable), solution of

$$
d\rho_t = -i \Big[H_0 + u H_1, \rho_t \Big] dt + \left(\sum_{\nu=d,m} L_{\nu} \rho_t L_{\nu}^{\dagger} - \frac{1}{2} (L_{\nu}^{\dagger} L_{\nu} \rho_t + \rho_t L_{\nu}^{\dagger} L_{\nu}) \right) dt + \dots
$$

$$
\dots + \sqrt{\eta} \Big(L_m \rho_t + \rho_t L_m^{\dagger} - \text{Tr}(L_m \rho_t + \rho_t L_m^{\dagger}) \rho_t \Big) dW_t,
$$

where $\eta \in [0,1]$ and the same Wiener process W_t is shared by the state dynamics and the output map

$$
dy_t = \sqrt{\eta} \; \mathsf{Tr}(L_m \rho_t + \rho_t L_m^{\dagger}) \; dt + dW_t.
$$

²A. Barchielli and M. Gregoratti. Quantum Trajectories and Measurements in Continuous Time: the Diffusive Case. Springer Verlag, 2009.

Jump stochastic master equation ³

 $t \mapsto \rho_t$ piecewise smooth time function, solution of

$$
d\rho_t = \left(-i[H, \rho_t] + V\rho_t V^{\dagger} - \frac{1}{2}(V^{\dagger}V\rho_t + \rho_t V^{\dagger}V)\right) dt + \left(\frac{\bar{\theta}\rho_t + \bar{\eta}V\rho_t V^{\dagger}}{\bar{\theta} + \bar{\eta} \operatorname{Tr}(V\rho_t V^{\dagger})} - \rho_t\right) \left(dy_t - \left(\bar{\theta} + \bar{\eta} \operatorname{Tr}(V\rho_t V^{\dagger})\right) dt\right)
$$

where $\bar{\theta} \geq 0$ (shot-noise rate) and $\bar{\eta} \in [0,1]$ (detection efficiency) and where the counting detector outcome $dy_t \in \{0, 1\}$ with

►
$$
dy_t = 0
$$
 with probability $1 - (\bar{\theta} + \bar{\eta} \text{ Tr} (V \rho_t V^{\dagger})) dt$ and then
\n
$$
\rho_{t+dt} = \rho_t + (-i[H, \rho_t] + V \rho_t V^{\dagger} - \frac{1}{2} (V^{\dagger} V \rho_t + \rho_t V^{\dagger} V) + \bar{\eta} (\text{ Tr} (V \rho_t V^{\dagger}) \rho_t - V \rho_t V^{\dagger}) \} dt
$$
\n► $dy_t = 1$ with probability $(\bar{\theta} + \bar{\eta} \text{ Tr} (V \rho_t V^{\dagger})) dt$, and then
\n
$$
\rho_{t+dt} = \frac{\bar{\theta} \rho_t + \bar{\eta} V \rho_t V^{\dagger}}{\bar{\theta} + \bar{\eta} \text{ Tr} (V \rho_t V^{\dagger})}.
$$

³see, e.g., J. Dalibard, Y. Castin, and K. Mølmer. Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett., $68(5):580-583$, $February$ 1992. $5/53$

LKB photon box⁴

▶ Dispersive qubit/photon interaction: $H_{int} = -\chi(|e\rangle\langle e| - |g\rangle\langle g|) \otimes n$ (with χ a constant parameter) yields $e^{-i\mathcal{T}\mathsf{H}_{int}}$, the Schrödinger propagator during the time $T > 0$, given with $\theta = \chi T$ by

$$
\mathsf{U}_{\theta}=|g\rangle\langle g|\otimes e^{-i\theta\mathsf{n}}+|e\rangle\langle e|\otimes e^{i\theta\mathsf{n}}.
$$

▶ resonant qubit/photon interaction: $H_{int}=i\frac{\omega}{2}\Big(|g\rangle\!\langle e|\otimes \mathsf{a}^\dagger-|e\rangle\!\langle g|\otimes \mathsf{a}\Big)$ (with ω a constant parameter) yields $e^{-i \mathcal{T} H_{int}}$, the Schrödinger propagator during the time $T > 0$, given with $\theta = \omega T/2$ by

$$
U_{\theta} = |g\rangle\langle g| \otimes \cos(\theta\sqrt{n}) + |e\rangle\langle e| \otimes \cos(\theta\sqrt{n+1}) + |g\rangle\langle e| \otimes \frac{\sin(\theta\sqrt{n})}{\sqrt{n}} a^{\dagger} - |e\rangle\langle g| \otimes a \frac{\sin(\theta\sqrt{n})}{\sqrt{n}}.
$$

⁴ LKB for Laboratoire Kastler Brossel.

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0)

[Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0)

[Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

Photons measured by dispersive qubits (1)

$$
U = \left(\left(\left(\frac{|g\rangle - |e\rangle}{\sqrt{2}} \right) \langle g| + \left(\frac{|g\rangle + |e\rangle}{\sqrt{2}} \right) \langle e| \right) \otimes 1 \right) \\ \left(|g\rangle\langle g| \otimes e^{-i\theta n} + |e\rangle\langle e| \otimes e^{i\theta n} \right) \\ \left(\left(\left(\frac{|g\rangle + |e\rangle}{\sqrt{2}} \right) \langle g| + \left(\frac{-|g\rangle + |e\rangle}{\sqrt{2}} \right) \langle e| \right) \otimes 1 \right)
$$

applied on $|\Psi\rangle = |g\rangle \otimes |\psi\rangle$ yields

$$
\mathsf{U}\,\left(|g\rangle|\psi\rangle\right)=|g\rangle\,\cos(\theta\mathsf{n})|\psi\rangle+|e\rangle\,\,i\sin(\theta\mathsf{n})|\psi\rangle.
$$

Markov process induced by the passage of qubit number k :

$$
|\psi_{k+1}\rangle = \left\{\begin{array}{cc} \frac{\cos(\theta n)|\psi_k\rangle}{\sqrt{\langle\psi_k|\cos^2(\theta n)|\psi_k\rangle}} & \text{if } y_k = g \text{ with probability } \langle\psi_k|\cos^2(\theta n)|\psi_k\rangle ;\\ \frac{i\sin(\theta n)|\psi_k\rangle}{\sqrt{\langle\psi_k|\sin^2(\theta n)|\psi_k\rangle}} & \text{if } y_k = e \text{ with probability } \langle\psi_k|\sin^2(\theta n)|\psi_k\rangle ;\end{array}\right.
$$

where $y_k \in \{g, e\}$ classical signal produced by measurement of qubit k.

The density operator formulation $(\rho \equiv |\psi\rangle \langle \psi|)$.

$$
\rho_{k+1} = \begin{cases}\n\frac{M_g \rho_k M_g^{\dagger}}{\text{Tr}\left(M_g \rho_k M_g^{\dagger}\right)} & \text{if } y_k = g \text{ with probability } \text{Tr}\left(M_g \rho_k M_g^{\dagger}\right) ; \\
\frac{M_e \rho_k M_e^{\dagger}}{\text{Tr}\left(M_e \rho_k M_e^{\dagger}\right)} & \text{if } y_k = e \text{ with probability } \text{Tr}\left(M_e \rho_k M_e^{\dagger}\right) ;\n\end{cases}
$$

with measurement Kraus operators $M_g = cos(\theta n)$ and $M_e = sin(\theta n)$. Notice that $\mathsf{M}_{g}^{\dagger} \mathsf{M}_{g} + \mathsf{M}_{e}^{\dagger} \mathsf{M}_{e} = \mathsf{I}.$ For θ/π irrational, almost sure convergence towards a Fock state $|\bar{n}\rangle\langle\bar{n}|$ for some \bar{n} based on the Lyapunov function (super-martingale)

$$
V(\rho)=\sum_{0\leq n_1
$$

that converges in average towards 0 since

$$
\mathbb{E}\left(V(\rho_{k+1})\bigm|\rho_k\right)\leq\left(\max_{0\leq n_1
$$

Probability that a realisation converges towards $|\bar{n}\rangle\langle\bar{n}|$ given by its initial population $\langle \bar{n}|\rho_0|\bar{n}\rangle$

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0)

[Photons measured by resonant qubits](#page-9-0)

[Measurement errors](#page-12-0)

[Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

Photons measured by resonant qubits (1)

Wave function $|\Psi\rangle$ of the composite qubit/photon system just before D:

$$
\left(|g\rangle\langle g|\cos(\theta\sqrt{n}) + |e\rangle\langle e|\cos(\theta\sqrt{n+1}) + |g\rangle\langle e|\frac{\sin(\theta\sqrt{n})}{\sqrt{n}} a^{\dagger} - |e\rangle\langle g|a \frac{\sin(\theta\sqrt{n})}{\sqrt{n}} \right) |g\rangle|\psi\rangle
$$

= $|g\rangle \cos(\theta\sqrt{n})|\psi\rangle - |e\rangle a \frac{\sin(\theta\sqrt{n})}{\sqrt{n}}|\psi\rangle$

Resulting Markov process associated to the measurement of the observable $\sigma_z = |e\rangle\langle e| - |g\rangle\langle g|$ with classical output signal $y \in \{g, e\}$.

$$
|\psi_{k+1}\rangle = \left\{ \begin{array}{ll} \frac{\cos(\theta\sqrt{n})|\psi_k\rangle}{\sqrt{\langle\psi_k|\cos^2(\theta\sqrt{n})|\psi_k\rangle}} & \text{if } y_k = g \text{ with probability } \langle\psi_k|\cos^2(\theta\sqrt{n})|\psi_k\rangle\\ -\frac{\sin(\theta\sqrt{n})|\psi_k\rangle}{\sqrt{\langle\psi_k|\sin^2(\theta\sqrt{n})|\psi_k\rangle}} & \text{if } y_k = e \text{ with probability } \langle\psi_k|\sin^2(\theta\sqrt{n})|\psi_k\rangle\\ 11/53 & 11/53 \end{array} \right.
$$

$$
\rho_{k+1} = \left\{ \begin{array}{cl} \frac{M_g \rho_k M_g^{\dagger}}{\pi_r \left(M_{g} \rho_k M_g^{\dagger} \right)} & \text{if } y_k = g \text{ with probability } \text{Tr} \left(M_g \rho_k M_g^{\dagger} \right) ; \\ \frac{M_e \rho_k M_e^{\dagger}}{\pi_r \left(M_{e} \rho_k M_g^{\dagger} \right)} & \text{if } y_k = e \text{ with probability } \text{Tr} \left(M_e \rho_k M_e^{\dagger} \right) ; \end{array} \right.
$$

with measurement Kraus operators $\mathsf{M}_g=\cos(\theta\sqrt{\mathsf{n}})$ and $\mathsf{M}_e=\mathsf{a}\frac{\sin(\theta\sqrt{\mathsf{n}})}{\sqrt{\mathsf{n}}}$. Notice that, once again, $\mathsf{M}_g^{\dagger} \mathsf{M}_g + \mathsf{M}_e^{\dagger} \mathsf{M}_e = \mathsf{I}.$

For $\theta\sqrt{n}/\pi$ irrational for all n , almost surely towards vacuum state $|0\rangle\langle 0|$. Results from the following the Lyapunov function (super-martingale)

$$
V(\rho) = Tr(n\rho)
$$

since

$$
\mathbb{E}\left(V(\rho_{k+1})\bigm|\rho_k\right)=V(\rho_k)-\text{Tr}\left(\sin^2(\theta\sqrt{n})\rho_k\right).
$$

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0)

[Measurement errors](#page-12-0)

[Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

With measurement imperfections, use Bayes rule by taking as quantum state, the expectation value of ρ_{k+1} knowing ρ_k and the information provides by the imperfect measurement outcome.

Assume detector D broken. From

$$
\rho_{k+1} = \left\{ \begin{array}{cl} \frac{M_g \rho_k M_g^{\dagger}}{\text{Tr}\left(M_g \rho_k M_g^{\dagger}\right)} & \text{if } y_k = g \text{ with probability } \text{Tr}\left(M_g \rho_k M_g^{\dagger}\right) \\ \frac{M_e \rho_k M_e^{\dagger}}{\text{Tr}\left(M_e \rho_k M_e^{\dagger}\right)} & \text{if } y_k = e \text{ with probability } \text{Tr}\left(M_e \rho_k M_e^{\dagger}\right) \end{array} \right.
$$

we get the quantum channel:

$$
\rho_{k+1} = \mathcal{K}(\rho_k) \triangleq \mathbb{E}\left(\rho_{k+1} \middle| \rho_k\right) = \mathsf{M}_{g}\rho_k \mathsf{M}_{g}^{\dagger} + \mathsf{M}_{e}\rho_k \mathsf{M}_{e}^{\dagger}.
$$

When the qubit detector D , producing the classical measurement signal $y_k \in \{g, e\}$, has errors characterized by the error rate $\eta_e \in (0, 1)$ (resp. $\eta_{g} \in (0,1)$) the probability of detector outcome g (resp. e) knowing that the perfect outcome is e (resp. g), Bayes law gives directly

$$
\rho_{k+1} = \left\{\begin{array}{c} \mathbb{E}\left(\rho_{k+1} \Bigm| y_k = g, \rho_k\right) = \frac{(1-\eta_g)M_g \rho_k M_g^\dagger + \eta_e M_e \rho_k M_e^\dagger}{\text{Tr}\left((1-\eta_g)M_g \rho_k M_g^\dagger + \eta_e M_e \rho_k M_e^\dagger\right)}\\ \text{with probability } \mathbb{P}(y_k = g|\rho_k) = \text{Tr}\left((1-\eta_g)M_g \rho_k M_g^\dagger + \eta_e M_e \rho_k M_e^\dagger\right),\\ \mathbb{E}\left(\rho_{k+1} \Bigm| y_k = e, \rho_k\right) = \frac{\eta_g M_g \rho_k M_g^\dagger + (1-\eta_e)M_e \rho_k M_e^\dagger}{\text{Tr}\left(\eta_g M_g \rho_k M_g^\dagger + (1-\eta_e)M_e \rho_k M_e^\dagger\right)}\\ \text{with probability } \mathbb{P}(y_k = e|\rho_k) = \text{Tr}\left(\eta_g M_g \rho_k M_g^\dagger + (1-\eta_e)M_e \rho_k M_e^\dagger\right) \end{array}\right.
$$

Notice that a broken detector corresponds to $\eta_e = \eta_g = 1/2$ and one recovers the above quantum channel.

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0)

[Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

General structure of discrete-time SME based on a quantum channel with the following Kraus decomposition (which is not unique)

$$
\mathcal{K}(\rho) = \sum_{\mu} M_{\mu} \rho M_{\mu}^{\dagger} \quad \text{where } \sum_{\mu} M_{\mu}^{\dagger} M_{\mu} = I
$$

and a left stochastic matrix $(\eta_{y,\mu})$ where y corresponds to the different imperfect measurement outcomes. With $\mathcal{K}_y(\rho)=\sum_\mu \eta_{y,\mu}\mathsf{M}_\mu\rho\mathsf{M}_\mu^\dagger$, ones gets the following SME:

$$
\rho_{k+1} = \frac{\mathcal{K}_{y_k}(\rho_k)}{\text{Tr}(\mathcal{K}_{y_k}(\rho_k))}
$$
 where $y_k = y$ with probability $\text{Tr}(\mathcal{K}_y(\rho_k))$

Notice that $\mathcal{K} = \sum_{\mathsf{y}} \mathcal{K}_{\mathsf{y}}$ since η is left stochastic.

Here the Hilbert space $\mathcal H$ is arbitrary and can be of infinite dimension, the Kraus operator M_{μ} are bounded operator on H and ρ is a density operator on H (Hermitian, trace-class with trace one, non-negative). When the index y or μ are continuous, discrete sums are replaced by integrals and probabilities by probability densities.

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0) [Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0)

Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

Qubits measured by dispersive photons (discrete-time) (1)

Probe photon in the coherent state $|i\frac{\alpha}{\sqrt{2}}\rangle$ with $\alpha>0$. Just before D the composite qubit/photon wave function |Ψ⟩ reads:

$$
\left(|g\rangle\langle g|e^{-i\theta\mathfrak{n}}+|e\rangle\langle e|e^{i\theta\mathfrak{n}}\right)|\psi\rangle|i\tfrac{\alpha}{\sqrt{2}}\rangle=\langle g|\,\psi\rangle\,|g\rangle\,\,|ie^{-i\theta}\tfrac{\alpha}{\sqrt{2}}\rangle+\langle e|\,\psi\rangle\,|e\rangle\,\,|ie^{i\theta}\tfrac{\alpha}{\sqrt{2}}\rangle.
$$

Measurement outcome $y \in \mathbb{R}$ corresponding to observable

$$
Q = \frac{a + a^{\dagger}}{\sqrt{2}} \equiv \int_{-\infty}^{+\infty} q|q\rangle\langle q|dq
$$
 where $\langle q|q'\rangle = \delta(q - q').$

Since $|i e^{\pm i \theta} \frac{\alpha}{\sqrt{2}}\rangle = \frac{1}{\pi^{1/4}} \int_{-\infty}^{+\infty} e^{i q \alpha \cos \theta} e^{-\frac{(q \pm \alpha \sin \theta)^2}{2}} |q\rangle dq,$ we have

$$
\langle g|\,\psi\rangle\,|g\rangle\,|ie^{-i\theta}\frac{\alpha}{\sqrt{2}}\rangle + \langle e|\,\psi\rangle\,|e\rangle\,|ie^{i\theta}\frac{\alpha}{\sqrt{2}}\rangle
$$
\n
$$
= \frac{1}{\pi^{1/4}}\int_{-\infty}^{+\infty} e^{iq\alpha\cos\theta} \left(e^{-\frac{(q-\alpha\sin\theta)^2}{2}}\,\langle g|\,\psi\rangle\,|g\rangle + e^{-\frac{(q+\alpha\sin\theta)^2}{2}}\,\langle e|\,\psi\rangle\,|e\rangle\right)|q\rangle dq.
$$

Thus

$$
|\psi_{k+1}\rangle = e^{i y_k \alpha \cos \theta} \frac{e^{-\frac{(y_k - \alpha \sin \theta)^2}{2}} \langle g | \psi_k \rangle |g \rangle + e^{-\frac{(y_k + \alpha \sin \theta)^2}{2}} \langle e | \psi_k \rangle |e \rangle}{\sqrt{e^{-(y_k - \alpha \sin \theta)^2} |\langle g | \psi_k \rangle|^2 + e^{-(y_k + \alpha \sin \theta)^2} |\langle e | \psi_k \rangle|^2}}
$$

where $y_k \in [y, y + dy]$ with prob. $\frac{e^{-(y - \alpha \sin \theta)^2} |\langle g | \psi_k \rangle|^2 + e^{-(y + \alpha \sin \theta)^2} |\langle e | \psi_k \rangle|^2}{\sqrt{\pi}} dy$.

Density operator formulation

$$
\rho_{k+1} = \frac{M_{y_k} \rho_k M_{y_k}^\dagger}{\text{Tr}\left(M_{y_k} \rho_k M_{y_k}^\dagger\right)} \quad \text{where } y_k \in [y, y + dy] \text{ with probability } \text{Tr}\left(M_{y} \rho_k M_{y}^\dagger\right) dy
$$

and measurement Kraus operators

$$
M_y = \frac{1}{\pi^{1/4}} e^{-\frac{(y-\alpha \sin \theta)^2}{2}} |g\rangle\langle g| + \frac{1}{\pi^{1/4}} e^{-\frac{(y+\alpha \sin \theta)^2}{2}} |e\rangle\langle e|.
$$

Notice that

$$
\text{Tr}\left(\mathsf{M}_{y}\rho\mathsf{M}_{y}^{\dagger}\right)=\frac{1}{\sqrt{\pi}}e^{-\left(y-\alpha\sin\theta\right)^{2}}\langle g|\rho|g\rangle+\frac{1}{\sqrt{\pi}}e^{-\left(y+\alpha\sin\theta\right)^{2}}\langle e|\rho|e\rangle
$$

and $\int_{-\infty}^{+\infty} M_y^{\dagger} M_y dy = |g\rangle\langle g| + |e\rangle\langle e| = 1$. For $\alpha \not\equiv 0$, almost sure convergence towards $|g\rangle$ or $|e\rangle$ deduced from Lyapunov function

$$
V(\rho) = \sqrt{\langle g|\rho|g\rangle\langle e|\rho|e\rangle} \text{ with } \mathbb{E}\left(V(\rho_{k+1})\middle| \rho_k\right) = e^{-\alpha^2\sin^2\theta} V(\rho_k).
$$

Qubits measured by dispersive photons (discrete-time) (3)

PSI BB

Detection imperfections: probability density of y knowing perfect detection q is a Gaussian given by $\frac{1}{\sqrt{\pi}\sigma}e^{-\frac{(y-q)^2}{\sigma}}$ for some error parameter $\sigma>0.$ Then the above Markov process becomes

$$
\rho_{k+1} = \frac{\mathcal{K}_{y_k}(\rho_k)}{\text{Tr}\left(\mathcal{K}_{y_k}(\rho_k)\right)}
$$

where

$$
\mathcal{K}_{y}(\rho)=\int_{-\infty}^{\infty}\frac{1}{\sqrt{\pi\sigma}}e^{-\frac{(y-q)^{2}}{\sigma}}\mathsf{M}_{q}\rho\mathsf{M}_{q}^{\dagger}\,dq
$$

Standard computations using

$$
\mathsf{M}_{q}=\tfrac{1}{\pi^{1/4}}e^{-\frac{(q-\alpha\sin\theta)^{2}}{2}}|g\rangle\!\langle g|+\tfrac{1}{\pi^{1/4}}e^{-\frac{(q+\alpha\sin\theta)^{2}}{2}}|e\rangle\!\langle e|
$$

show that

$$
\mathcal{K}_{y}(\rho) = \frac{1}{\sqrt{\pi(1+\sigma)}} \left(e^{-\frac{(y-\alpha\sin\theta)^2}{1+\sigma}} \langle g|\rho|g\rangle |g\rangle\langle g| + e^{-\frac{(y+\alpha\sin\theta)^2}{1+\sigma}} \langle e|\rho|e\rangle |e\rangle\langle e| + e^{-\frac{y^2}{1+\sigma} - (\alpha\sin\theta)^2} \left(\langle e|\rho|g\rangle |e\rangle\langle g| + \langle g|\rho|e\rangle |g\rangle\langle e|\right) \right).
$$

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0) [Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

Density operator formulation (perfect detection)

$$
\rho_{k+1} = \frac{M_{y_k} \rho_k M_{y_k}^{\dagger}}{Tr\left(M_{y_k} \rho_k M_{y_k}^{\dagger}\right)}
$$
 where $y_k \in [y, y + dy]$ with probability Tr $\left(M_{y} \rho_k M_{y}^{\dagger}\right) dy$

and measurement Kraus operators

$$
M_y=\tfrac{1}{\pi^{1/4}}e^{-\frac{(y-\alpha\sin\theta)^2}{2}}|g\rangle\langle g|+\tfrac{1}{\pi^{1/4}}e^{-\frac{(y+\alpha\sin\theta)^2}{2}}|e\rangle\langle e|.
$$

Since

$$
\mathbb{E}\left(y_k \middle| \rho_k = \rho\right) \triangleq \overline{y} = -\alpha \sin \theta \text{ Tr}(\sigma_z \rho), \ \mathbb{E}\left(y_k^2 \middle| \rho_k = \rho\right) \triangleq \overline{y^2} = 1/2 + (\alpha \sin \theta)^2.
$$

When $0 < \alpha \sin \theta = \epsilon \ll 1$, we have up-to third order terms versus ϵy ,

$$
\frac{M_{y}\rho M_{y}^{\dagger}}{Tr\left(M_{y}\rho M_{y}^{\dagger}\right)} = \frac{(\cosh(\epsilon y) - \sinh(\epsilon y)\sigma_{z})\rho(\cosh(\epsilon y) - \sinh(\epsilon y)\sigma_{z})}{\cosh(2\epsilon y) - \sinh(2\epsilon y)\,\operatorname{Tr}\left(\sigma_{z}\rho\right)} \\
\approx \frac{\rho - \epsilon y(\sigma_{z}\rho + \rho\sigma_{z}) + (\epsilon y)^{2}(\rho + \sigma_{z}\rho\sigma_{z})}{1 - 2\epsilon y\,\operatorname{Tr}\left(\sigma_{z}\rho\right) + 2(\epsilon y)^{2}} \\
= \rho + (\epsilon y)^{2} \Big(\sigma_{z}\rho\sigma_{z} - \rho\Big) + \Big(\sigma_{z}\rho + \rho\sigma_{z} - 2\,\operatorname{Tr}\left(\sigma_{z}\rho\right)\rho\Big) \Big(-\epsilon y - 2(\epsilon y)^{2}\,\operatorname{Tr}\left(\sigma_{z}\rho\right)\Big).
$$

Replacing
$$
\epsilon^2 y^2
$$
 by its expectation value one gets, up to third order in ϵy and ϵ :
\n
$$
\frac{M_y \rho M_y^{\dagger}}{Tr \left(M_y \rho M_y^{\dagger}\right)} \approx \rho + \frac{\epsilon^2}{2} \left(\sigma_z \rho \sigma_z - \rho\right) + \left(\sigma_z \rho + \rho \sigma_z - 2 \text{ Tr} \left(\sigma_z \rho\right) \rho\right) \left(-\epsilon y - \epsilon^2 \text{ Tr} \left(\sigma_z \rho\right)\right).
$$

Set $\epsilon^2 = 2dt$ and $\epsilon y = -2$ Tr $(\sigma_z \rho) dt - dW$. Since by construction

$$
\mathbb{E}\left(\epsilon y_k \middle| \rho_k = \rho\right) = -\epsilon^2 \operatorname{Tr}\left(\sigma_z \rho\right) \text{ and } \mathbb{E}\left(\left(\epsilon y_k\right)^2 \middle| \rho_k = \rho\right) = \epsilon^2 + \epsilon^4
$$

one has $\mathbb{E}\left(d\mathcal{W}\bigm| \rho\right)=0$ and $\mathbb{E}\left(d\mathcal{W}^2\bigm| \rho\right)=dt$ up to order 4 versus ϵ . Thus for dt very small, we recover the following diffusive $SME⁵$

$$
\rho_{t+dt} = \rho_t + dt \left(\sigma_z \rho_t \sigma_z - \rho \right) + \left(\sigma_z \rho_t + \rho_t \sigma_z - 2 \text{ Tr} \left(\sigma_z \rho_t \right) \rho \right) \left(dy_t - 2 \text{ Tr} \left(\sigma_z \rho_t \right) dt \right)
$$

with $dy_t = 2 \operatorname{Tr} (\sigma_{\mathsf{z}} \rho_t) \, dt + dW_t$ replacing $-\epsilon y$ and $dy_t^2 = dW_t^2 = dt$ (Ito rules).

 5 Convergence in distribution when $dt\mapsto 0^+$: tightness property

 $\forall T > 0, \exists M > 0, \forall dt > 0, \forall k, k_1, k_2 \in \{0, ..., [T/dt]\}, \mathbb{E} \left(||\rho_{k_1} - \rho_k||^2 || ||\rho_{k_2} - \rho_k||^2 || \rho_0 \right) \leq M(k_1 - k_2) dt$

and (Markov generator) convergence of $\frac{\mathbb{E}\left(f(\rho_{k+1} \mid \rho_{k}=\rho\right)-f(\rho)}{dt}$ towards $\mathbb{E}\left(df_{t} \mid \rho_{t}=\rho\right)/dt$ for any C^2 real function f .

With measurement errors parameterized by $\sigma > 0$, the partial Kraus map

$$
\mathcal{K}_{y}(\rho) = \frac{1}{\sqrt{\pi(1+\sigma)}} \left(e^{-\frac{(y-\epsilon)^{2}}{1+\sigma}} \langle g|\rho|g\rangle|g\rangle\langle g| + e^{-\frac{(y+\epsilon)^{2}}{1+\sigma}} \langle e|\rho|e\rangle|e\rangle\langle e| + e^{-\frac{y^{2}}{1+\sigma}-\epsilon^{2}} \left(\langle e|\rho|g\rangle|e\rangle\langle g| + \langle g|\rho|e\rangle|g\rangle\langle e| \right) \right)
$$

yields $\mathbb{E}\left(y_k \middle| \rho_k\right) \triangleq \overline{y} = -\epsilon \text{ Tr}\left(\sigma_\text{z}\rho\right)$ and $\mathbb{E}\left(y_k^2 \middle| \rho_k\right) \triangleq \overline{y^2} = (1+\sigma)/2 + \epsilon^2$. Similar approximations with $\epsilon^2 = 2 dt$ and dt very small, yield an SME with detection efficiency $\eta = \frac{1}{1+\sigma}$.

$$
\rho_{t+dt} = \rho_t + dt \Big(\sigma_z \rho_t \sigma_z - \rho \Big) + \sqrt{\eta} \Big(\sigma_z \rho_t + \rho_t \sigma_z - 2 \operatorname{Tr} (\sigma_z \rho_t) \rho \Big) dW_t
$$

with $dy_t = \sqrt{\eta} \mathsf{Tr} \left(\sigma_z \rho_t + \rho_t \sigma_z \right) + dW_t \sim -\epsilon y/\sqrt{1+\sigma}$. Convergence towards either $|g\rangle$ or $|e\rangle$ (QND measurement of the qubit) based on Lyapunov fonction $V(\rho)=\sqrt{1-\left.\operatorname{Tr}\left(\sigma_{\!\mathbf{z}}\rho\right)\right.^{2}}$ and Ito rules:

$$
dV = -\frac{zdz}{\sqrt{1-z^2}} - \frac{dz^2}{2(1-z^2)^{3/2}} = -\frac{zdz}{\sqrt{1-z^2}} - 2\eta^2 Vdt
$$

where $z=\text{\sf Tr}\,(\sigma_{\text{\sf z}}\rho)$, $dz=2\eta(1-z^2)dW$ and $dz^2=4\eta^2(1-z^2)^2dt$. Since $\mathbb{E}\left(dz\bigm|z\right)=0$, $\bar{V}_t=\mathbb{E}\left(V(z_t)\bigm|z_0\right)$ solution of $\frac{d}{dt}\bar{V}_t=-2\eta^2\bar{V}_t$.

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0) [Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

$Diffusive SMF⁶$

General form of diffusive SME with Ito formulation:

$$
d\rho_t = \left(-i[H, \rho_t] + \sum_{\nu} L_{\nu} \rho_t L_{\nu}^{\dagger} - \frac{1}{2} (L_{\nu}^{\dagger} L_{\nu} \rho_t + \rho_t L_{\nu}^{\dagger} L_{\nu})\right) dt
$$

+
$$
\sum_{\nu} \sqrt{\eta_{\nu}} \left(L_{\nu} \rho_t + \rho_t L_{\nu}^{\dagger} - \text{Tr}\left((L_{\nu} + L_{\nu}^{\dagger}) \rho_t\right) \rho_t\right) dW_{\nu, t},
$$

$$
dy_{\nu, t} = \sqrt{\eta_{\nu}} \text{ Tr}\left(L_{\nu} \rho_t + \rho_t L_{\nu}^{\dagger}\right) dt + dW_{\nu, t}
$$

with efficiencies $\eta_{\nu} \in [0, 1]$ and $dW_{\nu,t}$ being independent Wiener processes. Equivalent formulation with Ito rules:

$$
\rho_{t+dt} = \frac{M_{dy_t} \rho_t M_{dy_t}^\dagger + \sum_{\nu} (1 - \eta_{\nu}) L_{\nu} \rho_t L_{\nu}^\dagger dt}{\text{Tr} \left(M_{dy_t} \rho_t M_{dy_t}^\dagger + \sum_{\nu} (1 - \eta_{\nu}) L_{\nu} \rho_t L_{\nu}^\dagger dt \right)}
$$

with $M_{dy_t} = 1 + (-iH - \frac{1}{2} \sum_{\nu} L_{\nu}^{\dagger} L_{\nu}) dt + \sum_{\nu} \sqrt{\eta_{\nu}} dy_{\nu,t} L_{\nu}$. Moreover $dy_{\nu,t} = s_{\nu,t} \sqrt{dt}$ follows the following probability density knowing ρ_t :

$$
\mathbb{P}\Big(\left(s_{\nu,t}\in\left[s_{\nu},s_{\nu}+ds_{\nu}\right]\right)_{\nu}\mid\rho_{t}\Big)=\mathrm{\;Tr}\left(\mathsf{M}_{s\sqrt{dt}}\;\rho_{t}\mathsf{M}_{s\sqrt{dt}}^{\dagger}+\sum_{\nu}(1-\eta_{\nu})\mathsf{L}_{\nu}\rho_{t}\mathsf{L}_{\nu}^{\dagger}dt\right)\prod_{\nu}\frac{\mathrm{e}^{-\frac{s_{\nu}^{2}}{2}}ds_{\nu}}{\sqrt{2\pi}}.
$$

⁶A. Barchielli and M. Gregoratti. Quantum Trajectories and Measurements in Continuous Time: the Diffusive Case. Springer Verlag, 2009.

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0) [Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit Diffusive SME

Kraus maps and numerical schemes for diffusive SME [Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

Kraus maps and numerical schemes for diffusive $SME⁷$

Linearity/positivity/trace preserving numerical integration scheme for

$$
d\rho_t = \left(-i[H, \rho_t] + \sum_{\nu} L_{\nu} \rho_t L_{\nu}^{\dagger} - \frac{1}{2} (L_{\nu}^{\dagger} L_{\nu} \rho_t + \rho_t L_{\nu}^{\dagger} L_{\nu})\right) dt
$$

+
$$
\sum_{\nu} \sqrt{\eta_{\nu}} \left(L_{\nu} \rho_t + \rho_t L_{\nu}^{\dagger} - \text{Tr}\left((L_{\nu} + L_{\nu}^{\dagger}) \rho_t\right) \rho_t\right) dW_{\nu, t},
$$

$$
d y_{\nu, t} = \sqrt{\eta_{\nu}} \text{ Tr}\left(L_{\nu} \rho_t + \rho_t L_{\nu}^{\dagger}\right) dt + dW_{\nu, t}
$$

With $M_0 = I + (-iH - \frac{1}{2} \sum_{\nu} L_{\nu}^{\dagger} L_{\nu}) dt, S = M_0^{\dagger} M_0 + \left(\sum_{\nu} L_{\nu}^{\dagger} L_{\nu}\right) dt$ set

$$
\widetilde{M}_0 = M_0 S^{-1/2}, \quad \widetilde{L}_{\nu} = L_{\nu} S^{-1/2}.
$$

Sampling of $dy_{\nu,t} = s_{\nu,t} \sqrt{dt}$ according to the following probability law:

$$
\mathbb{P}\Big(\left(s_{\nu,t}\in\left[s_{\nu},s_{\nu}+d s_{\nu}\right]\right)_{\nu}\mid\rho_{t}\Big)=\mathrm{Tr}\left(\widetilde{\mathsf{M}}_{s\sqrt{dt}}\rho_t \widetilde{\mathsf{M}}_{s\sqrt{dt}}^{\dagger}+\sum_{\nu}(1-\eta_{\nu})\widetilde{\mathsf{L}}_{\nu}\rho_t \widetilde{\mathsf{L}}_{\nu}^{\dagger}dt\right)\prod_{\nu}\frac{\mathrm{e}^{-\frac{s_{\nu}^{2}}{2}}d s_{\nu}}{\sqrt{2\pi}}.
$$

where $\widetilde{{\mathsf{M}}}_{\mathsf{d} \mathsf{y}_t} = \widetilde{{\mathsf{M}}}_0 + \sum_{\nu} \sqrt{\eta_{\nu}} \mathsf{d} \mathsf{y}_{\nu, \mathsf{t}} \widetilde{{\mathsf{L}}}_{\nu}.$ Exact Kraus-map formulation:

$$
\rho_{t+dt} = \frac{\widetilde{M}_{dy_t} \rho_t \widetilde{M}_{dy_t}^\dagger + \sum_{\nu} (1 - \eta_{\nu}) \widetilde{L}_{\nu} \rho_t \widetilde{L}_{\nu}^\dagger dt}{\text{Tr} \left(\widetilde{M}_{dy_t} \rho_t \widetilde{M}_{dy_t}^\dagger + \sum_{\nu} (1 - \eta_{\nu}) \widetilde{L}_{\nu} \rho_t \widetilde{L}_{\nu}^\dagger dt \right)}.
$$

^{7&}lt;br>" A. Jordan, A. Chantasri, P.R. and B.Huard. Anatomy of fluorescence: quantum trajectory statistics from continuously measuring spontaneous emission. Quantum Studies: Mathematics and Foundations, $3(3):237-263, 2016$ 29 / 53

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0) [Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0)

[Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

Qubits measured by photons (resonant) (1)

Probe photon is in the vacuum state |0⟩. Composite qubit/photon wave function $|\Psi\rangle$ before D :

$$
\begin{aligned}\n\left(|g\rangle\langle g|\cos(\theta\sqrt{n}) + |e\rangle\langle e|\cos(\theta\sqrt{n+1}) + |g\rangle\langle e|\frac{\sin(\theta\sqrt{n})}{\sqrt{n}} a^{\dagger} - |e\rangle\langle g|a\frac{\sin(\theta\sqrt{n})}{\sqrt{n}} \right) |\psi\rangle|0\rangle \\
&= \left(\langle g|\psi\rangle|g\rangle + \cos\theta \langle e|\psi\rangle|e\rangle \right)|0\rangle + \sin\theta \langle e|\psi\rangle|g\rangle|1\rangle.\n\end{aligned}
$$

With measurement observable n $= \sum_{n\geq 0} n|n\rangle\!\langle n|$, outcome $y\in\{0,1\}$ reads (density operator formulation)

$$
\rho_{k+1} = \left\{ \begin{array}{cl} \frac{M_0 \rho_k M_0^{\dagger}}{Tr \left(M_0 \rho_k M_0^{\dagger} \right)} & \text{if } y_k = 0 \text{ with probability } Tr \left(M_0 \rho_k M_0^{\dagger} \right) \, ; \\ \frac{M_1 \rho_k M_1^{\dagger}}{Tr \left(M_1 \rho_k M_1^{\dagger} \right)} & \text{if } y_k = 1 \text{ with probability } Tr \left(M_1 \rho_k M_1^{\dagger} \right) \, ; \end{array} \right.
$$

measurement Kraus operators $M_0 = |g\rangle\langle g| + \cos\theta |e\rangle\langle e|$ and $M_1 = \sin\theta |g\rangle\langle e|$. Almost convergence analysis when $\cos^2(\theta) < 1$ towards \ket{g} via the Lyapunov function (super martingale)

$$
V(\rho) = \text{Tr}(|e \rangle \langle e | \rho) \text{ since } \mathbb{E}\left(V(\rho_{k+1}) \middle| \rho_k\right) = \cos^2 \theta \ V(\rho_k).
$$

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0) [Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0)

[Towards jump SME](#page-31-0)

[Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

Towards jump SME (1)

Since Tr
$$
(M_0 \rho M_0^{\dagger}) = 1 - \sin^2 \theta
$$
 Tr $(\alpha \rho \sigma_+)$ and
Tr $(M_1 \rho M_1^{\dagger}) = \sin^2 \theta$ Tr $(\alpha \rho \sigma_+)$, one gets with $\sin^2 \theta = dt$ and $y \sim dN$, an
SME driven by Poisson process $dN_t \in \{0, 1\}$ of expectation value
Tr $(\alpha \rho_t \sigma_+)$ dt knowing ρ_t :

$$
d\rho_t = \left(\sigma \rho_t \sigma_+ - \frac{1}{2}(\sigma_+ \sigma \rho_t + \rho_t \sigma_+ \sigma)\right) dt + \left(\frac{\sigma \rho_t \sigma_+}{Tr(\sigma \rho_t \sigma_+)} - \rho_t\right) \left(dN_t - \left(Tr(\sigma \rho_t \sigma_+) \right) dt\right).
$$

At each time-step, one has the following choice:

 $▶$ with probabilty $1 - Tr(\sigma \rho_t \sigma_+) dt$, $dN_t = N_{t+dt} - N_t = 0$ and

$$
\rho_{t+dt} = \frac{M_0 \rho_t M_0^{\dagger}}{\text{Tr}\left(M_0 \rho_t M_0^{\dagger}\right)}
$$

with $M_0 = I - \frac{dt}{2} \sigma_+ \sigma$. \triangleright with probability Tr($\sigma \rho_t \sigma_+$) dt, dN_t = N_{t+dt} – N_t = 1 and $\rho_{t+dt} = \frac{\mathsf{M}_1 \rho_t \mathsf{M}_1^\dagger}{\mathsf{Tr} \left(\mathsf{M}_1 \rho_t \mathsf{M}_1^\dagger \right)}$ with $M_1 = \sqrt{dt} \sigma$.

33 / 53

PSLR6

Towards jump SME (2)

PSLR6

With left stochastic matrix $\left(\begin{array}{cc} 1-\bar\theta dt & 1-\bar\eta\ 1dt & \bar\pi \end{array}\right)$ $\bar{\theta}$ dt $\bar{\eta}$) including shot noise of rate $\bar{\theta} \geq 0$ and detection efficiency $\bar{\eta} \in [0,1]$:

$$
\blacktriangleright \ dN_t = N_{t+dt} - N_t = 0 \text{ and}
$$

$$
\rho_{t+dt} = \frac{(1 - \bar{\theta}dt)M_0\rho_t M_0^{\dagger} + (1 - \bar{\eta})M_1\rho_t M_1^{\dagger}}{\text{Tr}\left((1 - \bar{\theta}dt)M_0\rho_t M_0^{\dagger} + (1 - \bar{\eta})M_1\rho_t M_1^{\dagger}\right)} = \frac{M_0\rho_t M_0^{\dagger} + (1 - \bar{\eta})M_1\rho_t M_1^{\dagger}}{\text{Tr}\left(M_0\rho_t M_0^{\dagger} + (1 - \bar{\eta})M_1\rho_t M_1^{\dagger}\right)} + O(dt^2).
$$

with probability

$$
1 - \left(\bar{\theta} + \bar{\eta} \operatorname{Tr}(\sigma \rho_t \sigma_t)\right) dt = \operatorname{Tr}\left((1 - \bar{\theta} dt) \mathsf{M}_0 \rho_t \mathsf{M}_0^{\dagger} + (1 - \bar{\eta}) \mathsf{M}_1 \rho_t \mathsf{M}_1^{\dagger}\right) + O(dt^2)
$$

and where $\mathsf{M}_0 = 1 - \frac{dt}{2} \sigma_t \sigma$ and $\mathsf{M}_1 = \sqrt{dt} \sigma$.

$$
dN_t = N_{t+dt} - N_t = 1
$$
 and

$$
\rho_{t+dt} = \frac{\bar{\theta} dt M_0 \rho_t M_0^{\dagger} + \bar{\eta} M_1 \rho_t M_1^{\dagger}}{\text{Tr} \left(\bar{\theta} dt M_0 \rho_t M_0^{\dagger} + \bar{\eta} M_1 \rho_t M_1^{\dagger} \right)} = \frac{\bar{\theta} \rho_t + \bar{\eta} \sigma \rho_t \sigma_t}{\bar{\theta} + \bar{\eta} \text{Tr} \left(\sigma \rho_t \sigma_t \right)} + O(dt)
$$

with probability

$$
(\bar{\theta} + \bar{\eta} \operatorname{Tr}(\sigma \rho_t \sigma_+)) dt = \operatorname{Tr} (\bar{\theta} dt M_0 \rho_t M_0^{\dagger} + \bar{\eta} M_1 \rho_t M_1^{\dagger}) + O(dt^2)
$$

34/53

Towards jump SME (3)

PSI BB

Jump SME with shot noise rate $\bar{\theta}$ and detection efficiency $\bar{\eta}$

$$
d\rho_t = (\sigma \rho_t \sigma_t - \frac{1}{2} (\sigma_t \sigma \rho_t + \rho_t \sigma_t \sigma)) dt + \left(\frac{\overline{\theta} \rho_t + \overline{\eta} \sigma \rho_t \sigma_t}{\text{Tr}(\overline{\theta} \rho_t + \overline{\eta} \sigma \rho_t \sigma_t)} - \rho_t \right) \left(dN_t - \left(\overline{\theta} + \overline{\eta} \text{Tr}(\sigma \rho_t \sigma_t) \right) dt \right).
$$

corresponds to the following choices

$$
\blacktriangleright \ dN_t = N_{t+dt} - N_t = 0
$$

$$
\rho_{t+dt} = \frac{M_0 \rho_t M_0^{\dagger} + (1-\bar{\eta}) M_1 \rho_t M_1^{\dagger}}{\text{Tr}\left(M_0 \rho_t M_0^{\dagger} + (1-\bar{\eta}) M_1 \rho_t M_1^{\dagger}\right)}
$$

with probability $1-(\bar{\theta}+\bar{\eta} \; \text{Tr}\left(\sigma \, \rho_t \sigma_{\!+}\right)) dt$,

 \blacktriangleright dN_t = N_{t+dt} – N_t = 1 and

$$
\rho_{t+dt} = \frac{\bar{\theta}\rho_t + \bar{\eta}\sigma \rho_t \sigma_t}{\bar{\theta} + \bar{\eta} \text{ Tr}(\sigma \rho_t \sigma_t)}
$$

with probability $1-(\bar\theta+\bar\eta\> \mathsf{Tr}\,(\sigma\,\rho_t\sigma_{\!+})\,)dt$, where $M_0 = I - \frac{dt}{2}(\sigma_+ \sigma_+ I)$ and $M_1 = \sqrt{dt} \sigma_-$.

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0) [Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0)

[Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

Jump SME in continuous-time⁸ (1)

General structure of a Jump SME in continuous time with counting process N_t with increment expectation value knowing ρ_t given by $\langle dN_t\rangle=\left(\bar{\theta}+\bar{\eta}~{\rm Tr}\left(V\rho_tV^\dagger\right)\,\right)dt,$ with $\bar{\theta} \ge 0$ (shot-noise rate) and $\bar{\eta} \in [0,1]$ (detection efficiency):

$$
d\rho_t = \left(-i[H, \rho_t] + V\rho_t V^{\dagger} - \frac{1}{2}(V^{\dagger}V\rho_t + \rho_t V^{\dagger}V)\right) dt + \left(\frac{\bar{\theta}\rho_t + \bar{\eta}V\rho_t V^{\dagger}}{\bar{\theta} + \bar{\eta} \operatorname{Tr}(V\rho_t V^{\dagger})} - \rho_t\right) \left(dN_t - \left(\bar{\theta} + \bar{\eta} \operatorname{Tr}\left(V\rho_t V^{\dagger}\right)\right) dt\right).
$$

Here H and V are operators on an underlying Hilbert space $\mathcal H$. H being Hermitian, At each time-step between t and $t + dt$, one has the following recipe

▶ dN $_t=0$ with probability $1-\left(\bar{\theta}+\bar{\eta} \; \text{Tr}\left({\text{V}}_{\rho_t}{\text{V}}^{\dagger}\right)\,\right)$ dt

$$
\rho_{t+dt} = \frac{M_0 \rho_t M_0^{\dagger} + (1 - \bar{\eta}) V \rho_t V^{\dagger} dt}{Tr \left(M_0 \rho_t M_0^{\dagger} + (1 - \bar{\eta}) V \rho_t V^{\dagger} dt \right)}
$$

where $M_0 = I - \left(iH + \frac{1}{2}V^{\dagger}V\right)dt$. \blacktriangleright dN_t = 1 with probability $\left(\bar{\theta} + \bar{\eta} \; \text{Tr} \left(\mathsf{V} \rho_t \mathsf{V}^\dagger \right) \; \right)$ dt,

$$
\rho_{t+dt} = \frac{\bar{\theta}\rho_t + \bar{\eta}V\rho_tV^{\dagger}}{\bar{\theta} + \bar{\eta} \operatorname{Tr}\left(V\rho_tV^{\dagger}\right)}.
$$

⁸ J. Dalibard, Y. Castin, and K. Mølmer. Wave-function approach to dissipative processes in quantum optics. $Phys.$ $Rev.$ Lett., $68(5).580-583.$ 1992.

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0) [Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

Combine in a single SME Wiener and Poisson noises induced by diffusive and counting measurements:

$$
d\rho_t = \left(-i[H, \rho_t] + L\rho_t L^{\dagger} - \frac{1}{2}(L^{\dagger}L\rho_t + \rho_t L^{\dagger}L) + V\rho_t V^{\dagger} - \frac{1}{2}(V^{\dagger}V\rho_t + \rho_t V^{\dagger}V)\right) dt + \sqrt{\eta} \left(L\rho_t + \rho_t L^{\dagger} - \text{Tr}\left((L + L^{\dagger})\rho_t\right)\rho_t\right) dW_t + \left(\frac{\bar{\theta}\rho_t + \bar{\eta}V\rho_t V^{\dagger}}{\bar{\theta} + \bar{\eta} \text{Tr}\left(V\rho_t V^{\dagger}\right)} - \rho_t\right) \left(dN_t - \left(\bar{\theta} + \bar{\eta} \text{Tr}\left(V\rho_t V^{\dagger}\right)\right) dt\right)
$$

With $dy_t = \sqrt{\eta}$ Tr $\left((L + L^{\dagger}) \rho_t \right) dt + dW_t$ and $dN_t = 0$ with probability $1-\left(\bar{\theta}+\bar{\eta} \; \mathsf{Tr}\left(\mathsf{V}\rho_t\mathsf{V}^\dagger\right)\,\right)dt$. Kraus-map equivalent formulation:

▶ for $dN_t = 0$ of probability $1 - \left(\bar{\theta} + \bar{\eta} \; \text{Tr} \left(\mathsf{V} \rho_t \mathsf{V}^\dagger \right) \; \right) dt$

$$
\rho_{t+dt} = \frac{M_{dy_t} \rho_t M_{dy_t}^\dagger + (1-\eta)L\rho_t L^\dagger dt + (1-\bar{\eta})V\rho_t V^\dagger dt}{Tr \left(M_{dy_t} \rho_t M_{dy_t}^\dagger + (1-\eta)L\rho_t L^\dagger dt + (1-\bar{\eta})V\rho_t V^\dagger dt\right)}
$$

with $M_{dy_t} = I - (iH + \frac{1}{2}L^{\dagger}L + \frac{1}{2}V^{\dagger}V) dt + \sqrt{\eta} dy_t L$. ▶ for $dN_t = 1$ of probability $(\bar{\theta} + \bar{\eta} \text{ Tr} (\nabla \rho_t \nabla^{\dagger})) dt$:

$$
\rho_{t+dt} = \frac{M_{dy_t} \tilde{\rho}_t M_{dy_t}^\dagger + (1-\eta)L \tilde{\rho}_t L^\dagger dt + (1-\bar{\eta})V \tilde{\rho}_t V^\dagger dt}{\text{Tr}\left(M_{dy_t} \tilde{\rho}_t M_{dy_t}^\dagger + (1-\eta)L \tilde{\rho}_t L^\dagger dt + (1-\bar{\eta})V \tilde{\rho}_t V^\dagger dt\right)} \text{ with } \tilde{\rho}_t = \frac{\bar{\theta} \rho_t + \bar{\eta} V \rho_t V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\dagger}{\bar{\theta} + \bar{\eta} \text{ Tr}\left(V \rho_t V^\dagger\right)} \text{ and } \frac{\bar{\theta} V^\d
$$

General mixed diffusive/jump SME $(2)^9$

+

$$
d\rho_t = \left(-i[H, \rho_t] + \sum_{\nu} L_{\nu} \rho_t L_{\nu}^{\dagger} - \frac{1}{2} (L_{\nu}^{\dagger} L_{\nu} \rho_t + \rho_t L_{\nu}^{\dagger} L_{\nu}) + \sum_{\mu} V_{\mu} \rho_t V_{\mu}^{\dagger} - \frac{1}{2} (V_{\mu}^{\dagger} V_{\mu} \rho_t + \rho_t V_{\mu}^{\dagger} V_{\mu})\right) dt
$$

+
$$
\sum_{\nu} \sqrt{\eta_{\nu}} \left(L_{\nu} \rho_t + \rho_t L_{\nu}^{\dagger} - \text{Tr}\left((L_{\nu} + L_{\nu}^{\dagger}) \rho_t\right) \rho_t\right) dW_{\nu, t}
$$

$$
\sum_{\mu} \left(\frac{\bar{\theta}_{\mu} \rho_t + \sum_{\mu'} \bar{\eta}_{\mu, \mu'} V_{\mu'} \rho_t V_{\mu'}^{\dagger}}{\bar{\theta}_{\mu} + \sum_{\mu'} \bar{\eta}_{\mu, \mu'} \text{Tr}\left(V_{\mu'} \rho_t V_{\mu'}^{\dagger}\right)} - \rho_t\right) \left(dN_{\mu, t} - \left(\bar{\theta}_{\mu} + \sum_{\mu'} \bar{\eta}_{\mu, \mu'} \text{Tr}\left(V_{\mu'} \rho_t V_{\mu'}^{\dagger}\right)\right) dt\right)
$$

where $\eta_\nu\in[0,1]$, $\bar\theta_\mu,\bar\eta_{\mu,\mu'}\ge0$ with $\bar\eta_{\mu'}=\sum_\mu\bar\eta_{\mu,\mu'}\le1$. The equivalent Kraus-map formulation ▶ When $\forall \mu,~dN_{\mu,t}=0$ (probability $1-\sum_{\mu}\left(\bar{\theta}_{\mu}+\bar{\eta}_{\mu}~\text{Tr}\left({\sf V}_{\mu}\rho_t{\sf V}_{\mu}^{\dagger}\right)\right)dt)$ we have

$$
\rho_{t+dt} = \frac{M_{dy_t} \rho_t M_{dy_t}^\dagger + \sum_{\nu} (1 - \eta_{\nu}) L_{\nu} \rho_t L_{\nu}^\dagger dt + \sum_{\mu} (1 - \bar{\eta}_{\mu}) V_{\mu} \rho_t V_{\mu}^\dagger dt}{\text{Tr} \left(M_{dy_t} \rho_t M_{dy_t}^\dagger + \sum_{\nu} (1 - \eta_{\nu}) L_{\nu} \rho_t L_{\nu}^\dagger dt + \sum_{\mu} (1 - \bar{\eta}_{\mu}) V_{\mu} \rho_t V_{\mu}^\dagger dt \right)}
$$

with $\mathsf{M}_{\mathsf{dy}_t} = I - \left(i \mathsf{H} + \frac{1}{2} \sum_{\nu} \mathsf{L}_{\nu}^\dagger \mathsf{L}_{\nu} + \frac{1}{2} \sum_{\mu} \mathsf{V}_{\mu}^\dagger \mathsf{V}_{\mu} \right) dt + \sum_{\nu} \sqrt{\eta_{\nu}} \mathsf{d}y_{\nu t} \mathsf{L}_{\nu}$ and where $dy_{\nu,t} = \sqrt{\eta_{\nu}} \mathsf{Tr} \left(\left(\mathsf{L}_{\nu} + \mathsf{L}_{\nu}^{\dagger} \right) \rho_t \right) dt + dW_{\nu,t}.$

 \blacktriangleright $\;$ If, for some μ , $dN_{\mu,t} = 1$ (probability $\left(\bar{\theta}_\mu + \sum_{\mu'} \bar{\eta}_{\mu,\mu'} \right.$ Tr $\left(\mathsf{V}_{\mu'} \rho_t \mathsf{V}_{\mu'}^\dagger \right) \Big)$ $dt)$ we have

$$
\rho_{t+dt} = \frac{M_{dy_t} \tilde{\rho}_t M_{dy_t}^{\dagger} + \sum_{\nu} (1 - \eta_{\nu}) L_{\nu} \tilde{\rho}_t L_{\nu}^{\dagger} dt + \sum_{\mu'} (1 - \bar{\eta}_{\mu'}) V_{\mu'} \tilde{\rho}_t V_{\mu'}^{\dagger} dt}{\text{Tr} \left(M_{dy_t} \tilde{\rho}_t M_{dy_t}^{\dagger} + \sum_{\nu} (1 - \eta_{\nu}) L_{\nu} \tilde{\rho}_t L_{\nu}^{\dagger} dt + \sum_{\mu'} (1 - \bar{\eta}_{\mu'}) V_{\mu'} \tilde{\rho}_t V_{\mu'}^{\dagger} dt \right)}
$$

$$
\text{with } \tilde{\rho}_t = \frac{\bar{\theta}_\mu \rho_t + \sum_{\mu'} \bar{\eta}_{\mu,\mu'} \mathbf{V}_{\mu'} \rho_t \mathbf{V}_{\mu'}^\dagger}{\bar{\theta}_\mu + \sum_{\mu'} \bar{\eta}_{\mu,\mu'} \mathbf{Tr} \left(\mathbf{V}_{\mu'} \rho_t \mathbf{V}_{\mu'}^\dagger\right)}.
$$

⁹ H. Amini, C. Pellegrini, and PR. Stability of continuous-time quantum filters with measurement imperfections. Russian Journal of Mathematical Physics, 21(3):297-315-, 2014. 40 / 53

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0)

[Photons measured by resonant qubits](#page-9-0)

[Measurement errors](#page-12-0)

[Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0)

[Towards jump SME](#page-31-0)

[Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

Four features¹⁰:

1. Bayes law:
$$
\mathbb{P}(\mu'/\mu) = \mathbb{P}(\mu/\mu')\mathbb{P}(\mu') / (\sum_{\nu'} \mathbb{P}(\mu/\nu')\mathbb{P}(\nu'))
$$
.

- 2. Schrödinger equations defining unitary transformations.
- 3. Randomness, irreversibility and dissipation induced by the measurement of observables with degenerate spectra.
- 4. Entanglement and tensor product for composite systems.

 \Rightarrow Discrete-time models with parameter p Take a set of operators $\mathsf{M}^\mathsf{p}_\mu$ satisfying $\sum_\mu (\mathsf{M}^\mathsf{p}_\mu)^\dagger \mathsf{M}^\mathsf{p}_\mu = \mathsf{I}$ and a left stochastic matrices $(\eta_{y_{\mathbf{t}}, \mu}^{\mathrm{p}})$. Consider the following Markov process of state ρ (density op.) and measured output y:

$$
\rho_{t+1} = \frac{\mathcal{K}_{y_t}^p(\rho_t)}{\text{Tr}(\mathcal{K}_{y_t}^p(\rho_t))}
$$
, with proba. $\mathbb{P}_{y_t}(\rho_t) = \text{Tr}(\mathcal{K}_{y_t}^p(\rho_t))$

with $\mathcal{K}^{\rm p}_\mathrm{y}(\rho)=\sum_{\mu=1}^m \eta^{\rm p}_{\mathrm{y},\mu}\mathsf{M}^{\rm p}_\mu\rho(\mathsf{M}^{\rm p}_\mu)^\dagger$. It is associated to the Kraus map (ensemble average, quantum channel)

$$
\mathbb{E}\left(\rho_{t+1}|\rho_t\|\right) = \sum_{y} \mathcal{K}^p_y(\rho_t) = \sum_{y} \mathcal{K}^p_y(\rho_t) = \sum_{\mu} M^p_{\mu} \rho_t(M^p_{\mu})^{\dagger}.
$$

¹⁰See the book of S. Haroche and J.M. Raimond.

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0) [Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

[Filtering and parameter estimation](#page-42-0)

[Feedback schemes](#page-47-0)

Computation of the likelihood function via the adjoint state (1)

 \blacktriangleright Denote by $\mathbb{P}_n(\rho, p)$ the probability of getting measurement trajectory n, $(y_t^{(n)})_{t=0,...,T}$, knowing the initial state $\rho_0^{(n)}=\rho$ and parameter p.

$$
\blacktriangleright \text{ Since } \rho_{t+1}^{(n)} = \frac{\mathcal{K}_{\substack{y_t \mid t \\ \text{Tr}\left(\mathcal{K}_{\substack{y_t \mid n}}^p\left(\rho_t^{(n)}\right)\right)}}{\text{Tr}\left(\mathcal{K}_{\substack{y_t \mid t \\ \text{Tr}\left(\rho_t^{(n)}\right)}^p\right)} \text{ with } \text{Tr}\left(\mathcal{K}_{\substack{y_t \mid t \\ \text{Tr}\left(\rho_t^{(n)}\right)}^p\left(\rho_t^{(n)}\right)\right) \text{ the probability}}
$$

of having detected $y_{t}^{(n)}$ knowing $\rho_{t}^{(n)}$ and p, a direct use of Bayes law yields

$$
\mathbb{P}_n(\rho, p) = \prod_{t=0}^T \; \text{Tr}\left(\mathcal{K}_{y_t^{(n)}}^p \left(\rho_t^{(n)}\right)\right) = \; \text{Tr}\left(\mathcal{K}_{y_T^{(n)}}^p \circ \ldots \circ \mathcal{K}_{y_0^{(n)}}^p(\rho)\right).
$$

| PSL®

Computation of the likelihood function via the adjoint state (2)

▶ With adjoint map \mathcal{K}^{p*}_y ($\forall A, B$, Tr $(\mathcal{K}^p_y(A) \ B) \equiv$ Tr $(A \ \mathcal{K}^{p*}_y(B))$):

$$
\mathbb{P}_n(\rho, p) = \operatorname{Tr}\left(\mathcal{K}^p_{\substack{y(n) \\ y(T)}} \circ \ldots \circ \mathcal{K}^p_{\substack{y(0) \\ y(0)}} (\rho) - I \right) = \operatorname{Tr}\left(\rho - \mathcal{K}^{p*}_{\substack{y(n) \\ y(0)}} \circ \ldots \circ \mathcal{K}^{p*}_{\substack{y(n) \\ y(T)}} (I) \right).
$$

 \blacktriangleright Normalized adjoint quantum filter 11 $E_t^{(n)}$ = $\mathcal{K}^{\mathbf{p} *}_{\mathcal{L}}$ y_t" $\left(E_{t+1}^{(n)}\right)$ $\frac{r_t}{Tr \left(\mathcal{K}_{(n)}^{P*} \left(E_{t+1}^{(n)} \right) \right)}$ with

$$
E_{T+1}^{(n)} = I/\text{Tr}(I), \text{ we get}
$$

$$
\mathbb{P}_n(\rho, p) = \prod_{t=T}^{0} \text{Tr}\left(K_{y_t^{(n)}}^{p*}\left(E_{t+1}^{(n)}\right)\right) \text{Tr}\left(\rho E_0^{(n)}\right) \triangleq g_n(Y, p) \text{Tr}\left(\rho E_0^{(n)}\right).
$$

y

▶ A simple expression of the gradients:

$$
\nabla \rho \log \mathbb P_n = \frac{E_0^{(n)}}{\mathsf{Tr}\left(\rho E_0^{(n)}\right)}, \quad \nabla_p \log \mathbb P_n \cdot \delta \mathrm p = \sum_{t=0}^{\mathcal{T}}\frac{\mathsf{Tr}\left(E_{t+1}^{(n)}\left(\nabla_p \mathcal K_{y_{\mathfrak k}^{(n)}}^p\left(\rho_t^{(n)}\right)\cdot \delta \mathrm p\right)\right)}{\mathsf{Tr}\left(E_{t+1}^{(n)}\, \mathcal K_{y_{\mathfrak k}^{(n)}}^p\left(\rho_t^{(n)}\right)\right)},
$$

¹¹M. Tsang. Time-symmetric quantum theory of smoothing. PRL 2009. S. Gammelmark, B. Julsgaard, and K. Mølmer. Past quantum states of a monitored system. PRL 2013.

MaxLike tomography based on N trajectories data $\mathsf{Y} = \left\{ \mathsf{y}_{\mathsf{t}=0,...,T}^{(\mathsf{n}=1,..., \mathsf{N})} \right\}$ $\left\{\begin{array}{l} \scriptstyle(\mathsf{n=1},...,\mathsf{N})\ \scriptstyle{\mathsf{t=0,...,\mathsf{T}}}\end{array}\right\}$

From $\mathbb{P}_\mathfrak{n}(\rho,\mathsf{p}) = \mathcal{g}_\mathsf{n}(\mathsf{Y},\mathsf{p})$ Tr $\left(\rho \mathcal{E}_0^{(n)}\right)$ $\binom{n}{0}$ we have $\mathbb{P}(\rho,\mathsf{p})\triangleq\prod^{N}$ $n=1$ $\mathbb{P}_\mathsf{n}(\rho,\mathsf{p}) = \bigg(\prod^N$ $n=1$ $g_n(Y,p)\bigg)\left(\prod^N\right)$ $n=1$ Tr $(\rho E_0^{(n)}$ $\begin{pmatrix} n \end{pmatrix}$.

MaxLike state tomography: p is known and ρ_M maximizes

$$
\rho \mapsto \sum_{n=1}^N \log\Big(\operatorname{\sf Tr}\Big(\rho {\mathcal E}_0^{(n)}\Big)\Big)
$$

a concave function on the convex set of density operators ρ : a well structured convex optimization problem.

 \blacktriangleright MaxLike process tomography: ρ is known and p_{ML} maximizes $p \mapsto f(p) = \log \mathbb{P}(\rho, p)$ those gradient is given by $\nabla_{\mathsf{p}}f(\mathsf{p})\cdot\delta\mathsf{p}=\sum_{n=1}^N\sum_{t=0}^T$ $\mathsf{Tr}\left(\begin{smallmatrix} E^{(n)} \\ E^{+1} \end{smallmatrix}\right)$ $\int_{\nabla_{\mathbf{p}}}\chi_{\mathbf{p}}$ y_t(n) $\left(\rho_t^{(n)}\right) \cdot \delta \mathbf{p}$) $\text{Tr}\left(E_{t+1}^{(n)}\ \mathcal{K}^{\mathbf{p}}\right)$ $\mathsf{y}_{\mathsf{t}}^{\mathsf{(n)}}$ $\frac{1}{\left(\rho_t^{(n)}\right)}$,

The Hessian $\nabla^2_{\mathsf{p}} f$ can be computed similarly (Fisher information).

SEPTER PSLEE

- ▶ For $\rho_{k+1} = \mathcal{K}(\rho_k)$, contraction for many distances¹² (nuclear norm, $fidelity$.
- Adjoint map (unital map) $A_{k+1} = \mathcal{K}^*(A_k)$ contracts spectrum¹³:

$$
\lambda_{\min}(A_k) \leq \lambda_{\min}(A_{k+1}) \leq \lambda_{\max}(A_{k+1}) \leq \lambda_{\max}(A_k).
$$

► Quantum filter
$$
\hat{\rho}_{k+1} = \frac{\kappa_{y_k}(\hat{\rho}_k)}{\text{Tr}(\kappa_{y_k}(\hat{\rho}_k))}
$$
 where y_k is governed by
\n
$$
\rho_{k+1} = \frac{\kappa_{y_k}(\rho_k)}{\text{Tr}(\kappa_{y_k}(\rho_k))}
$$
 with $\hat{\rho}_0 \neq \rho_0$: fidelity Tr² $\left(\sqrt{\sqrt{\hat{\rho}_k} \rho_k \sqrt{\hat{\rho}_k}}\right)$ is always a sub-martingale¹⁴

▶ Convergence issues around filtering and parameter estimation along quantum trajectories: seminal works of Belavkin in continuous-time, Van-Handel thesis at Caltech 2007. See also recent works of Nina Amini, Maël Bompais, Tristan Benoit and Clément Pellegrini.

 12 D. Petz. Monotone metrics on matrix spaces. Linear Algebra and its Applications, 244:81-96, 1996.

¹³R. Sepulchre, A. Sarlette, and PR.. Consensus in non-commutative spaces. In Decision and Control (CDC), 2010 49th IEEE Conference on, pages 65966601, 2010.

 14 PR. Fidelity is a sub-martingale for discrete-time quantum filters. IEEE Transactions on Automatic Control, 56(11):2743-2747, 2011.

[Intoduction](#page-2-0)

[Discrete-time SME](#page-6-0)

[Photons measured by dispersive qubits](#page-6-0) [Photons measured by resonant qubits](#page-9-0) [Measurement errors](#page-12-0) [Stochastic Master Equation \(SME\) in discrete-time](#page-15-0)

[Continuous-time Wiener SME](#page-17-0)

[Qubits measured by dispersive photons \(discrete-time\)](#page-17-0) Continuous-time diffusive limit

Diffusive SME

Kraus maps and numerical schemes for diffusive SME

[Continuous-time Poisson SME](#page-29-0)

[Qubits measured by photons \(resonant interaction\)](#page-29-0) [Towards jump SME](#page-31-0) [Jump SME in continuous-time](#page-35-0)

[Continous-time Wiener/Poisson SME](#page-37-0)

[Conclusion](#page-40-0)

[Filtering and parameter estimation](#page-42-0)

[Feedback schemes](#page-47-0)

- ▶ P-controller (Markovian feedback¹⁵) for u_t $dt = k$ dy_t , the ensemble average closed-loop dynamics of ρ remains governed by a linear Lindblad master equation.
- ▶ PID controller: no Lindblad master equation in closed-loop for dynamics output feedback
- ▶ Nonlinear hidden-state stochastic systems: Lyapunov state-feedback¹⁶; many open issues on convergence rates, delays, robustness, . . .
- \blacktriangleright Short sampling times limit feedback complexity

 15 H. Wiseman, G. Milburn (2009). Quantum Measurement and Control. Cambridge University Press. 16 See e.g.: C. Ahn et. al (2002): Continuous quantum error correction via quantum feedback

control. Phys. Rev. A 65;

M. Mirrahimi, R. Handel (2007): Stabilizing feedback controls for quantum systems. SIAM Journal on Control and Optimization, 46(2), 445-467;

G. Cardona, A. Sarlette, PR (2019): Continuous-time quantum error correction with noise-assisted quantum feedback. IFAC Mechatronics & Nolcos Conf.

Coherent (autonomous) feedback (dissipation engineering)

Quantum analogue of Watt speed governor: a **dissipative** mechanical system controls another mechanical system 17

CLASSICAL WORLD

Optical pumping (Kastler 1950), coherent population trapping (Arimondo 1996)

Dissipation engineering, autonomous feedback: (Zoller, Cirac, Wolf, Verstraete, Devoret, Schoelkopf, Siddiqi, Martinis, Mølmer, Raimond, Brune,. . . , Lloyd, Viola, Ticozzi, Leghtas, Mirrahimi, Sarlette, PR, ...)

(S,L,H) theory and linear quantum systems: quantum feedback networks based on stochastic Schrödinger equation, Heisenberg picture (Gardiner, Yurke, Mabuchi, Genoni, Serafini, Milburn, Wiseman, Doherty, . . . , Gough, James, Petersen, Nurdin, Yamamoto, Zhang, $Dong, \ldots$)

Stability analysis: Kraus maps and Lindblad propagators are always contractions (non commutative diffusion and consensus). ¹⁷ J.C. Maxwell (1868): On governors. Proc. of the Royal Society, No.100. Coherent feedback involves tensor products and many time-scales

The closed-loop Lindblad master equation on $\mathcal{H} = \mathcal{H}_s \otimes \mathcal{H}_c$.

$$
\frac{d}{dt}\rho = -i\Big[\mathsf{H}_{s}\otimes\mathsf{I}_{c} + \mathsf{I}_{s}\otimes\mathsf{H}_{c} + \mathsf{H}_{sc} , \; \rho\Big] + \sum_{\nu} \mathbb{D}_{\mathsf{L}_{s,\nu}\otimes\mathsf{I}_{c}}(\rho) + \sum_{\nu'} \mathbb{D}_{\mathsf{I}_{s}\otimes\mathsf{L}_{c,\nu'}}(\rho)
$$

with $\mathbb{D}_L(\rho) = L\rho L^{\dagger} - \frac{1}{2}(L^{\dagger}L\rho + \rho L^{\dagger}L)$ and operators made of tensor products.

• Consider a convex subset $\overline{\mathcal{D}}_s$ of steady-states for original system S: each density operator $\overline{\rho}_s$ on \mathcal{H}_s belonging to $\overline{\mathcal{D}}_s$ satisfy $i[H_s,\overline{\rho}_s]=\sum_\nu \mathbb{D}_{\mathsf{L}_{s,\nu}}(\overline{\rho}_s)$.

• Designing a realistic quantum controller $C(H_c, L_{c,\nu'})$ and coupling Hamiltonian H_{sc} stabilizing $\overline{\mathcal{D}}_s$ is non trivial. Realistic means in particular relying on physical time-scales and constraints:

- \blacktriangleright Fastest time-scales attached to H_s and H_c (Bohr frequencies) and averaging approximations: $||H_s||, ||H_c|| \gg ||H_{sc}||$,
- ▶ High-quality oscillations: $||H_s|| \gg ||L_{s,\nu}^{\dagger}L_{s,\nu}||$ and $||H_c|| \gg ||L_{c,\nu'}^{\dagger}L_{c,\nu'}||$.
- \blacktriangleright Decoherence rates of S much slower than those of C: $\|\mathsf{L}^\dagger_{\mathsf{s},\nu}\mathsf{L}_{\mathsf{s},\nu}\| \ll \|\mathsf{L}^\dagger_{\mathsf{c},\nu'}\mathsf{L}_{\mathsf{c},\nu'}\|$: model reduction by quasi-static approximations (adiabatic elimination, singular perturbations).

I PSL®

Quantum feedback engineering for robust quantum information processing **PSLR6**

To protect quantum information stored in system S (alternative to usual QEC):

- ▶ fast stabilization and protection mainly achieved by a quantum controller (coherent feedback stabilizing decoherence-free sub-spaces);
- ▶ slow decoherence and perturbations mainly tackled by a classical controller (measurement-based feedback "finishing the job")

Underlying mathematical methods for high-precision dynamical modeling and control based on stochastic master equations (SME):

- ▶ High-order averaging methods and geometric singular perturbations for coherent feedback.
- ▶ Stochastic control Lyapunov methods for exponential stabilization via measurement-based feedback.

Quantic research group ENS/Inria/Mines/CNRS, March 2022

