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RSA public-key system AT IpsLw

e Invented by Rivest, Shamir and Adleman in 1977, this protocole relies
on the factorization difficulty of RSA integer n = pq with p and ¢ large
prime numbers (typically log,(n) ~ 2048).

e 3-step protocol based on the public key (n, e), with e invertible modulo
(p—1)(g—1) and the secrete key d, inverse of e modulo (p—1)(g—1):

1. Encryption of M by Alice: M +— A= M¢ mod (n) (efficient
exponentiation by squaring < log,(e) multiplications mod (n))

2. Alice sends A to Bob on a public classical communication channel
(possibly spied by the bad Oscar)

3. Decryption of A by Bob: M = A%where d is known only by Bob 1

!Euler-Fermat theorem combined with Chinese-remainder theorem ensures
that for arbitrary integers M and k, M**("*1 = M mod (n) where
¢(n) = ¢(pg) = (p — 1)(g — 1) is the Euler's totient function

(use ed =1+ rp(n) for some integer r).
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RSA problem and integer factorization AT IpsLw

» To recover M from knowing A, e and n, the bad Oscar has to solve
A = M mod (n). Specialists conjecture that there do-not exist C
and k > 0 and an algorithm starting with input (n, e, A) providing
M with less that C( log n)k evaluations of universal classical gates
AND, XOR and NOT (RSA problem conjectured outside
complexity class P).

» If one has access to the factorization pg = n, one recovers the
secret key d as the inverse of e modulo (p — 1)(g — 1) (Euclidean
polynomial algorithm providing the greatest common divisor).

» Factorization, which is in the complexity class NP, is guessed to be
outside complexity class P: conjecture P& NP.

Issues around quantum cryptography and computation:

1. unconditionally secure key distribution: BB84 quantum protocol
(commercially available, see https://www.idquantique.com/).

2. factorization in " polynomial time" via Shor algorithm (success

probability O(1) with O((Iog n)3) operations)
(quantum computer with 3log, n + ¢ logical qubits, far from being
available yet for 2048-bit RSA numbers n).
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The LKB Photon box %*\PSL*

The first experimental realization of a quantum-state feedback:

microwave photons
(10GHz)

Theory: |. Dotsenko, ...: Quantum feedback by discrete quantum
non-demolition measurements: towards on-demand generation of
photon-number states. Physical Review A, 2009, 80: 013805-013813.
Experiment: C. Sayrin, ..., S. Haroche:

Real-time quantum feedback prepares and stabilizes photon number
states. Nature, 2011, 477, 73-77.
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Three quantum features emphasized by the LKB photon box 2 AT IpsLw

1. Schrédinger: wave funct. |¢) € H,
d .
1) = ~iHIY), H=Ho+uHy,

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of observable O with spectral decomp. > A, P,:

» measurement outcome y with proba. P, = (¢| P, 1))
depending on [¢)), just before the measurement
» measurement back-action if outcome y = y:

Py ¥)
(| Py 1)
3. Tensor product for the description of composite systems (S, M):

» Hilbert space H = Hs @ Hum
» Hamiltonian H=Hs® Ipyy+ Hipe + 1s @ Hy
» observable on sub-system M only: O = Is ® Oyy.

) = [¥), =

2S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.
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Composite system (S, M): harmonic oscillator @ qubit. AT IpsLw

» System S corresponds to a quantized harmonic oscillator:

oS0 a0,

where |n) is the photon-number state with n photons

((n1|n2) = by nz)-
» Meter M is a qubit, a 2-level system:

Hm = {7/)g |g> +we|e> ‘ wnge S (C}v

where |g) (resp. |e)) is the ground (resp. excited) state

((glg) = (ele) = 1 and (gle) = 0)

» State of the composite system |W) € Hs @ Hy:

W) =3~ (Vo [0} @ 1) + Ve [n) @ 1e) )
n>0
= (Z"’ng |n>) ®|g) + (ane n)) @le), Ve, W, €C.

n>0 n>0

Ortho-normal basis: ([n) @ [g),[n) ® |e)) -
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Quantum trajectories (1) AT IpsLw

W)g ) =N

R>

> When atom comes out B, the quantum state |W) g of the
composite system is separable: |W) gz = |1)) @ |g) .

» Just before the measurement in D, the state is in general entangled
(not separable):

(W)p, = Usm([v) @ g)) = (Mg [v)) @ lg) + (Me |v))) @ e)

where Usy = Ug,UcUg, is a unitary transformation (Schrédinger
propagator) defining the measurement operators M, and M, on
Hs. Since Usy is unitary, M{M, + M{M, = I.
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Quantum trajectories (2) AT IpsLw

Just before detector D the quantum state is entangled:
[W) g, = (Mg |9)) @ |g) + (M [¢)) @ |e)

Just after outcome y, the state becomes separable 3

W), = W vy | ®ly).

Outcome y obtained with probability P, = ()| MM, |¢))..

Quantum trajectories (Markov chain, stochastic dynamics):

_ k g1 ¥k
|wk+1> o W |'l/1k> Yk = € with probablhty <'l/1k|MZMe"ll)k>,
k k

with state |1x) and measurement outcome yi € {g, e} at time-step k:

3Measurement operator O = Is ® (|e) (e| — |g) (g]).
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Quantum Non Demolition (QND) measurement of photons * 2.

|w>R2 = UR2UCuR1(|w> o ‘g>)

; c Ur, =15 @ ((18242) (g] + (8412 (e
|
2 = Uc=e"2"®|g) (gl +e 2" @]e) (e

B

W)e | V)R, Ug, = Ug,
Un () 316)) = H (W Sl + 1) )
1 0y I@N
Ueun (1)@ 12) = 5 ( (720 w1+ (371 wle))

W)= 3 (727 0)) o) + 1)+ (¢V101) @ (- g + 1)
= (—isin(2N) ) ) @ lg) + (cos(LN) 1) ) @ le)

Thus Mg = —isin(£2 N) and M. = cos(22 N).
Quantum Monte-Carlo simulations with MATLAB: QNDphoton.m

“M. Brune, ...: Manipulation of photons in a cavity by dispersive atom-field
coupling: quantum non-demolition measurements and generation of "Schrédinger cat"
states . Physical Review A, 45:5193-5214, 1992.
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An idea due to Bennet and Brassard in 1984 (BB84) AT IpsLw

BB84 protocol Bob
H/V Basis ll
Polarizers Alice 45° Basis
Horizontal - Vertical Dlﬂ «/'
Diagonal (-45°, +45°)

001001010
XHxHH XX HX
- 11

0 11 - 10

Alice's Bit Sequence 1 1 1
Bob's Bases m
Bob'sResults 0 1 0

Ky - 1= = 01 -« <1 - 10

GAP Optique

Geneva University
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BB84 /Z{*\PSL*

A first quantum sequence via a quantum communication channel:

1. Alice sends to Bob a large number N of linearly polarized photons (i.e. qubits
[y = ag |0) + a1 |1)) along 4 possible directions:
> horizontal (]0)) or vertical (|1)).
> /4 (221 or —r/a (10212),
2. For each photon received from Alice, Bob chooses a measurement
> H/V: Z =10) (0] —[1) (1

- e X 1041011 = (92 (95) - () ()

A second classical sequence via a public communication channel:

1. For each photon, Alice and Bob exchange the type of chosen polarization Z or
X (but not its value).

2. For 50% of the photons sharing the same polarization (around N/4), Alice and
Bob exchange their values (H/V or +7/4).

3. For 50% of the photons with same polarization (around N/4), Alice and Bob
keep secret their values

If the exchanged values (H/V or £7/4) coincide, Alice and Bob are convinced that
the quantum communication was not spied by the bad Oscar. The remaining values
(around N/4 and kept secret) will then form a coding key exploited by Alice and Bob
in a classical cryptographic protocol.

Security: Oscar cannot clone the photon emitted by Alice.
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Impossibility of quantum cloning (Wootters and Zurek 1982) | PSL#

NINES

Assume that exists a quantum machine copying the original qubit onto a
second clone qubit. The initial wave function of the composite system (original
qubit, clone qubit, quantum machine) reads

=)o = V) @ |b) @ |f) .

where |¢) € C? is the original state, |b) the initial state of the clone (b for
blank) and |f,) the initial state of the cloning machine.

The cloning process is associated to a unitary transformation Ut independent
of |Z),_, and satisfying

ViY), [¥)®

V) ® |fiyy) = Ur (1Y) @ |b) ® |fs)).

In particular

10) ®10) @ |fio)) = Ur ([0) @ |b) @ |fs))
() 0 (%) 2 g ) = v (o) o 1)

Impossible with |Z) = |0) ® |b) ® |f») and |A) = (|o)\+[\1 ) ® |b) & |fb)

=GN > 5 > [EUrur ]

since Ut preserves Hermitian product:
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Factoring algorithm and its reduction to order finding (Shor 1994) %Z,\PSL*

e Input: composite odd number n.

e Output: a non trivial factor a of n in

O((log n)?(log log n)(log log log n)) universal classical /quantum
operations.

e Algorithm:

1. Check whether n = a® with a, b > 1 (polynomial classical
algorithm); possible return of a and stop.

2. Otherwise, choose randomly x € {2,...,n—1}. If
a = gcd(x, n) > 1 (Euclidian division), return a and stop.

3. Otherwise determine with a quantum computer the order r of
x modulo n (the smallest r > 1 such that x" =1 mod (n)) °

» If r even and 1 < gcd(x"/2 &1, n) < n, then return
a = gcd(x'/? 1, n) and stop.
» Otherwise (probability < n < 1 independent of n) goto step 2.

3Shor’s algorithm is detailed in Chapter 5 of M.A. Nielsen, I.L. Chuang:
Quantum Computation and Quantum Information. Cambridge University Press,
2000.
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A quantum gate appearing in Shor's order-finding algorithm. ;4/7, | PSL*

e The canonical ¢-qubit basis (basis of c? = ((C2)®e) is labelled by
{0,...2 =1} 3 = (j1,.--,Jje) € {0,1} with

. .. . . . . . VY

) = L2 - -Je) = L) @ j2) © ... ® |je) and j =>4 js2°.
e To the data 1 < x < n < 2¢ with ged(x, n) = 1 is associated U a
unitary transformation on ¢-qubits (permutation between vectors |}))

if y<n—1, Uly) = |xy mod(n)), otherwise Uly) = |y).
e For r the order of x mod(n) and any s € {0, ..., r— 1} the ¢-qubit state

—2im sk —2ims
lus) = \% Ze r |xk mod(n)) satisfies U |us) = e

|us)

-1
and % Yoo lus) = 11).
e Modular exponentiation algorithm to compute U with O(£3) 1-qubit
gates ® and CNOT 2-qubit gates 7 (non trivial quantum algorithm...)

®Unitary e'fe™'2%/2e18X/2e=72/2 with (6, a, B,7) € [0, 27].
"CNOT |y1y2) = |y122) where {0,1} 3 z2 = y1 + y» mod (2).
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The quantum Fourier transform A psix

e
" Tvcn*

e Computations of the usual discrete Fourier transform
2t 2t
C® 3 (x0y---3%t_1) = (Yo,.--,¥2te_1) €C

21 ) 21 o
—2im jk

S 7 . _ _1 7 .
Vi=sim > e xi xk=3tz y e 2y
- =

requires 0(£2*%) additions and multiplications (FFT).
e It is also a unitary transformation of ¥ = ((Cz)@’z, the quantum Fourier
transform (QFT)

¢ 2im jk
. . L2 e k)
i) - Liey = 1) o =0

with the binary decomposition j = Z§:1j522_5.
e The identity underlying the quantum circuit implementing the QFT with
O(£?) 1-qubit gates and 2-qubit gates:

2im jk

Zii_ol . ,-22 1K) (‘0> + e2im 0 |1>) (|O> 4 2™ 0oz e |1>) o (|O> 4+ @2im0aee |1>)

2¢/2 20/2

with binary fraction notations 0.jsjs1jm = Jjs/2 4 jsi1/4 + ... + jm/27 51,
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Efficient Circuit for the quantum Fourier transform AT IpsLw
With Hadamard gate, H = (‘Olﬁl ) (0] + ( |1>) (1], and

f

Controlled- R gate (2-qubit) where Ry = |0) (0] + €2™/2" |1) (1],

the circuit
L) —| H HRz |»——1R1271H Ry I \0>+92i”\°f;1"'j5\1>
li2) --- I H |»---|Rz_2HRz71|»-- \0>+ezi’;°[2'j? ~Ji)1)
le—1) R, | \0>+92i”\;;[*1j[\1>
. 0)+€2im0.Jg 1)
Lje) -- H |~ o

followed by a simple swap circuit reversing the order of the £ qubits, one
gets the QFT:

S ([0) + €m0 1)) ([0) + ROt [1)) ... (J0) + €I Ot |1)
|J1---J£>'_>( ) e ) )
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. . . 24
The simplest classical error correction code ;j, | PSL*

e Single bit error model: the bit b € {0,1} flips with probability p < 1/2
during At (for usual DRAM: p/At < 10714 s71).

o Multi-bit error model: each bit bx € {0,1} flips with probability

p < 1/2 during At; no correlation between the bit flips.

eUse redundancy to construct with several physical bits by of flip
probability p, a logical bit b; with a flip probability p; < p.

e The simplest solution, the 3-bit code (sampling time At):

t =0 b, = [bbb] with b € {0,1}
t = At: measure the three physical bits of by = [b1babs]
(instantaneous) :

1. if all 3 bits coincide, nothing to do.
2. if one bit differs from the two other ones, flip this bit
(instantaneous);

e Since the flip probability laws of the physical bits are independent, the
probability that the logical bit b; (protected with the above error
correction code) flips during At is py = 3p? — 2p3 < p since p < 1/2.
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The 3-qubit bit flip code A psix

Rings
Tvcn*

e Local bit-flip errors: each physical qubit [¢)) = a|0) + 8]1) becomes
X |4y = «|1) + B]0) & with probability p < 1/2 during At.

(for actual super-conducting qubit p/At > 103 s—1).

ot =0: ) =al0)+B|1) € C® with [0,) = |000) and |1,) = |111).
e t = At: |¢);) becomes with

|100) + B011) |110) + 8001
1 flip: { «010) + 5]101) ; 2 flips: ¢ «|101) 4+ B|010) ; 3 flips: @ |111)+/3|000) .
|001) + 4]110) |011) + 4100
e Key fact: 4 orthogonal planes P = span(|000),|111)), P1 = span(|100), |011)),
P> = span(|010) ,|101)) and P3 = span(|001), |110)).
e Error syndromes: 3 commuting observables S1 = I1® Z® Z, S =Z® 1 ® Z and
S3=2Z® Z ® I with spectrum {—1,+1} and outcomes (s1,s2,s3) € {—1,+1}.
. _ f «]000) + 3]111) O flip
1o =5 =531 Pe 3 |u) = { 51000 + a |111) 3 flips
e [ «[100) + B|011) 1 flip
sFs=s P13y = { 8]100) + @ [011) 2 flips
«|010) + 3]101) 1 flip
) )
) )
) )

: no correction
P (X® 1)) € Pe.

-3- 55 # 53 = 51° 'P23|’¢11_>={ (X1 |yYL) € Pe.

£1010) + o |101) 2 flips
|001) + 8|110) 1 flip

31001) + a[110) 2 flips * (/ ®T@X) Y1) € Pe.

-4- 53 #£ 51 =53 P33 |'¢'L> = {

®X = 1) (0] + [0) (1] and Z = [0) (0] — [1) (1].
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The 3-qubit phase flip code AT IpsLw

e Local phase-flip error: each physical qubit |[¢)) = «|0) + 8|1) becomes

Z ) = a|0) — B]0) ° with probability p < 1/2 during At.

e Since X = HZH and Z = HXH (H? = I), use the 3-qubit bit flip code in the
frame defined by H:

10) +[1) 10) —11) &

O L —L 2|4, [IV— L—L2|2), X—= HXH=2Z=|+){+|+|-)(—]|.
o P 214y, o BB e A+ =)
o t=4: |[Y) =al+) +B|-1) with [+1) = [+++) and |—1) = |- — —).
o t= t |1 ) becomes with
al=++)+ B+ ——) al=—+)+B|++-)
1 flip al+—+)+B|=+—) ; 2flips al—+ =)+ B|+—+) ;3flipss a|—— =)+ B+ ++).
a\++—>+ﬁ\——+) al+— =)+ B|—++)
e Key fact: 4 orthogonal planes P. = span(|+ + +) ,|— — —)), P1 =span(|— + +), |+ — —),
P2 = span(|+ — +), |~ + ) and P3 = span(|+ + —) , [~ = 1)).

e Error syndromes: 3 commuting observables S1 = I X ® X, S22 =X Q@I R®Xand S3=XQRX R/
with spectrum {—1,+1} and outcomes (s3, s2,s3) € {—1, +1}.
. _J al+++H)+B8|-——) 0flip | .
-1- 53 =sp =s3: Pc D |¢Yy) = { Bl+++)+al———) 3flips no correction
al—++)+ B+ — —) 1flip
Bl—++)+al+——) 2flips

3t —s P2 m):{ SHEZDIolTi i uszen eP.

4-s3#s1 =5 P33 |m>={ gl‘ii:giﬁ}::ig ;::::js T ®1® Z)|PL) € Pe.

-2-517552:53;’P19|1pL):{ ;(ZIRN)]|YL) € Pe.

%X = 1) (0] +10) (1], Z = 10) (0] — [1) (1] and H = (12212} (o] + (L2711 (3],
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The Shor code (1995): combination of bit-flip and phase flip codes 47, Ipsi

e Take the phase flip code |+ + +) and |— — —). Replace each |+) (resp. |—)) by
|000>\'}2|111) (resp. |000)\;§|111) ). New logical qubit |¢) = «|0.) +B]1L) € 2

|000) —|111)) (J000) —|111)) (J000) —|111))

[000)+|111)) (j000)+111)) (]000) +|111))
22

272 7|1L>:(

[0.) = (

e Local errors: each of the 9 physical qubits can have a bit-flip X, a phase flip Z or a
bit flip followed by a phase flip ZX = iY © with probability p during At.
e Denote by X (resp. Y, and Zy), the local operator X (resp. Y and Z) acting on
physical qubit no k € {1,...,9}. Denote by P. = span(|0.),|1;)) the code space.
One get a family of the 1 4+ 3 x 9 = 28 orthogonal planes:

Pe, (Xk’PC) k=1,...,9" (Ykpc) k=1,...,9" (szC>k:1,...,9'

e One can always construct error syndromes to ob’tain, when there is only one error
among the 9 qubits during At, the number k of the qubit and the error type it has
undergone (X, Y or Z). These 28 planes are then eigen-planes by the syndromes.
e If the physical qubit k is subject to any kind of local errors associated to arbitrary
operator M =gl + aX + bY +cZ (g,a,b,c € C), |¢1) — %, the

(L IMI M)
syndrome measurements will project the corrupted logical qubit on one of the 4 planes
Pe, XkPe, YiPcor Z,Pc. Itis then simple by using either I, Xy, Y, or Z, to
recover up to a global phase the original logical qubit |¢;).

0% = 1) (0] +10) (1], Z = [0) (0] — [1) (1] and ¥ = i [1) [0) — [0} |1).
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Many open issues connected to QEC AT IpsLw

e For a logical qubit relying on n physical qubits, the dimension of the
Hilbert has to be larger than 2(1 + 3n) to recover an arbitrary
single-qubit error: 2" > 2(1 + 3n) imposing n > 5.

e Efficient constructions of quantum error-correcting codes: stabilizer
codes, surface codes where the physical qubits are located on a
2D-lattice, topological codes, ...

e Fault tolerant computations: computing on encoded quantum states;
fault-tolerant operations to avoid propagations of errors during encoding,
gates and measurement; concatenation and threshold theorem, ...

e Error rates for a DRAM bit < 107* s~ and for a superconducting
qubit > 103 s~ : high order error-correcting codes; important overhead
(around 1000 physical qubits to encode a logical one!l); scalability issues;

1A G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland: Surface codes:
Towards practical large-scale quantum computation. Phys. Rev.
A,86(3):032324, 2012.
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Continuous-time QEC and feedback AT IpsLw

e Quantum error correction is a feedback scheme: at each sampling time a
measurement is performed and a correction depending only on the
measurement outcome is applied.

e From a control engineering view point, QEC is based on a static output
feedback scheme (feedback without memory) (called also Markovian feedback).

e In usual discrete-time setting, measurement (sensor) and correction
(actuator) processes are assumed instantaneous.

e Natural question: how to take into account the finite band-width of the
measurement and correction processes.
e Interest of continuous-time formulations for QEC:

1. measurement and correction are faster than the error rates but not
infinitely faster;

2. qubit errors can occur during the measurement and the correction
processes (fault-tolerance issues).

|1} replaced by p (density operator) obeying to a stochastic master equation (SME).
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Flashback to the LKB photon box

%* | PSL*
een

[W)g, = UsulW)p = Usm([v) @ lg)) = (Mg ) @g) + (Me [v))) ® [e)
with MM + MIM, = I.
e Quantum trajectories (Markov chain, stochastic dynamics):
Mg

W [¥k), vk = g with probability <¢k|M£Mg|¢k>;
|1/)k+1> _ k Mge g%k

——Me _|yy), yi = e with probability (¢ |MIMe|ty);
(xIMEMe |y )

with state [¢x) and measurement outcome y, € {g, e} at time-step k:
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Continuous-time quantum trajectories (diffusive case)

12 /ﬁj | PSL*

e
Tvcn*

e The measurement outcome yi at discrete-time step k, is replaced by the
small among of measurement signal dy; € R obtained during an infinitesimal
time interval [t, t + dt].

e The measurement operator M,, becomes My, close to identity:

May =1+ (—H =3 (LL)) de + dyiL

where operator L (not necessarily Hermitian) describes the measurement
process and H is the Hamiltonian corresponding to the coherent evolution.
e The measurement backaction reads

Mgy, |¥)
W,)Hdt — __ Tdn¥e

VLMY My, ),

dy?

o Probability density of dy € R knowing |1),: e\/_% (], MLdey [¥),.

Coincides up to order O(dt*?) terms to dy = (¢, (L + LT) [¢)), dt+dW
where dV is a Wiener process (Gaussian of zero mean and variance dt).
Quantum Monte-Carlo simulations with MATLAB: QNDqubit.m (L = o, H =0)

12E6r 2 mathematical exposure: A. Barchielli, M. Gregoratti: Quantum Trajectories
and Measurements in Continuous Time: the Diffusive Case. Springer Verlag,2009.
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Why density operators p instead of wave functions |?7b> ;j, | PSL%

Consider once again the LKB photon-box:
|¥k), yx = g with probability <¢vk|M;Mg|wk>;

|¥k), yk = e with probability <1/Jk|MZMeW)k>;

7T
Wrn) = <wk|M Mg\wk>

<wk|MTM I )

Assume known |1g) and detector out of order (y = @): what about |¢1) ?
> Expectation value of |¢1) (1] knowing |io): 3

E (Ith1) (W] | [tho)) = Mg o) (to| M} + Me [3o) (po| ML.

> Set K(p) = MgpM' + M.pM! for any operator p.
> p, expectation of |1x) (1k| knowing |¢o):

Pii1 = K(p,) and py = |vo) (1ol .

Linear map K: trace preserving Kraus map (quantum channel).
Density operators p: convex space of Hermitian non-negative operators of trace
one.

1314b) (1p]: orthogonal projector on line spanned by unitary vector |¢).
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Quantum trajectories for the density operator p f?f | PSLx

Detector efficiency n € [0,1]. Output y € {g,e,@}:

Kg(Pk) Vi
Tr(Kg(p))'

Ke(pi) . o
Pri1 =4 ——————, yx = e with probability Tr(Ke(p,));
k+1 Tr(Ke(pk)) k ( ( k))

Kz (pi) Vi
Tr(Ka(pe)’

with Kraus maps

= g with probability Tr(K(py));

= @& with probability Tr(Kg(pk));

Ke(p) =nMgpM},  K.(p)=nM.pM!
Kg(p)=(1-n) (MgpML + Mele) :
We still have:

E (Pk+1 | Pk) £ K(py) = MngM; + MePkMTe = Z Ky (py)-
y
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Discrete-time quantum trajectories for open quantum systems
Four features:
1. Bayes law: P(u/y) = P(y/un)P(r) / (X, Bly/u)B(1)),
2. Schrédinger equations defining unitary transformations.

3. Partial collapse of the wave packet: irreversibility and dissipation are
induced by the measurement of observables with degenerate spectra.

4. Tensor product for the description of composite systems.

= Discrete-time Q. traj. : Markov processes of state p, (density op.):

_ Zm::_ ny,uMMpkMT . - m t
Pl = Tr(iﬂzl ny,HMMkaC’L)’ with prOba' Py(pk) n Zﬂ:l My T (M#pkMH)

associated to Kraus maps * (ensemble average, quantum channel)

E (pis1lpn) = K(pk) = > MupeM], with > MM, =1
u I

and left stochastic matrices (imperfections, decoherences) (7,.,.).

M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum

Information. Cambridge University Press, 2000.
35/43



Continuous/discrete-time Stochastic Master Equation (SME) AT IpsLw

Discrete-time models: Markov chains

_ > Wy,uMul)kML . _ m ( T)
Pkl = Tr(f),’fd MM with proba. Py (px) =32 "1 1y Tr (MupcM,,

with ensemble averages corresponding to Kraus linear maps

E (prsalox) = K(px) = ZMMPkMT with ZMT =1

Continuous-time models: stochastlc differential systems 15

dpr = ( — :[H. pe] + Z LuPtLi - E(LZLVPt + PtLZLV))dt

+ Z \/nj(Lth +pel] — Tr ((Ly + LZ)M) pt> dW, .

driven by Wiener processes dW,, ;, with measurements y, ;,
dy,t =/, Tr ((L,, + L) pt) dt + dW, ;, detection efficiencies
1y € [0, 1] and Lindblad-Kossakowski master equations (7, = 0):

d ; 1
= i § ’ T_ 2t T
dtp— ;—L[Hap] ~ LVIOLV 2(LVLVp pLuLV)

15A. Barchielli, M. Gregoratti: Quantum Trajectories and Measurements in

Continuous Time: the Diffusive Case. Springer Verlag, 20009. 3643



Positivity-preserving formulation of diffusive SME 16 /Zﬁ | PSL*

With a single imperfect measurement dy: = /7 Tr (L + L") p¢) dt + dW,; and
detection efficiency n € [0, 1], the quantum state p; is usually mixed and obeys
to

, 1
dp: = <7§1[H, pil+ Lpelt = (LLp: +ptL*L)) dt
+ \/’ﬁ(l—ﬂt + Ptl.]L — Tr ((L + LT)pt> Pt) dW;

driven by the Wiener process dW;

With ItG rules, it can be written as the following "discrete-time" Markov model
MdsztMLyt + (1 —n)Lp:L'dt
Tr (Mdyt peMi, 4 (1— n)LptLTdt)

Pt+dt =
dye

with Mgy, = I + (—2H — 1 (LTL)) dt + \/ndy.L.

po density operator — for all t > 0, p; density operator

185uch SME precisely describe cutting-edge experiments with superconducting
qubits under homodyne and heterodyne continuous-time measurements. See, e.g., the
group of Benjamin Huard at ENS-Lyon: http://www.physinfo.fr/index.html.
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. . . . 2%
Quantum error correction in the diffusive case ;j, | PSL*

classical
reference

- -~ CLASSICAL WORLD
- r A decoherence™
. Hilbert space H , 7\ (dissipation) LN .
lclass;cal ¢ [quanum state p v/ 1 dy =/n Tr(Lyp + pL},) dt + dW
i input u
EE:::;; p I ; dp = 1[”{) +uH,_p] dt + (L,,,,L; ;(r,;L,,/;Jr,,r/;r.,,]) dt ;
N | G~ ST L+ pE L)) et i (Lt p = Te(Lmp+ pLE)p) aW ‘
~ I
Il QUANTUM WORLD -
classical Y e
output dy

e How to achieve QEC with the above measurement-based feedback scheme
where the controller admits a memory (a dynamical system, possibly
stochastic).

e In 7 QEC is implicitly formulated as feedback stabilization of the code space
P under quantum non demolition measurement. Numerical closed-loop
simulations indicate promising convergence properties but a precise
mathematical convergence analysis is missing. Many open issues such as
precise estimates of convergence rates in closed-loop '8

7¢c. Ahn, A. C. Doherty, and A. J. Landahl. Continuous quantum error correction
via quantum feedback control. Phys. Rev. A, 65:042301, March 2002.

18Preliminary results in, e.g., G. Cardona, A. Sarlette, and PR. Exponential
stochastic stabilization of a two-level quantum system via strict Lyapunov control.

arXiv:1803.07542.
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Outline AT IpsLw

Quantum cryptography and computation

Quantum error correction (QEC)

Autonomous QEC and coherent feedback

Appendix: two key quantum systems

39/43



Coherent feedback (with measurement-based feedback) AT psLx

e
Tvcn*

e Quantum analogue of Watt speed governor where a dissipative
mechanical system controls another mechanical system?®

o Coherent feedback where the controller is another quantum systems?°:

’_------

S
Y} system S > PG 1
: Hilbert space
CLASSICAL WORLD Hilbert space?,
[ ] H=H:®Hc 1
I Aquantum :
classical i\ dissipation :
reference f,:asjlcﬂ 1 e dy
classical D T controller Chsrssnsnnsnnnnannnnn
controller| Hilbert space quantum measurement

\
classical ~ QUANTUM WORLD ¢
output dy ~ -

19J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.

200ptical pumping (Kastler 1950), coherent population trapping (Arimondo
1996), dissipation engineering, autonomous feedback: (Zoller, Cirac, Wolf,
Verstraete, Devoret, Siddiqi, Lloyd, Viola, Ticozzi, Mirrahimi, Sarlette, ...)
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Inria Quantic project with ENS, Mines and Yale ?{,\Psu

low Q mode b
WWM{ (coherent feedback) %WVW\“ e Quantic in Paris?: 3 theoreticians, 1

W

||.J,:|| e experimentalist, 4 PhD, 2 PostDocs.
e Development of theoretical methods

I Q
highQmode a 23N and experimental devices ensuring
(logical qubit) \:: ] .
Ng7 robust processing of quantum
|$| - information.
qubit

“https://team.inria.fr/quantic/

readout mode
(measurement-based feedback)

e Address Quantum Error Correction (QEC) in a new direction®*:

instead of relying on a large number of physical qubits and collective syndrome
measurements to obtain a logical qubit, engineer a logical qubit of tunable high
fidelity, localized in a single harmonic oscillator (cat qubit), relying on
measurement-based and coherent feedback schemes, exploiting typical
nonlinearities of Josephson superconducting circuits, and subject essentially to
one error channel (finite photon life-time).

2IM. Mirrahimi, Z. Leghtas, V.V. Albert, S. Touzard, R.J. Schoelkopf, L.
Jiang, and M.H. Devoret. Dynamically protected cat-qubits: a new paradigm

for universal quantum computation. New Journal of Physics, 16:045014, 2014.
41 /43



Qubit (2-level system, half-spin) 22 AT IpsLx

» Hilbert space:
Hy =C? = {cg lg) + cele), cgoce € C}.

» Quantum state space:
D={pe L(Hm)p" =p, Tr(p)=1,p>0}.

» Operators and commutations:
o =lg) (el or =l =le) (g] q
ox =0 +oy =|g) (el +e) (gl NAAAD = (Dq
oy =io. —ioy =i|g) (el —ile) (gl
o, = oo — ooy = |e)(e| — [g)(gl:
ol =1, 0,0y = i0y, [ox, 0y] = 2i0y, ...

<---->

|2)

» Hamiltonian: Hy/h = wqo;/2 + ugox.

» Bloch sphere representation:
D= {%(I—&-xa’x +yoy+z0;) | (x,y,2) ER3, X2+ y? + 2% < 1}

22 Gee S. M. Barnett, P.M. Radmore: Methods in Theoretical Quantum

Optics. Oxford University Press, 2003.
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. . . 24
Quantum harmonic oscillator (spring system) 22 AT psix

> Hilbert space:
Hs = {ano Ynln), (Yn)n>o € /2(<C)} = [2(R,C)

» Quantum state space:

D={peL(Hs),p =p, Tr(p)=1,p>0}. )
> Operators and commutations:

aln) =+/n|n-1), a' |n) =v/n+1|n+1);

N = a'a, N |n) = n|n);

[a,al] =1, af(N) = f(N + I)a; g 2

D, = eaa*—afa c (,005

a—X—i—IP—f(x—i—aX) [X,P]=:/2. I ’1>
» Hamiltonian: Hs/h = w.a'a + u.(a+ a'). (’Dci

(associated classical dynamics: A4 0)

d dp
G = Wep, G = —WeX — ﬂuc).
> Classical pure state = coherent state |«)
1 “@Xgae,%

aeC: |a)= ano (e*\a|2/2%) [n); |a) = —7ae
a|a>:a|a>, DOé |0>:‘Oé> 43 /43
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