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Feedback for quantum systems: the back-action of the measure.

A typical stabilizing feedback-loop for a classical system

U

M €,lcontroller
e

systemf——

Y

Two kinds of stabilizing feedbacks for quantum systems

1. Measurement-based feedback: measurement back-action on S
is stochastic (collapse of the wave-packet); controller is
classical; the control input u is a classical variable appearing in
some controlled Schrddinger equation; u depends on the past
measures.

2. Coherent/autonomous feedback and reservoir engineering: the
system S is coupled to another quantum system (the controller);
the composite system, Hs @ Hcontroller; IS @n open-quantum
system relaxing to some target (separable) state or decoherence
free subspace.
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The first experimental realization of a quantum state feedback

i
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The LKB photon box: group of S.Haroche and J.M.Raimond
1

Stabilization of a quantum state with exactly n photon(s) (n=0,1,2,3,...).
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.
Theory: I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

'Courtesy of I. Dotsenko. Sampling period 80 ps.
4/52



Three quantum features emphasized by the LKB photon box? 7

MINES

1. Schrédinger equation: wave function |¢)) € H, density operator p

d : d .
E|¢>:—éH|¢>, Ep:_é[vaL H:HO+UH1

2. Origin of dissipation: collapse of the wave packet induced by the
measure of observable O with spectral decomposition >, A, P,.:

» measure outcome p with proba. p, = (¢|P.|¢) = Tr(pP,)
depending on ), p just before the measurement
» measure back-action if outcome p:

P.ly) P py = P,.pP,
VAUIPLIY) Tr(pP,)
3. Tensor product for the description of composite systems (S, M):

» Hilbert space H = Hgs ®@ Hu
» Hamiltonian H = Hs @ Iy + Hipt + Is ® Hy
» observable on sub-system M only: O = Is @ Op.

[v) = [¥)4 =

2S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.
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The composite system
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» System S corresponds to a quantized mode in C:

Hs = {anln

where |n) represents the Fock state associated to exactly n
photons inside the cavity

» Meter M is associated to atoms : Hy = C2, each atom
admits two energy levels and is described by a wave
function cg|g) + cel€) with |cg|? + |ce|? = 1; atoms leaving
B are all in state |g)

» When atom comes out B, the state |V)g € Hg ® Hyp of the
composite system atom/field is separable

W)g = [¢) ®]g).

(¥n)nzo € /Z(C)}»



S: quantum harmonic oscillator

>

Hilbert space:

s ={Xnz0%nln), (Un)nzo € F(C)}.

Quantum state space:

D={peL(Hs),p' =p, Tr(p)=1,p>0}.

Operators and commutations:

aln) =
N = a'a, N|n) = n|n);

Valn— 1), af|n) =

vn+1|n+1);

[a,a'] =1, af(N) = f(N + Ia;

D, = eaalffa a

a= X+/P——(X+ax) [X,P] =/2.

Hamiltonian: Hs/h = wca'a + uc(a + at).

(assomated classical dynamics:

ax __ —
ot = Wb, dt =

—WeX — \@UC).

Coherent state of amplitude

a € C:la) = Yo (67177255 ) I); fa) =
D.[0) = |a).

ala) = ala),

)

2)

1)

X |0)

(x—V2Ra)?
2

1 ez\@X%a e~

al/4
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M: 2-level system, i.e. a qubit

Hilbert space:
Hy = C% = {¢4|g) + cel€), Cq,Ce € C}.

Quantum state space:
D ={pe LMHnm),p' =p, Tr(p)=1,p>0}.

Operators and commutations: ‘e>
a=lg><el,a+Tt>fiT|=le>><?l| u, A
ox =o.+ o, = |g)(e|l + |e){]g|; @
oy = iz — ic, = 1lg){e| - 116) (gl VYV T

oz = v — o0y = [e)(e] — [g){d;
sz - I, Uxo-y - io'z, [(Tx7 O-y] - 2/0’2, .

Hamiltonian: Hy/h = wqoz/2 + Ugox.

Bloch sphere representation:
D= {%(I+X0x+yo‘y+20‘z) | (%,y,2) €eR3, x2 4+ y2+ 22 < 1}
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The Markov model (1)
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» When atom comes out B: |V)g = |¢) ® |g).

» Just before the measurement in D, the state is in general
entangled (not separable):

V)R, = Usm(|v) @ 19)) = (Mg|1)) @ |9) + (Melv))) ® |€)

where Ugy is the total unitary transformation (Schrédinger
propagator) defining the linear measurement operators My and
M, on Hg. Since Ugy is unitary, M{Mg + MM = .



Z

The Markov model (2)
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Ry

0
-

The unitary propagator Ugy is derived from Jaynes-Cummings
Hamiltonian Hgy, in the interaction frame. Two kind of qubit/cavity
Halmitonians:
resonant, Hgy/h = i(Q(vt)/2) (a' ® oo —a® a,),
dispersive, Hgy /h = (Q?(vt)/(26)) N ® o3,

2

where Q(x) = Qpe~ w2, x = vt with v atom velocity, Qo vacuum Rabi
pulsation, w radial mode-width and where ¢ = wq — w, is the detuning
between qubit pulsation wq and cavity pulsation we (|6] < Qo).

10/52



The Markov model (3)

Just before the measurement in D, the atom/field state is:

Mg|) @ 1g) + Me|y) © |e)

Denote by 1 € {g, e} the measurement outcome in detector D: with
probability p,, = <w|MLM/L|1/)> we get p. Just after the measurement
outcome p, the state becomes separable:

W)p = \/% (M, |[¥)) ® |u)y = (x/(zlJIIIVI'”iW'w) ® |p).

Markov process (density matrix formulation p ~ |1) (1))

MgpM; . -
Mg(p) = W, with probability pg = Tr <MgpML);

P+ = i . .
Me(p) = %, with probability pe = Tr (MepML).

Kraus map: IE (p./p) = K(p) = MgpM}, + McpM},.
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A controlled Markov process (input u, state p, output y) /5/75

Input u: classical amplitude of a coherent micro-wave pulse.
State p: the density operator of the photon(s) trapped in the cavity.
Output y: quantum projective measure of the probe atom.

The ideal model reads

D, M,pM.D!
—u9PEa Ty, — g with probability po = T (Mg} )

Tr (MngM;)

Pk+1 = D. M.o.M:D'
w Yk = e with prObab|l|ty Pek = Tr (MepkML)

Tr (MePkMZ)

» Displacement unitary operator (u € R): D, = gua’—ua yith
a = upper diag(v/1,v/2, .. .) the photon annihilation operator.

» Measurement Kraus operators in the linear dispersive case
Mg = cos (M%7 ) and M, = sin (2022 ): MM, + MLM, = |
with N = a'a = diag(0, 1,2, . ..) the photon number operator.
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u = 0: Quantum Non Demolition (QND) measure of photons. /5/75

2 )pkcos< pkz ) with prob. Tr (cos2 (%) pk)

Pk+1 =
sin ¢0N2+¢R ok sin %o ?:an

Tr (sin2 < SolN+-én +¢H ) pk>

Steady state: any Fock state p = |n)(n| (¢ € N) is a steady-state (no
other steady state when (¢g, ¢o, 7) are Q-independent)
Martingales: for any real function g, Vy(p) = Tr(g(N)p) is a
martingale:

with prob. Tr (sin2 (%) pk)

E (Vo(prs1) / o) = Vilox)-
Convergence to a Fock state when (¢g, ¢o, 7) are Q-independent:
V(p) = —1 > ,(n|p| n)? is a super-martingale with
E (V(oks1) / o1) = V(px) — Qlpx)

where Q(p) > 0 and Q(p) = Qiff, p is a Fock state.
For a realization starting from pg, the probability to converge towards
the Fock state |n)(n| is equal to Tr(|n)(A|po) = (N|po|N). 2o



Structure of the stabilizing quantum feedback scheme /5/75

With a sampling time of 80 us, the controller is classical here
» Goal: stabilization of the steady-state |n)(n| (controller set-point).

» At each time step k:
1. read yx the measurement outcome for probe atom k.
2. update the quantum state estimation p* , to p§* from yi
3. compute ux as a function of p§* (state feedback).
4. apply the micro-wave pulse of amplitude u.

An observer/controller structure:

1. real-time state estimation based on asymptotic observer: here
quantum filtering techniques;

2. state feedback stabilization towards a stationary regime: here
control Lyapunov techniques based on open-loop martingales

Tr(g(N)p).

It takes into account imperfections, delays (5 sampling) and cavity
decoherence.

In finite dimension (truncation to N"™# photons), all the mathematical
details and convergence proof are given in the Automatica 2013

paper 14/52



LKB photon-box: Markov process with detection errors (1) 7

i
MINES

» With pure state p = [¢)(¢|, we have

1
P+ = |¢+><¢+| - T <MﬂpML>

when the atom collapses in i = g, e with proba. Tr (MHpML).

MM},

» Detection error rates: P(y = e/ = g) =g € [0,1] the
probability of erroneous assignation to e when the atom
collapsesin g; P(y = g/u = e) = ne € [0, 1] (given by the
contrast of the Ramsey fringes).

Bayes law: expectation p. of |4 )(«| knowing p and the imperfect
detection y.

(1—ng)MgpM}+neMepM]
Tr((1—ng)MgpMj+neMepM}

WgMgPMZ;JrU*’Ie)MePMl
Tr(11g Mg oMy +(1—ne)MepMY )
p does not remain pure: the quantum state p, becomes a mixed
state; |+, ) becomes physically irrelevant (not numerically).

jify = g. prob. Tr ((1 = ng)MgoM + neMepmy )
P+ =

if y = e, prob. Tr (ngMgpM; +(1- ne)Meng).

15/52



LKB photon-box: Markov process with detection errors (2) 7
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We get
(1—ng)MgPM;+neMele . t .
(o) MgpM] oMoy ” Wi PrOD- TF (1= na)MgpM -+ neMopM} )
o ngMgp My +(1 —1e)Me oM ith prob. Tr (1gMgpM}; + (1 MopM;
Tr(ngMgPM;+(17ne)MePMl) with prob. f(ng gpMy + (1 — ne)Mep e)-
Key point:

Tr ((1 — 1g)MgpM}, + neMepML) and Tr (ngMgpM_g +(1- ne)Meng)

are the probabilities to detect y = g and e, knowing p.
Generalization: with (5, ,,) a left stochastic matrix 7, , > 0 and
> M. =1, we have
P 2 77#’7MMupML
=
T (32, 7MoY,

when we detect y = 1.

The probability to detect y = 1/ knowing pis Tr (ZM nlL/MMupML).

16/52



Continuous/discrete-time Stochastic Master Equation (SME) /5/75

Discrete-time models are Markov processes
ZZ: oMy ML H
Pk+1 = Tr(EmL:]fn '/} Mf:kML), Wlth prOba' pﬂ,(pk) = ZZ’:‘I T]ll‘/JJ’ Tr (Mﬂpijl,)

associated to Kraus maps (ensemble average, quantum channel)
E (oks1lox) = K(pk) = > MupcMl, with >~ MM, =1
"

Continuous-time models are stochastic differential systems
dpt = <—£[H, pd+ > LupiLl, — (l-T Lot + peLf L )) at
+ Z \/777<Lupt +pelf — T (( + LT )pt) pt> aw, ;

driven by Wiener process dW,; = dy,: — /n, Tr ((L,, + L) p,) dt

with measures y, ;, detection efficiencies 7, € [0, 1] and
Lindblad-Kossakowski master equations (1, = 0):

d .
7= "HH A+ Lopi] - J(LiLpe+ piLfL,)

17/52



Continuous/discrete-time diffusive SME 9
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With a single imperfect measure dy; = /i Tr ((L + L Pt) dt + dW;

and detection efficiency 7 € [0, 1], the quantum state p; is usually
mixed and obeys to

dpt = (*%[H» pid + Lp:LT — %(LTLPt + PtLTL)) at
(o i = T (L L) o)
driven by the Wiener process dW;
With It0 rules, it can be written as the following "discrete-time" Markov

model
May,piMYy, + (1 —n)LpL  dt

T (May,peMy, + (1 n)LpiL o)

Pt+dt =

with Moy, = 1+ (~£H — } (L'L)) ot + /rdyiL.

18/52



A key physical example in circuit QED3

B i
Ret
compact S am

readout resonator
pulse

quantum
JPC noise

AMAAA

I VUV~

’@‘trana mon

qubit

dpt = ([u*o'_ — uaoy,, pt] + ’Yt(o'zpo'z - p))dt

Superconducting qubit
dispersively coupled
to a cavity traversed
by a microwave signal
(input/output theory).
The back-action on the
qubit state of a single
measurement of both
output field quadratures /;
and Qy is described by a
simple SME for the qubit
density operator.

+Vnt/2 (Uzpt + ptoz — 2 Tr (ozp1) Pt) thI + 1/ 7t/ 2|0z, pt]tho

with I, and Q; given by dly = \/nv:/2 Tr (20%p;) dt + dW/ and

dQ; = dW2, where ~; > 0 is related by the read-out pulse shape and

n € [0, 1] is the detection efficiency.

3M. Hatridge et al. Quantum Back-Action of an Individual
Variable-Strength Measurement. Science, 2013, 339, 178-181.
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Watt regulator: classical analogue of quantum coherent feedback. 4/5/75

From WikiPedia

The first variations of speed éw and
governor angle 40 obey to

%m = —asf
2
%50 = —/\%50 — Q2(66 — béw)

with (a, b,A,Q) positive parame-
ters.

Third order system

daa /\d25 0295 bQ%6w = 0
ww—i—ﬁw—i— aw—i—a w = 0.
Characteristic polynomial P(s) = s® + As? + Q2s + abQ? with roots
having negative real parts iff A > ab: governor damping must be

strong enough to ensure asymptotic stability.
Key issues: asymptotic stability and convergence rates.
4J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.
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Reservoir Engineering and coherent feedback®

dissipation

Yo,

Reservoir

H

res

H.

nt

>

Engineered
interaction

System

sys

H = Hyes + Hint + Hsyst

Z
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itp = pres® 1) (1| exponentially on a time scale of 7 ~ 1/« then ..
—00

5See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique

des Houches", July 2011.
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Reservoir Engineering and coherent feedback®

dissipation

Yo,

Reservoir

H

res

H.

nt

—

Engineered
interaction

i,

System

sys

H = Hyes + Hint + Hsyst

...... P, Pres @ [0) (| + A, if k> then || Al < 1

5See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique

des Houches", July 2011.
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Reservoir stabilizing "Schrédinger cats" |¢,) = (Ja) + i |-a))/V2. © /5/75

atom (reservoir) Cavity mode (system) Aim:
engineer atom-mode interaction,
to stabilize |-o)+ o)

———

Box of
atoms

DC field:
(controls atom frequency)

ENS experiment

Jaynes-Cumming Hamiltionian
H(t)/h = weala® Iy + wq(t)ls ® 0z/2 + iQ(t) (@' ® o —a® 0y) /2

with the open-loop control t — wq() combining dispersive wq # we
and resonant wg = we interactions.

8A. Sarlette et al: Stabilization of Nonclassical States of the Radiation
Field in a Cavity by Reservoir Engineering. Physical Review Letters, Volume
107, Issue 1, 2011.
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Composite interaction with §(t) = wq(t) — we J
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top
cavity mirror
5(t)

Q(vt)

» time t

T2 42 02 11
\_ﬂttﬁ)m 1
CaVlty mirror

U= Uoff-resonant-1
U = X(¢{n) Z(ow)
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Composite interaction with §(t) = wq(t) — we J
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top
cavity mirror
5(t)

6 A
oF —
Q(vt)
| =
_60 - — = — — — S E——— time t

-T/2 -t/2 0t/2 T/2
\_ﬁtmm i
cav1ty mirror

U= Uresonant Uoff-resonant-1

U=Y(05) X(n)Z(on) .
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Composite interaction with §(t) = wq(t) — wc J
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top
cavity mirror
a(t)

Qv

of -/ (=D

Sy — » time t

T2 42 0U2 182
\ﬁttﬁ)m i
CaVlty mirror

U= Uoff-resonant-z u resonant Uoff-resonant-1

U=2Z(—on)X(En) YO X(EN)Z(dN)
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Composite interaction with §(t) = wq(t) — wc J
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top
cavity mirror
5(t)

Q(vt)

» time t

T2 42 042 11
\/ﬁpm 1
CaVlty mirror

i ¢Kerr N2

_ i sKerr g2
U~e Uresonant€’® " N
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Convergence of K iterates towards (|as) + i\—aoo>)/\@

lterations pk+1 = K(pk) = MgpxM}, + Mepx M}, in the Kerr frame
p= e— i pKerreih,*f,e" yields

piejm —_ KKerr( Kerr) Mgerrpierr(Mgerr)T + Ml;errpierr(Mléerr)]‘.
with M = cos(¥) cos(fn/2) + sin(¥) %\/’%Z) a' and

M = sin(4) cos(fn.1/2) — COS(%)aSin%/Z).

Assume |u| < /2,00 =0, 8, €]0, 7| for n > 0 and limp, 1 0, = 7/2,

then (Zaki Leghtas, PhD thesis (2012))
> exists a unique common eigen-state [¢**") of My and Mg™":
Kerr _ |¢Kerr> <¢Kerr| flxed pOInt Of KKerr
> if, moreover n — 0, is increasing, liMx. o0 P& = pie.
For well chosen experimental parameters P X |otoo ) (aeo| @and

err —in/4
her ~ N2 /2. Since eEN |a,) = 5 (Jas) + il-as)):

lim px = —(|aoo> + /I-aoo>) ((aool + i('aoo\)

k=00

# L) (@oo| + A ]-Cloo) {-toc |-

Z

i
MINES
Te

24/52



Wigner function WP for different values of the density operator p

We:Csen2Tr (e"””D_prE) e [-2/m,2/x]

Fock state [n=0>
|

Fock state [n=3>

Coherent state |o=1.8>
|

3 ; Statistical I‘nixture of :
~ = -0>+
) Coherenf state |-o> [ Cat state:| o>Ho>
é | | |
| |
Q. e e=e
| |
| | |
i 1 l
| | |
-3 | ! .
-3 0 3
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. . . . 24
An approximation by a continuous-time model’ /5/7
Tech

atom (reservoir) Cavity mode (system) Aim:
engineer atom-mode interaction,
to stabilize |-a.)+|ay

—

Box of
atoms

DC field:
(controls atom frequency)

ENS experiment

In the Kerr frame p = e—/7/2 N° jferrgin/2 N°.
%pKerr — u[aT —a, pKerr] 4 H(apKerraT _ (NpKerr 4 pKerrN)/2)

Identical to the Lindbald master equation of a damped harmonic
oscillator (x > 0) driven by a coherent input field of amplitude u.
Simulations: convergence from vacuum in ideal and realistic cases.

A. Sarlette et al: Stabilization of nonclassical states of one and two-mode

radiation fields by reservoir engineering. Phys. Rev. A 86, 012114 (2012).
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Convergence of the quantum damped harmonic oscillator 7
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Lemma: the solutions of

d
i ula' — a,p] + x (apa’ — (Np+ pN)/2)

converge exponentially towards | ) (oo | With oo = 2u/k.
Elementary proof: under the unitary change of frame

p= e(oeooaT—aooa) E e—(amaT—awa)

the new density operator ¢ is governed by

% =r (ata' — (NE+EN)/2) ;

its energy E = Tr(N¢) = Tr (a'ag) converges exponentially to 0
since it obeys to %E = —kE; thus £ converges exponentially to |0)(0].
Computation only based on commutation relations:

[a,a']=1, af(N)=f(N+l)a, e (*@+e"a ggloa’—a’a)_ 5«
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Quantum Fokker-Planck equation: damped harmonic oscillator
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d

i ula' — a,p] + r (apa’ — (Np + pN)/2)

p can be represented by its Wigner function W* defined by
Co¢=x+ipr WP()=2Tr (e’””e—fa”f*"’pef"’hg*a)

With the correspondences

D _ (0 0N 0 (0 0
¢ 2\ox ‘op) e 2\ox " op

WP"":(f—; a)W’J, W"P:<§+‘ 8)Wﬂ

65* 2 ag*
) 1 0
wea' — (e* 21 9 Ywe, war= (e 12\ we
(¢ ) w- (e~ 45)
we get the following PDE for W* (ao, = 2u/k):
owr

or ~ % <§X<(X a)W’) + %(PW”) + 1AWP>

converging toward the Gaussian W#= (x, p) = 2 g~2(x—a=)"~20",
28/52



Reservoir with the cavity relaxation (1/x photon life-time)®

atom (reservoir) Cavity mode (system) Aim:
engineer atom-mode interaction,
to stabilize |-a.)+|ay

——,

Box of
atoms

DC field:
(controls atom frequency)

ENS experiment

In the Kerr representation frame p = e~i7/2 N° jrerrgin/2 N
reservoir relaxation
%pKerr — U[aT —a, pKerr] + H(apKerraT o (NpKerr + pKerrN)/z)
+ Kc(eiﬂNapKerraTefiﬂ'N o (NpKerr + pKerrN)/z) ]

cavity decoherence

8A. Sarlette et al: Stabilization of nonclassical states of one and two-mode
radiation fields by reservoir engineering. Phys. Rev. A 86, 012114 (2012).
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The steady-state for k¢ > 0

The steady state pf¢" in the Kerr frame

0 = ula’ — a, g + r(aperal — (NS + p"N)/2)
+ Ke ( ITrNapKerraTe itN __ (NPEZ" =+ pI;:rrN)/2)

is unique

c

o = | ) o ax.
The positive weight function u (Glauber-Shudarshan P distribution) is
given by

(0% — o) &)

c _
as, —x

1(X) = po

)

with rg = 2k¢/(k + K¢) and a = 2u/(k + k¢). The normalization
factor 1o > 0 ensures that f e pu(x)ax =1.

Conijecture: global (exponentlal) convergence towards pke" of p*e(t)
as t— +o0.
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Robustness of the reservoir stabilizing the two-leg cat.

i™N Kerr —imwN Kerr

Since We* (&) = Wr~ (—£&) the master Lindblad equation
reservoir relaxation
gtpKerr _ U[aT - a, pKerr] + H(apKerraT o (NpKerr + pKerrN)/2)
+ Hc( lﬂ-NpKerre ITrNaT _ (NpKerr + pKerrN)/z) )

cavity decoherence

yields to the following non local diffusion PDE (quantum
Fokker-Planck equation):

Kerr

owr
ot

(x,p) ox

K K
nc<(X2+p2+;)<Wpe" err

— we
3 (X (aWpKerr ) s ) P
“he| 2 2
ox (x,p) 8p

(—x,—p)
Convergence towards W»="( f_j 2iu(a) g—2(x—a)* 20" oy
remains to be proved.

Kerr

owr

(=x,—p)
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_ NZKE (8 <(X—0400)WpKerr) " %(prKerr) " %AWPKe">
(x,p)
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Quantum information processing with cat-qubits ° 7
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It is possible with circuit QED to design an open quantum system
governed by

o= Ul ]+ o @@~ (@)1 + plaf) ) 2)

where a is replaced by a. The supports of all solutions p(t) converge
to the decoherence free space spanned by the even and odd
cat-state;

\C;roc> X |Qoo) + [F00),  |CL ) X |Qoo) — |-teo) With aiee = v/ 2U/ k.

The corresponding PDE for W is of order 4 in x and p.

A similar system where a is replaced now with a* could be very
interesting for quantum information processing where the logical qubit
is encoded in the planes spanned by even and odd cat-states:

{ICa)1Ca 0} {1CaL) G, )} with ase = V/2u/ k.

The corresponding PDE for W is of order 8 in x and p.

9M. Mirrahimi et al: Dynamically protected cat-qubits: a new paradigm for
universal quantum computation, arxiv:1312.2017v1, 2014.
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Conclusion: convergence issues of open-quantum systems

Discrete time model (Kraus maps):
prrt = K(pk) =Y MypkeM] with > MIM, =1
Continuous-time model (Lindbald, Fokker-Planck eq.):
d .
_ T f
G =AY <L,,pu, —(LiLop+ pLVLu)/z),

Stability induces by contraction for a lot of metrics (nuclear norm

Tr(|p — o), fidelity Tr (\/\/po\/p), see the work of D. Petz).
Open issues motivated by robust quantum information processing:

1. characterization of the Q-limit support of p: decoherence free
spaces are affine spaces where the dynamics are of Schrédinger
types; they can be reduced to a point (pointer-state);

2. Estimation of convergence rate and robustness.

3. Reservoir engineering: design of realistic M, and L, to achieve
rapid convergence towards prescribed affine spaces (protection
against decoherence).
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Quantum state feedback to stabilize the set-point |7) (7| //

The Lyapunov feedback scheme is based on a strict control Lyapunov
function:

Ve(p) = (—e(nlpl n)? + an(n|p|n))

n

where € > 0 is small enough and

LeYD 1oL =0
S S =%, ifne[1,A-1];
if n=n;

S i+, ifne A+ 1, +od]

Feedback law: u = f(p) =: Argmin V. (DU (MgpM; n MepMTe) DL).
vE[-0,U]
Achieve global stabilization since the decrease is strict

Vo # )R, V. (D,(p) (MgpM; + Meng) Di(p)) < V. (p).
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The control Lyapunov function used for experiment. 7
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Coefficients o_ of the control Lyapunov function

0.8r (o) b

0.6 o ]
0.4+ (@) |

0.2f o) 1

0 L L L L
0 2 4 6 8

photon number n

Ve(p) = 3, (—€(n|pl n)? + an{nlp|n)) for n = 3.
on ~ log(n): key issue to avoid trajectories escaping to n = +oc.

o)
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The Markov process with imperfections: |¢k) and px 7
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Take ) (st | = oy (Mo 10 (0l M, ) with

measure imperfections and decoherence described by the left
stochastic matrix n: 7, € |0, 1] is the probability of having the
imperfect outcome ¢’ € {1,..., m'} knowing that the perfect one is

we{l,...,m}.

The optimal Belavkin filter: px = [ (|¢k)<1/;k|

|/l»b0>a/j/67 e 7”?(1)

can be computed efficiently via the following recurrence

=1

m
— 1 .M, p Mt
Pk+1 Tr<25:1 nuL,uMquML) (Z’iuk,u Pk u)

where the detector outcome ) takes values ' in {1,---,m'} with
probability Py, = T (1 1y, MupiM, ).
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Stability and convergence issues (1) Zj

» The quantum state px = £ (|¢k><¢k|‘|¢o>7ﬂ6, iy -7%{_1) is
given by the following optimal Belavkin filtering process

m

1 3 i

Pk+1 = U ,uMupkM
Tr(ZZ’:1 n“LYHM“pkML) = k N

with the perfect initialization: pg = |v0) (90|
> lts estimate p*' follows the same recurrence

m

est 1 est uqt
Pri1 = 5:77/7 M,.pi*M
+ TF(ZL WML,MMuPiStML> o Hies b M

but with imperfect initialization pg™* # |10) (/o]

A natural question : p§' — px when k — +o0o0 ?
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Stability and convergence issues (2)

Markov process of state (px, pit)

m i m est pat
2t n“fw“M”pkML est 2 nu,’(,uMﬂpk M,

’ pk 1=
T (S50 0y MM}, ) (S M ML)

Pk4+1 =

Proba. to get pj at step k, Tr (Z,’L Uu;,uMquMDs depends on py.

» Convergence of p§! towards px when k — +occ is an open
problem.
A partial result (continuous-time) due to R. van Handel: The
stability of quantum Markov filters. Infin. Dimens. Anal.
Quantum Probab. Relat. Top. , 2009, 12, 153-172.

> Stability™: the fidelity F(pk, pi') = T (\/\/pkpe/px) is &
sub-martingale for any n and M,
E (F(ors1, p24)/06) = Flpk, pi).
Fidelity: 0 < F(p, p®) < 1 and F(p, p®) = 1 iff p = p°.

1°A. Somaraju et al: Design and Stability of Discrete-Time Quantum Filters
with Measurement Imperfections. American Control Conference, 2012,
5084-5089.
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The key inequality underlying F(p, p®) is sub-martingale™’ /5/75
For
> any set of m matrices M,, with 377, M{,M,, =1,
» any partition of {1,..., m} into p > 1 sub-sets P,,

» any Hermitian non-negative matrices p and o of trace one,
the following inequality holds

M,.oM] > M, oM,

Tr M MT >uep, MuoMj, wer, MupM),
Z u; o (Tr(zﬂepv M“UMLy Tr(zuePy Mu”’”L))

> F(o,p)

where F(o,p) = Tr? ( ﬁpﬁ).

Proof combines on a lifting procedure with Ulhmann’s theorem.

""PR. Fidelity is a Sub-Martingale for Discrete-Time Quantum Filters. IEEE

Transactions on Automatic Control, 2011, 56, 2743-2747.
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Continuous/discrete-time jump SME 7

With Poisson process N(t), (dN(t)) = <§+T; Tr (th VT) ) dt, and

detection imperfections modeled by § > 0 and 7 < [0, 1], the quantum
state p; is usually mixed and obeys to

MINES
Tech

dpt = (—%[H,Pt] + VoV — %(VT Vpi+ p V! V)) dt

o )
+ (0 ip;irn(zppt:ﬁ) - p,> (dN(t) - (9 +q T (th vt ) ) dt)

G+ 7V oV
For N(t + dt) — N(t) =1 we havep,+d,:79p’+77vmv .
9+ﬁTI’(Vp,V)

For dN(t) = 0 we have
Mop:M} + (1 —7)Vp, Vit
Tr (MoptMg (1 —7)Vpy det)

Pt+dt =

with Mo = 1 + (—%H+ 1 (ﬁTr(Vp,VT> = v*v)) dt.
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Continuous/discrete-time diffusive-jump SME 7
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The quantum state p; is usually mixed and obeys to
; 1 1
dp = (—é[H, pl+ Lok’ — S(L'Lpe+ peL L) + Vo VT = S (VIVpr 4 iV V)) dt
+ \/17<Lpz okl = T ((L+ L)) pt> aw;

+ (W _ p,> (an(e) — (87T (Vov') ) o)

Opt +Vp V1

For N(t + dt) — N(t) = 1 we have =,
(t+ df) — N(1) i = g YV

For dN(t) = 0 we have
My, piM}y, + (1 —n)Lp:LTdt + (1 —7)Vp, Viat

Tr (Mdy,ptngt +(1—n)lpltdt+ (1 —7)Vpr det)

Pt+dt =

with May, = I+ (=iH - ILTL+ 1 ( Tr (Vo V) I = VIV)) dt + \/ndy:L.
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Continuous/discrete-time general diffusive-jump SME 7

The quantum state p; is usually mixed and obeys to

i
MINES

m

dp; = <—%{H, ol + > Lupill, = S(LELupr + pelf L) + 3 ViV, — J(VE Vo + V], m) ot
-
+3var (Loe+ ol = T (L + Do) o1 )W
v

> 0upt + 3,0 Myt VotV
E\ O+ T, T (V“/ptVL,

) ~ <dNu(!) _ (§M + Zﬁ%“/ Tr (VH,mVL/) ) dt>
“/

where n,, € [0, 1], @uﬁu ' > 0 with Ny = Eu Myt < 1 are parameters modelling measurements
imperfections.

Oupt + 3, Ty VM/PtVL,

If, for some p, N, (t + dt) — N, (t) = 1, we have p gt = — .
Op + 22,0 My T (V“/WVL,)
When V, dN,,(t) = 0, we have

Moy, peMYy, + 52, (1 = )Ly peLfdt + 5, (1 = 7,)V,pe V], ot

T (May, oMYy, + 50, (1 = mo)lypellot+ 32, (1 = 7,) VoV sal)

Pt+dt =

with Mgy, = 1+ (—%LH -tz L+ iy, (ﬁ“ T (vup,v‘ﬁ) 1- v}, vu)) dt+ 3, i dyuily
and where dy,, 1 = /7, Tr ((L,, L) p,) at + dw,, ;.
Could be used as a numerical integration scheme that preserves the positiveness of p.
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Continuous-time diffusive SME and quantum filtering 7
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For clarity’sake, take a single measure y; associated to operator L
and detection efficiency 7 € [0, 1]. Then p; obeys to the following
diffusive SME

dpt = —L[H, pi] ot + (Lp,LT — S (LiLp+ p,UL)) dt
+Vn (Lﬂt +plt = T ((L + LT)Pt) Pt) dw;
driven by the Wiener processes W;,

Since dy; = \/n Tr ((L + L Pt) dt + dW;, the estimate p$* is given
by

dp = —i[H, o] ot + (LpPL! — J(LILp3® + pLIL)) d
Vi (’-P?St +pPLl - T ((l— + LT)pi‘“) p?) <d.Vt VT ((L + LT)p?St) dt)

initialized to any density matrix pg™.
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Stability of diffusive quantum filtering'? 7
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Assume that (p, p*') obey to
dpi = —4[H. plat+ (Lol — L(LTLp+ pil1L)) ot
+vn (Lﬂt +pllt = Tr ((L + LT)Pt) Pt) aw;
dpest —%[H, petzst] at + (Lp?stLT (LT Lpest + pestLTL)> dt
i (Log + oLt = T ((L+ Lf)pist) pi) AW,

o (Log + oL — T ((L+ L) o) Tr((L+ LY (pe — p57)) et

correction terms vanishing when p; = p$t

Then forany H, Land 7 € [0,1], F(pr, pi*) = T (\/V/pip/pi) is @
sub-martingale:
t — [ (F(pr, p5)) is non-decreasing.

2H. Amini et al: Stability of continuous-time quantum filters with

measurement imperfections. http://arxiv.org/abs/1312.0418, 2013
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Cat states obtained via Kerr transformations of coherent states'® 7
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Take a coherent state |a) = e 1225 %I\n) of complex
amplitude .. Depending on ¢Ke", the Kerr-propagated state

eiiqﬁKerrNZ ‘a>

can take a number of nonclassical forms:
1. squeezed states for ¢ < r;

2. states with ‘banana’-shaped Wigner function for slightly
larger ¢Ke';

3. mesoscopic field state superpositions |k,) with k equally
spaced components for txyx = 7/k .

4. in particular, for ¢kem = 7, a superposition of two coherent
states with opposite amplitudes:

[Ca) = (Ja) +i]-))/V2.

133, Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.
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Wigner functions of e=#“"N*|q) for different values of ¢<er.
g

0 Re) 3
(a): pfem = w/2; (b): prem = w/3; (c): ¢rem = 0.28; (d): ¢k = 0.08

(e-h): similar states stabilized, despite decoherence, by the atomic
reservoir onto which we focus in this talk.




Reservoir engineering stabilization for discrete-time systems /5/7
Tech

Data: Hs with Hamiltonian Hs, a pure goal state s = |¢s)(1s|.
Find a "realistic” meter system of Hilbert space Hy with initial state
|Om), with Hamiltonian Hy, and interaction Hamiltonian H,,; such
that
1. the propagator Us y = U(T) between 0 and time T
(GU=—L(Hs+ Hy + Hix)U, U(0) = I) reads:

Vivs) € Hs, Usm(|vs) @ [0m) =D (Mulips)) @ |A,)

"
where |\,) is an ortho-normal basis of # .

2. the resulting measurement operators M, admit |s) as
common eigen-vector, i.e., ps is a fixed point of the Kraus map

K(p) =3, M.pM:  K(ps) = ps.
3. iterates of K converge to ps for any initial condition po:

. "T pk = ps Where px = K(pk—1) (asymptotic stability) .
=400

Here the reservoir is made of the infinite set of identical meter
systems with initial state |6y) at t = (k — 1) T and interacting with Hg
during [(k = 1T ,kT], k=1,2,.... 48/52



= Z(—¢n) X(én)  Y(Op) X(éw)Z(ow) ' =

Generalized rotations around Bloch spheres labeled with n:

X(fn) = cos (fn/2) @ [9)(9g| + cos (fu+1/2) @ |e)(e|
- iasm(f\/%/z) ©le)g| - ism(f\/%/z) a'  |g){el
Y(fn) = cos (fn/2) @ [9)(g| + cos (fu+1/2) ® |e)(e|
__sin(fn/2) sin(fn/2) _;
a“‘;7i744769|e><gl-+‘44:7;744'a ®1g)(el
Z(fv) = '™ /2 @ |g)(gl +e M 2w e)(e] .

The different angles depending on the photon-numbers:

/2 /2
\F/ Q(vi) dt, ¢n_5o/ 1+ n(@(v) /o)

t/2 T/2

tangn_%” with &, € (£, 5) .

4A. Sarlette et al: Stabilization of nonclassical states of one and two-mode

radiation fields by reservoir engineering. Phys. Rev. A 86, 012114 (2012).
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Z

U=2(-on)X(En) Y(0h) X(éw)Z(on) (end) =z

1. With 6, € [0, 27) defined by cos(6,/2) = cos(6;,/2) cos&, and
of = on + angle[sin(0y,/2) — icos(fy/2) sinén]:
U = cos(0n/2) ©19)(gl + cos(On+1/2) @ |€) (e
B asin(HN/Z) sin(0g/2)
VN VN

2. Using af(N) = f(N + I)a we get

&% @ |e) (gl + e “hal @|g)(e|.

nKerr nKerr
U=e"™" Y(65) e

H K Kerr _ ¢ H " : : " K
with he3 — hp®™ = ¢7 , defining "Kerr Hamiltonian™ Ay

3. With |ug) = cos(u/2)|g) + sin(u/2)|e),
U ([¢) @ [Uar)) = Mgltp) @ |g) + Melyp) @ [e)

where

nKerr

inKerr _ inKerr
Mgerre/hN ; Me —e ihy Mléerreth

nKerr

Mg = eith
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Convergence issues in {3~ ¥n|n), (¥n)n>0 € 2(C)}

The two measurement operators in the Kerr frame

Mge" = cos(¥) cos(fn/2) + sin(%) S'”(‘g\/%/z) a'
Mg = sin(4) cos(On+1/2) — cos(4) aSin(a\/%/z)

and the Kraus map:
pijﬂ _ KKerr(pk) _ Mgerrpﬁerr(MSerr)T + Mzerrpl}ierr(Mzerr)T.
When |u| < 7/2, 6y =0, 0, €]0, 7| for n > 0 and lim,, ;o 0, = 7/2:

> exists a unique common eigen-state |¢/*") of Mg and Mg
PR = [ypker) (ypker| fixed point of K.

» if n— 6, is increasing, Zaki Leghtas has proved in his PhD
thesis (2012) global convergence (Lyapunov function

Tr (pke™plem), precompacity of the trajectories, Lassalle
invariance principle,. .. ).

Conjecture: global convergence without n — 6, increasing.
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Books on open quantum systems
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3.

4.
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