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Trajectory planning for %m = f(x,u): controllability




Trajectory tracking: stabilization
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Compute Au, u = ur + Awu, such that Ax = » — x,, converges
to O.



Outline

e Pendulum dynamics.

e \Water in a moving box

e Heat equation

e Quantum particle in a moving box

e Conclusion: distribution of zeros, analytic functions and op-
erational calculus.



One linearized pendulum

Newton equation with y =u +[107:

d%y g
—Z = g0 = Z(y —u).
g 961 ll(y u)

Computed torqgue method:

01 = —g, u=1y—1[101.
g



Two linearized pendulums in series

Brunovsky (flat) output y = u + 1101 + 156>:

—_——
m — 150
0, = U g — 1(y — 1o 2)_|_

g (my+mo)g | m1 4+ mo

ma

)

and u =y — 1101 — I505 is a linear combination of (y,y(2) y(4).



n pendulums in series

Brunovsky (flat) output y = u+ 1101 4+ ... 4 1n,0n:

uw=y+a1y® +axy™® + ... + any®.

When n tends to oo the system tends to a partial differential
equation.



The heavy chain (Petit-R 2001).
U(t)

o1z~ 92\ oz
X(L,t) =U(t)

0?’°X 0 ( GX)

z=0"
Flat output y(¢t) = X (0,t) with

U(t):zi /O%y(t—z L/g sin() dc

T



With the same flat output, for a discrete approximation (n pen-
dulums in series, n large) we have

u(t) = y(t) + a1§i(t) + agy® (#) + ... + anyP (1),
for a continuous approximation (the heavy chain) we have

U(t)z% /O%y(t+2 L/g sing‘) dc.

Why? Because formally

S+ 24T/ Q) = (0 4.+ VI oy

n!
But integral formula is preferable (divergence of the series. ..).




The general solution of the PDE

Ot2 0z

02X a< 8X)
gZ—
0z

X(z,t)zi /Ozﬂy(t—Q z/g SinC) d¢

where t — y(t) is any time function.

Proof: replace % by s, the Laplace variable, to obtain a singu-
lar second order ODE in z with bounded solutions. Symbolic
computations and operational calculus on

X = g (gza—X> :
0z 0z



Symbolic computations in the Laplace domain

Thanks to x = Q\F, we get
g
82X 92X
> @)+ 2 (o) — a2
Use Laplace transform of X with respect to the variable ¢
82X

(a: t) = 0.

(:13 s) + —(a: s) —zs°X(z,s) = 0.
This is a the Bessel equatlon defining Jg and Yp:

X(z,5) = a(s) Jo(2s4/2/g) + b(s) Yo(215,/2/9).
Since we are looking for a bounded solution at z = 0 we have b(s) =
0 and (remember that Jp(0) = 1):

X (z,5) = Jo(215\/2/9) X (0, s).
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X (z,58) = Jo(2151/2/9) X (0, s).
Using Poisson’s integral representation of Jj
1 21 .
Jo(¢) = —/ exp(2Csin@) db, ¢ € C
27 J0
we have

Jo(21s\/z/9) = %/02” exp(2sy/z/gsin0) do.

In terms of Laplace transforms, this last expression is a combi-
nation of delay operators:

X(2.t) = %/O%y(urz\/%sm 0) db
with 4(t) = X(0.1).
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Explicit parameterization of the heavy chain

The general solution of

92X 9 0X
_— e — - 3 U t — X L7 t
Ot2 0z (gz 0z ) (t) ( )

reads

1 21
X(z,t) = Z/O y(t + 24/z/gsinf) do

There is a one to one correspondence between the (smooth)
solutions of the PDE and the (smooth) functions t — y(t).
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The following maps exchange the trajectories:

[ z(t) = X(0,1)

2
| u(t) = 550, 1)

\

( X(z,1) Z%/()chc(t—Q z/gSiﬂC) d¢

27

U =3 [

0

x (t —2,/L/gsin g) d¢

\
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The Towed Cable Flight Control System, Murray (1996)
N S

= :
Ho>

approximated
by a series of small
pendulums

Derivatives
of order 2n

i

Hn
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Heavy chain with a variable section

T he general solution of

('(z) 0°X 0 (T(Z)%—f)

] 9 o2~ 9z

\ X(L,t) = u(t)

where 7(z) > 0 is the tension in the
rope, can be parameterized by an
arbitrary time function y(¢), the po-
sition of the free end of the system
y = X(0,t), via delay and advance
operators with compact support.
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The Indian rope.

a( 8X> 9°X 0
0z o

o) T a2

X(L,t) = U(t)
The equation becomes elliptic and the Cauchy
problem is not well posed in the sense of Hadamard.

Nevertheless formulas are still valid with a com-
plex time and y holomorphic

( ) X(z,t)z% /OQWy(t—(Q\@ sin ¢) ¢——1) dc.
O O
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1D Tank: shallow water approximation

A
n(t,x)
— T — }—=V(tX)
-] X +|
|
o D(Y) ’
oh  O0(hv) ov | dv . Oh
E_I_ ox =0, 8t+D+Uax_ g@a:

with v(t, —1) = v(¢,1) = 0.

The nonlinear dynamics is controllable (Coron 2002) but the
tangent linearization is not controllable (Petit-R, 2002).
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1D tank: tangent linearization.

h(It’_X)—— — T—V(t’x)
L — +|
4 o0 )

Assumptions: h=h+ H, |H| < h; |D| < g, |v] € ¢ = 1/gh.

0°H  _0°H

OH OH 1 ..
O =gre O - = @) = -~ Dt
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Non controllable system

Since H = ¢(t + x/c) + ¥(t — x/c), with ¢ and v arbitrary, one
gets

{ ¢'(t+ A) —¢'(t—A) = —cD(t)/g
¢'(t— D) —¢P'(t+ D) =—cD(t)/g
with 2A =[/c. Elimination of D yields

P+ D)+ (t+A)=¢(t—A)+ (- D).

So the quantity n(t) = o¢(t) +¢(t) satisfies an autonomous equa-
tion (torsion element of the underlying module, Fliess, Mounier,

7w(t+ 2A) = 7w (t).

The system is not controllable.
19



Trajectories passing through a steady-state
Since w(t) = ¢(t) + ¢ (t) = 0 we have

P+ D)+ ¢t —A)=—cD(t)/g
thus

¢(t) = — (2—Cg> y'(t), D)= @ylt+A)+ylt—A))/2

and

H(t,x) = ;@ Yt a/e) =y (t— /o)

D(t) = 2 [y(t + &) +y(t — &)

\

with t — y(¢) an arbitrary time function.
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Physical interpretation of y

ok

0
M~ =/lh(t,x) dx

[
M+=/Oh(t,:13) dx
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T he tumbler in

movement: 2D cylindrical tank

22



Modelling the 2D tank

The liguid occupies a cylinder with vertical edges with the 2D
domain €2 as horizontal section. The tangent linear equations

are.

02 H _
D
VH-ﬁz—ﬂ-ﬁ on 052
g

with D = (D41, D>), i the normal to 0X2.
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2D Tank, circular shape.

Steady-state motion planning results from a symbolic computa-
tions in polar coordinates:

H(t,z1,20) = %M/OQW [COSC vh <t . COs¢ + xpSin §>

C

tsine y,2 (t— a:lcosg‘—cl—:cgsing‘)] ac
0 =2 [ [t 112
=2 [ s - 209)]

with t — y1(¢) and ¢t — y>(t) as you want.
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Open question

Under which conditions on €2 is the 2D tank described by

02 H _
——— =ghAH in 2
Ot2 J
u
VH n=—-1n1 on 0f
g
D) =u

steady-state controllable 7

It is true for 2 a disk or a rectangle.
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Compartmental approximation of the heat equation

Energy balance equations

(d
—01 = (0> — 0
- 01 (62 —671)
d
<£92=(91—92)+(93—32)
d
\ —t@:a = (02 — 03) + (u — 03).

Linear system controllable with y = 61 as Brunovsky or flat out-
put: it can be transformed via linear change of coordinates and
linear static feedback into y(3) = 0.
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Compartmental approximation of the heat equation (end)

An arbitrary number n of compartments yields

(01 = (62— 61)
0> = (61 — 02) + (63 — 62)

\

0; = (6;—1 —0;) + (0,21 — 6;)
én—l — (en—Q — en—l) + (97’& — en—l)
\ On = (Op—1 — 6n) + (u — On).
y = 01 remains the Brunovsky output: via linear change of co-
ordinates and linear static feedback we have y(”) = 0.

When n tends to infinity we recover 00 = 5’%9

27



Heat equation
2,0(0,t) =0

80(z,t) = 020(x,t), € [0,1]
8:0(0,t) = 0 0(1,t) = u(t).

28



Series solutions

Set, formally

> xt X da; [zt 5 s z
ng:oai(ﬂﬁ’ (9759:;:0 dtz (Z.!>, 3x9=i;)az'+2 (7‘)

and 60 = 020 reads da;/dt = a;4». Since a; = 9:0(0,t) = 0 and
ag = 6(0,t) we have

azi+1 =0, ag = a(()z)

Set y :=ag = 6(0,t) we have

o Dy (&
O(x,t) = ZZ:Oy (t) ((22)')

29



Symbolic computations: s:=d/dt, s € C

The general solution of ¢ = s reads (' := d/dx)

sinh
inh(z+/s) b(s)
Vs
The boundary condition (1) =« and 6’(0) = 0 reads

sinh(1/3)
/s

0 = cosh(z+/s) a(s) +

u = cosh(+/s) a(s) + b(s), b=0

Since y = 0#(0) = a we have

21

0(xz,s) = cosh(z+/s) y(s) = (Z;) (QZ)ISZ) y(s).

30



The general solution parameterized via t — y(t) € R, C°° (y(t) :=
0(0,1))

+oo . (1)
b t) = 3 Yo
too, (9)
y *(¢)

Convergence issue.
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Gevrey function of order o

A C*® time function [0,T] > t — y(t) is of Gevrey order a when,

3C,D>0, Vte[0,T],¥i>0, |yD@)|<CDT(1+ (a+ 1))

where " is the classical gamma function with n! = I'(n 4+ 1),
Vn € N,

Analytic functions correspond to Gevrey functions of order < 0.
When o > 0, the class of a-order functions contains non-zero
functions with compact supports. Prototype of such functions:

p

(1 @
t—y(t) ={e€ (t<1—t>> if t €]0,1]
O otherwise.

\
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Operators P(s) as entire functions of s, order at infinity

C>sm— P(s) =>;>0 a;s' is an entire function when the radius
of convergence is infinite. If its order at infinity is ¢ > O, i.e.,
dM, K > 0 such that Vs € C, |P(s)| < M exp(K|s|?), then

B'l

JAB>0|Vi>0, l|a|<A |
Vi 0 el < Arrr Ty

cosh(+/s) and sinh(y/s)/+/s are entire functions of order o = 1/2.

Take P(s) of order o with s =d/dt. Then P(s)y(s) corresponds
to series with a strictly positive convergence radius

P(s)y(s) = Y a; (1)
1=0

when t — y(t) is a Gevrey function of order a < 1/0 — 1.
33



Motion planning of the heat equation

Take > ;>0 az-?—; and > ;>0 bz§—,l entire functions of £&. With o > 1

) _=T9 _ . —
tt e(T-1)7 t? et
y(t) — (Z a’Z/LI) _T0 _TO _I_ (Z b’L?/I) _T0o _TO
€

120 et—a—|—e(T—t)a 1>0 to _|_€(T—t)0
the series
Too (1) . T, (i)
y\(t) o Y\ (t)
0(z,t) = ~—= x<',  u(t) = —.
; (24)! ; (23)!
are convergent and provide a trajectory from
( ) Z 2 ( ) Z 20
O(x,0) = a;—— to 0(x,T) = b;——
i>0 2(27/)! i>0 Z(27,)!
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A quantum analogue of the water-tank problem: the quan-
tum box problem (R. 2002)

- T
V =400 V=0 V=+o0
L
1 1
vV — — _
v—|—2

In a Galilean frame
0p  10%¢ 1 1
@a— 2522’ z € v 57’04‘5]7

1 1
¢(U_§7t) :¢(U+§7t) =0

35



Particle in a moving box of position v

In a Galilean frame

0p  10%¢ 1 1
1&— 2522’ z € [v E’U_I_E]’

B(o— 1) = 9(v+ 2,1) =0

where v is the position of the box and z is an absolute position .

In the box frame:

op  10%y . 11
'LE—_Qan —I—’UQ@D, QE[ 272]7

1 1

36



Tangent linearization around eigen-state ) of energy @

Y(t, q) = exp(—wwt)(¥(q) + W(q, 1))

and W satisfies

BA 102w _
B s ) S W
=y + @ X + vq(y + V)

1 1
0=W(——,t) = W(-,t).
(=5:1) (50
Assume W and v small and neglecte the second order term vqW:

oW 192w _ 1
AoV =2 " 4 W(—=¢
1 + o + Vg, ( 5

1
= W(-,t) =0.
> 53 ) =0

37



Operational computations s = d/dt

The general solution of

(1is+ )V = —%\U” + s2vq

W = A(s,q)a(s) + B(s,q)b(s) + C(s,q)v(s)

where

A(s,q) = cos (q\/st + 25})
sin (q\/st T 2@)
B(s,q) = V215 + 20
C(s,q) = (—usqp(q) + ¢'(q)).

338



Case ¢ — ¢(q) even

The boundary conditions imply

A(s,1/2)a(s) =0, B(s,1/2)b(s) = —¢'(1/2)v(s).

a(s) is a torsion element: the system is not controllable.

Nevertheless, for steady-state controllability, we have

sin (5v/=2us + 2&)

b(s) = —¢'(1/2) st Y
~sin (3v/2is + 25) sin (5v/=2us + 20)
v(e) = V2us + 2@ V=215 + 2w V)

W (s, q) = B(s,q)b(s) + C(s,q)v(s)

39



Series and convergence

sin (5+/2us +2&) sin (5v/—2is + 20)

v(s) = = ——y(s) = F(s)y(s)
V215 + 20 V=215 + 2o

where the entire function s +— F'(s) is of order 1/2,

K, M > 0,¥s € C, |F(s)| < K exp(M]|s|}/?).

Set F(s) = > ,,>pans"™ where |an| < K"/T'(1 + 2n) with K > 0
independent of n. Then F(s)y(s) corresponds in the time domain
to

> any™(#)

n>0
that is convergent when t — y(t) is a C® time function of Gevrey
order a < 1: i.e. 3M > 0 such that |y(™ ()| < M (1 + (a4 1)n)

40



Steady state controllability

Steering from W =0, v=0 at timet =0, to WV =0, v = D at
t =T is possible with the following Gevrey function of order o:

0 for t < 0
1
exo(~(5)7)
[0, T]2t— y(t) =< D 1 1 forO<t<T
exo(~(1)" ) rero - (+%:)"
ol — ()7 | +exp| — (7

\D fort>T

with D = —2wD The fact that this function is of Gevrey

sin?(\/@/2)"

order o results from its exponential decay of order o around O
and 1.
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Practical computations via Cauchy formula

(n) Frn+1) fyE+£)
J (t) 21T Y Sn—l—l

dg

where v is a closed path around zero, ;>0 any{™ (t) becomes

Fn+1) ryt+¢) 1 M(n+1)
ngoa 2T vy gnrl a = 2@7774 (Zo an gn+1 )y(t—l—@ dg.

But

M(n+1)
S angigr = [, F()exp(=st)ds = B1(F)(©)

n>0
is the Borel transform of F'.
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Practical computations via Cauchy formula (end)

In the time domain F(s)y(s) corresponds to

51 BLUP©Out +©) e

where ~ is a closed path around zero. Such integral representa-
tion is very useful when y is defined by convolution with a real
signhal Y,

WO = [T exn(~(¢ - 2/22)v (@) at

where R 5t — Y (¢t) € R is any measurable and bounded function:

o(t) = /+OO

— 0

(21 )§ ﬁBl(F)(g) exp(—(& — 7)2/262) dé| Y (t—7) dr.
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Conclusion

e 1-D wave equation: eigenvalue asymptotics |\p| ~ n:

+-00 2 i
sinh
Prototype: 11 (1 + S—2> — (s)
mn

n—=1 UE]

entire function of exponential type (OK).

e 1-D Heat equation: eigenvalue asymptotics |\p| ~ n2:

400 i
S sinh(mw+/s)
Prototype: l1—— | =
yP nl;ll ( n2) /S

entire function of order 1/2 (OK).
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Conclusion (continued)

Systems described by 2-D partial differential equation on 2 with
0-D control u(t) on the boundary. An Example

OH

— = AH on 2
ot

H =u(t) on Iy
OH
—=0onTl>-
on

where the control is not distributed on M1 (02 =T1UlMo).

Steady-state controllability: steering in finite time from one
steady-state to another steady-state.
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Conclusion (continued)

e 2D-heat equation: eigenvalue asymptotics wn, ~ —n

o0 S exp(—-~s)
Prototype: nl;[1 (1 + ;) exp(—s/n) = (o)

entire function of order 1 but of infinite type (7).

e 2D-wave equation: eigenvalue asymptotics |wn| ~ v/n

400 2 2
S 2 _eXp<78 )
Prototype: | | 1 —— | ex —
\Y40) < n) D(S /n) SQI—(_SQ)

n=1

entire function of order 2 but of infinite type (?).
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Conclusion (end)

case £ = 1/50 1-D wave equation with internal

50 T T T T T .
of\A damping:
(o]

) 02H O2H n O3 H
o —_— = €
20f ‘3 Ot2 Ox2 Ox20t

301

10

H(0,t) =0, H(1,t) = u(t)
where the eigenvalues are the zeros
of analytic function

0 00000 0D0D0D0DO0DO0DO0DODODODODO O oD

-10+

_20 L

_30 L

°°°JA P(s) = cosh (W) .

_50 I I I I I I I
-450 -400 -350 -300 -250 -200 -150 -100 -50 0
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