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Three quantum features1

1. Schrödinger equation: wave function |ψ〉 ∈ H, density operator ρ

d
dt
|ψ〉 = −iH|ψ〉, d

dt
ρ = −i[H, ρ]

2. Origin of dissipation and irreversibility: collapse of the wave
packet induced by the measure of observable O with spectral
decomposition

∑
µ λµPµ:

I measure outcome λµ with proba. pµ = 〈ψ|Pµ|ψ〉 = Tr (ρPµ)
depending |ψ〉, ρ just before the measurement

I measure back-action if outcome λµ:

|ψ〉 7→ |ψ〉+ =
Pµ|ψ〉√
〈ψ|Pµ|ψ〉

, ρ 7→ ρ+ =
PµρPµ
Tr (ρPµ)

3. Tensor product for the description of composite systems (S,M):
I Hilbert space H = HS ⊗HM
I Hamiltonian H = HS ⊗ IM + Hint + IS ⊗ HM
I observable on sub-system M only: O = IS ⊗OM .

1S. Haroche and J.M. Raimond. Exploring the Quantum: Atoms, Cavities
and Photons. Oxford Graduate Texts, 2006.



LKB photon Box: HS cavity, HM flying atom.

2

The experiment measuring and controlling the photons trapped into
the cavity C (Cavity Quantum Electro-Dynamics group at Laboratoire

Kastler-Brossel, ENS de Paris).

2Courtesy of Igor Dotsenko



The LKB Photon-Box: measuring photons with atoms

C

B

D

R1
R2

Atoms get out of box B one by one, undergo then a first Rabi
pulse in Ramsey zone R1, become entangled with
electromagnetic field trapped in C, undergo a second Rabi
pulse in Ramsey zone R2 and finally are measured in the
detector D.



The Markov chain model (1)

I System S corresponds to a quantized mode in C:

HS =

{ ∞∑
n=0

ψn|n〉 | (ψn)∞n=0 ∈ l2(C)

}
,

where |n〉 represents the Fock state associated to exactly n
photons inside the cavity

I Meter M is associated to atoms : HM = C2, each atom
admits two-level and is described by a wave function
cg |g〉+ ce|e〉 with |cg |2 + |ce|2 = 1; atoms leaving B are all
in state |g〉

I When atom comes out B, the state |Ψ〉B ∈ HS ⊗HM of the
composite system atom/field is separable

|Ψ〉B = |ψ〉 ⊗ |g〉.



The Markov chain model (2)
C
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D
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I When atom comes out B: |Ψ〉B = |ψ〉 ⊗ |g〉.
I When atom comes out the first Ramsey zone R1 the state

remains separable but has changed to

|Ψ〉R1 = (I⊗ UR1 )|Ψ〉B = |ψ〉 ⊗ (UR1 |g〉)
where the unitary transformation performed in R1 only affects
the atom:

UR1 = e−i θ1
2 (x1σx +y1σy +z1σz ) = cos( θ1

2 )−i sin( θ1
2 )(x1σx +y1σy +z1σz)

corresponds, in the Bloch sphere representation, to a rotation of
angle θ1 around x1~ı+ y1~+ z1

~k (x2
1 + y2

1 + z2
1 = 1)



The Markov chain model (3)
C
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I When atom comes out the first Ramsey zone R1:
|Ψ〉R1 = |ψ〉 ⊗ (UR1 |g〉).

I When atom comes out cavity C, the state does not remain
separable: atom and field becomes entangled and the state is
described by

|Ψ〉C = UC |Ψ〉R1

where the unitary transformation UC on HS ⊗HM is associated
to a Jaynes-Cumming Hamiltonian:
HC = ∆(t)

2 σz + i Ω(t)
2 (a†σ− − aσ+) Parameters: ∆(t) = ωeg − ωc ,

Ω(t) depend on time t .



The Markov chain model (4)
C

B

D

R1
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I When atom comes out cavity C: |Ψ〉C = UC
(
|ψ〉 ⊗ (UR1 |g〉)

)
.

I When atom comes out second Ramsey zone R2, the state

becomes |Ψ〉R2 = (I⊗ UR2 )|Ψ〉C with UR2 = e−i θ2
2 (x2σx +y2σy +z2σz ).

I Just before the measurement in D, the state is given by

|Ψ〉R2 = USM
(
|ψ〉 ⊗ |g〉

)
=
(
Mg |ψ〉

)
⊗ |g〉+

(
Me|ψ〉

)
⊗ |e〉

where USM = UR2UCUR1 is the total unitary transformation
defining the linear measurement operators Mg and Me on HS.
Since USM is unitary, M†gMg + M†eMe = I.



The Markov chain model (5)

Just before the measurement in D, the atom/field state is:

|g〉 ⊗Mg |ψ〉+ |e〉 ⊗Me|ψ〉

Denote by µ ∈ {g,e} the measurement outcome in detector D: with
probability pµ = 〈ψ|M†µMµ|ψ〉 we get µ. Just after the measurement
outcome µ, the state becomes separable:

|Ψ〉D = 1√
pµ
|µ〉 ⊗ (Mµ|ψ〉) =

|µ〉 ⊗ (Mµ|ψ〉)√
〈ψ|M†µMµ|ψ〉

.

Markov process (density matrix formulation)

ρ+ =


Mg(ρ) =

MgρM†g
Tr(MgρM†g )

, with probability pg = Tr
(

MgρM†g
)

;

Me(ρ) =
MeρM†e

Tr(MeρM†e )
, with probability pe = Tr

(
MeρM†e

)
.



Positive Operator Valued Measurement (POVM) (1)
System S of interest (a quantized electromagnetic field)
interacts with the meter M (a probe atom), and the
experimenter measures projectively the meter M (the probe
atom). Need for a composite system: HS ⊗HM where HS
and HM are the Hilbert space of S and M.
Measurement process in three successive steps:

1. Initially the quantum state is separable

HS ⊗HM 3 |Ψ〉 = |ψS〉 ⊗ |θM〉

with a well defined and known state |θM〉 for M.
2. Then a Schrödinger evolution during a small time (unitary

operator US,M ) of the composite system from |ψS〉 ⊗ |θM〉
and producing US,M

(
|ψS〉 ⊗ |θM〉

)
, entangled in general.

3. Finally a projective measurement of the meter M:
OM = IS ⊗

(∑
µ λµPµ

)
the measured observable for the

meter. Projection operator Pµ is a rank-1 projection in HM
over the eigenstate |λµ〉 ∈ HM : Pµ = |λµ〉〈λµ|.



Positive Operator Valued Measurement (POVM) (2)
Define the measurement operators Mµ via

∀|ψS〉 ∈ HS, US,M
(
|ψS〉 ⊗ |θM〉

)
=
∑
µ

(
Mµ|ψS〉

)
⊗ |λµ〉.

Then
∑

µ M†µMµ = IS. The set {Mµ} defines a Positive Operator
Valued Measurement (POVM).
In HS ⊗HM , projective measurement of OM = IS ⊗

(∑
µ λµPµ

)
with quantum state US,M

(
|ψS〉 ⊗ |θM〉

)
:

1. The probability of obtaining the value λµ is given by
pµ = 〈ψS|M†µMµ|ψS〉

2. After the measurement, the conditional (a posteriori) state
of the system, given the outcome λµ, is

|ψS〉+ =
Mµ|ψS〉√

pµ
.

For mixed state ρ (instead of pure state |ψS〉):
pµ = Tr

(
MµρM†µ

)
and ρ+ =

MµρM†µ
Tr
(

MµρM†µ
) ,



Markov chain et Kraus map

I To the POVM on HS is attached a stochastic process of
quantum state ρ, ρ† = ρ ≥ 0, Tr (ρ) = 1

(∑
µ M†µMµ = I

)
ρ+ =

MµρM†µ

Tr
(

MµρM†µ
) with probability pµ = Tr

(
MµρM†µ

)
.

I For any observable A on HS, its conditional expectation
value after the transition knowing the state ρ

E ( Tr (A ρ+) |ρ) = Tr (A K(ρ))

where the linear map ρ 7→ K(ρ) =
∑

µ MµρM†µ is a Kraus
map defining a quantum channel.

I If Ā is a stationary point of the adjoint Kraus map K∗,
K∗(Ā) =

∑
µ M†µĀMµ, then Tr

(
Āρ
)

is a martingale:

E ( Tr
(
Ā ρ+

)
| ρ
)

= Tr
(
Ā K(ρ)

)
= Tr

(
ρ K∗(Ā)

)
= Tr

(
ρĀ
)
.



Models of open quantum systems
Discrete-time models are Markov chains

ρk+1 =
1

pµ(ρk )
Mµρk M†µ with proba. pµ(ρk ) = Tr

(
Mµρk M†µ

)
with measure µ and associated to Kraus maps (ensemble average,
open quantum channels)

E (ρk+1/ρk ) = K(ρk ) =
∑
µ

Mµρk M†µ with
∑
µ

M†µMµ = I

Continuous-time models are stochastic differential systems

dρ =
(
−i[H, ρ] + LρL† − 1

2
(L†Lρ+ ρL†L)

)
dt

+

(
Lρ+ ρL† − Tr

(
(L + L†)ρ

)
ρ

)
dw

driven by Wiener processes3 dw = dy − Tr
(
(L + L†) ρ

)
dt with

measure y and associated to Lindbald master equations:
d
dt
ρ = − i

~ [H, ρ] + LρL† − 1
2

(L†Lρ+ ρL†L)

3Another common possibility not considered here: SDE driven by Poisson
processes.



From discrete-time to continuous-time: heuristic connection

For Monte-Carlo simulations of

dρ =
(
−i[H, ρ] + LρL† − 1

2
(L†Lρ+ ρL†L)

)
dt

+

(
Lρ+ ρL† − Tr

(
(L + L†)ρ

)
ρ

)
dw

take a small sampling time dt , generate a random number dwt
according to a Gaussian law of standard deviation

√
dt , and set

ρt+dt =Mdyt (ρt ) where the jump operatorMdyt is labelled by
the measurement outcome dyt = Tr

(
(L + L†) ρt

)
dt + dwt :

Mdyt (ρt ) =

(
I+(−iH− 1

2 L†L)dt+Ldyt

)
ρt

(
I+(iH− 1

2 L†L)dt+L†dyt

)
Tr
((

I+(−iH− 1
2 L†L)dt+Ldyt

)
ρt

(
I+(iH− 1

2 L†L)dt+L†dyt

)) .
Then ρt+dt remains always a density operator and using the Ito
rules (dw of order

√
dt and dw2 ≡ dt) we get the good

dρ = ρt+dt − ρt up to O((dt)3/2) terms.



From discrete-time to continuous-time: heuristic connection (end)

For the Lindblad equation

d
dt
ρ = − i

~ [H, ρ] + LρL† − 1
2

(L†Lρ+ ρL†L)

take a small sampling time dt and set

ρt+dt =

(
I+(−iH− 1

2 L†L)dt
)
ρt

(
I+(iH− 1

2 L†L)dt
)

+dtLρt L†

Tr
((

I+(−iH− 1
2 L†L)dt

)
ρt

(
I+(iH− 1

2 L†L)dt
)

+dtLρt L†
) .

Then ρt+dt remains always a density operator and
d
dt ρ = (ρt+dt − ρt )/dt up to O(dt) terms.



Measurement-based stabilization of photon-number state4

• Control input u = AeıΦ; measure output y ∈ {g,e}.
• Sampling time 80 µs long enough for numerical computations
in K .

4C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, Th. Rybarczyk, S.
Gleyzes, P. R., M. Mirrahimi, H. Amini, M. Brune, J.M. Raimond, S. Haroche:
Real-time quantum feedback prepares and stabilizes photon number states.
Nature, 477(7362),2011.



Watt regulator: a classical analogue of quantum coherent feedback. 5

The first variations of speed δω
and governor angle δθ obey to

d
dt
δω = −aδθ

d2

dt2 δθ = −Λ
d
dt
δθ − Ω2(δθ − bδω)

with (a,b,Λ,Ω) positive param-
eters.

Third order system

d3

dt3 δω = −Λ
d2

dt2 δω − Ω2 d
dt
δω − abΩ2δω = 0

Characteristic polynomial P(s) = s3 + Λs2 + Ω2s + abΩ2 with
roots having negative real parts iff Λ > ab: governor damping
must be strong enough to ensure asymptotic stability of the
closed-loop system.

5J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.



Reservoir Engineering6 and coherent feedback7

SystemReservoir

Engineered
interaction

dissipation
κ

Hint

HsysHres

H = Hres + Hint + Hsyst

if ρ →
t→∞
|ψ̄〉〈ψ̄| ⊗ ρres exponentially on a time scale of τ ≈ κ then . . . . . .

6Introduced by Poyatos, Cirac and Zoller, 1996.
7See, e.g., the lectures of H. Mabuchi delivered at the "école de physique

des Houches", July 2011.



Reservoir Engineering6 and coherent feedback7

SystemReservoir

Engineered
interaction

dissipation
κ

Hint

HsysHres

γ

H = Hres + Hint + Hsyst

. . . . . . ρ →
t→∞
|ψ̄〉〈ψ̄| ⊗ ρres + ∆, if κ� γ then ‖∆‖ � 1

6Introduced by Poyatos, Cirac and Zoller, 1996.
7See, e.g., the lectures of H. Mabuchi delivered at the "école de physique

des Houches", July 2011.



Reservoir engineering (coherent feedback) v.s. measurement-based

feedback

Advantages over measurement-based feedback

I Does not require knowing the measurement result.
I No external intervention on small time scale.

Difficulty

I For each target state |ψ̄〉, engineer a coupling to the
reservoir which drives ρ to ρres ⊗ |ψ̄〉〈ψ̄|, compatible with
lab constraints.



Reservoir engineering for discrete-time systems
Data: HS with Hamiltonian HS, a pure goal state ρ̄S = |ψ̄S〉〈ψ̄S|.
Find a "realistic" meter system of Hilbert space HM with initial state
|θM〉, with Hamiltonian HM and interaction Hamiltonian Hint such that

1. the propagator US,M = U(T ) between 0 and time T
( d

dt U = −i(HS + HM + Hint )U, U(0) = I) reads:

∀|ψS〉 ∈ HS, US,M
(
|ψS〉 ⊗ |θM〉

)
=
∑
µ

(
Mµ|ψS〉

)
⊗ |λµ〉

where |λµ〉 is a ortho-normal basis of HM .

2. the resulting measurement operators Mµ admit |ψ̄S〉 as common
eigen-vector, i.e., ρ̄S is a fixed point of the Kraus map
K(ρ) =

∑
µ MµρM†µ: K(ρ̄S) = ρ̄S.

3. iterates of K converge to ρ̄S for any initial condition ρ0:

lim
k 7→+∞

ρk = ρ̄S where ρk = K(ρk−1).

Here the reservoir is made of the infinite set of identical meter
systems with initial state |θM〉 at t = (k − 1)T and interacting with HS
during [(k − 1)T , kT ], k = 1,2, . . ..



Reservoir stabilizing "Schrödinger cats" 8

Cavity mode (system)atom (reservoir)

R1
R2

Box of 
atoms

Aim: 
engineer atom-mode interaction,

to stabilize |-α  +|α

DC field: 
(controls atom frequency)

ENS experiment

Here HS = Hc = {∑n≥0 ψn|n〉, (ψn)n≥0 ∈ l2(C)} and
HM = Hq = {cg |g〉+ ce|e〉, cg , ce ∈ C}.
HS + HM + Hint is the Jaynes-Cumming Hamiltionian

H(t) = ωca†a + δ(t)
2 σz + i Ω(vt)

2 (a†|g〉〈e| − a|e〉〈g|)

which is time varying with control δ(t) = ωq(t)− ωc and Gaussian

radial profile Ω(x) = Ω0e−
x2

w2 , x = vt with v atom velocity.
8A. Sarlette, Z. Leghtas, M. Brune, J.M. Raimond, P.R.: Stabilization of

nonclassical states of one and two-mode radiation fields by reservoir
engineering. Phys. Rev. A 86, 012114 (2012)



Composite interaction

g
e

time t
tr/2-tr/2-T/2 T/2

δ(t)
δ0

-δ0

0

0

top 
cavity mirror

bottom 
cavity mirror

Ω(vt)

U = Uoff-resonant



Composite interaction

g
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time t
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δ(t)
δ0

-δ0

0

0

top 
cavity mirror

bottom 
cavity mirror

Ω(vt)

U = UresonantUoff-resonant



Composite interaction

g
e

time t
tr/2-tr/2-T/2 T/2

δ(t)
δ0

-δ0

0

0

top 
cavity mirror

bottom 
cavity mirror

Ω(vt)

U = U†off-resonantUresonantUoff-resonant



Composite interaction

g
e

time t
0 tr/2-tr/2-T/2 T/2

δ(t)
δ0

-δ0

0

top 
cavity mirror

bottom 
cavity mirror

Ω(vt)

U ≈ e−iφKerrn2
UresonanteiφKerrn2

Simulation: convergence toward the cat from vacuum ρ0 = |0〉〈0|
Simulation: convergence after a cat jump



Reservoir engineering for continuous time systems
Data: HS with Hamiltonian HS, a pure goal state ρ̄S = |ψ̄S〉〈ψ̄S|.
Find a "realistic" controller of Hilbert space HM , with Hamiltonian
HM and interaction Hamiltonian Hint and Lindblad operators Lµ acting
only on HM such that

1. the Lindblad master equation of the composite system HS ⊗HM
governing the density operator ρ evolution

d
dt
ρ = −i

[
HS + HM + Hint , ρ

]
+
∑
µ

LµρL†µ − 1
2 L†µLµρ− 1

2ρL†µLµ

admits a separable steady state ρ̄ = ρ̄S ⊗ ρ̄M for some density
operator ρ̄M on HM .

2. For any initial condition ρ(0), limt 7→+∞ ρ(t) = ρ̄.

Example: cavity cooling towards ρ̄S = |0〉〈0| with a qubit-controller

HS = ωca†a, HM = δ
2 (|e〉〈e| − |g〉〈g|), Hint = Ω

2 (a† |g〉〈e|+ a |e〉〈g|)

when |e〉 is unstable of life-time Tq : L =
√

1
Tq
|g〉〈e|, ρ̄ = |0〉〈0| ⊗ |g〉〈g|

and d
dt Tr (ρ̄ρ) = Tr(|0〉〈0|⊗|e〉〈e| ρ)

Tq
≥ 0 as Lyapunov function .



A qubit: 2 level system

I State space: Hq = {cg |g〉+ ce|e〉, cg , ce ∈ C}.
I Operators: σz = |e〉〈e| − |g〉〈g|, σx = |e〉〈g|+ |g〉〈e|,
σy = −i |e〉〈g|+ i |g〉〈e|.

I Hamiltonian: Hq = ωqσz/2 + uqσx .

|g

|e
ωq

uq



A cavity: quantum harmonic oscillator

I State space: Hc = {∑n≥0 ψn|n〉, (ψn)n≥0 ∈ l2(C)}.
I D = {ρ ∈ L(Hc), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .
I Operators:

a|n〉 =
√

n|n − 1〉, a†|n〉 =
√

n + 1|n + 1〉,
n|n〉 = a†a|n〉 = n|n〉, Dα = eαa†−α†a.

I Hamiltonian: Hc = ωca†a + uc(a + a†).

I Coherent state of amplitude α ∈ C:
|α〉 =

∑
n≥0

(
e−|α|

2/2 αn
√

n!

)
|n〉.

I a|α〉 = α|α〉.
I Dα|0〉 = |α〉.

|0

|1

|2

ωc

|n

ωc
uc

...
 ..

.



Cavity state representation: the Wigner function

Wρ : C 3 ξ → 2
π

Tr
(

eiπa†aD−ξρDξ

)
∈ R

Re(ξ)

Im
(ξ

)

−0.6

−0.4

−0.2

0

0.2

0.4

0.6Fock state |n=0> Fock state |n=3> Coherent state |α=1.8>

Coherent state |-α> Statistical mixture of 
|-α> and |α> Cat state |-α>+|α>

-3
-3

0

0

3

3



Harmonic oscillator9 (1): quantization and correspondence principle

Classical Hamiltonian formulation of d2

dt2 x = −ω2x

d
dt

x = ωp =
∂H
∂p

,
d
dt

p = −ωx = −∂H
∂x

, H =
ω

2
(p2 + x2).

Quantization: probability wave function |ψ〉t ∼ (ψ(x , t))x∈R with
|ψ〉t ∼ ψ( , t) ∈ L2(R,C) obeys to the Schrödinger equation
(~ = 1 in all the lectures)

i
d
dt
|ψ〉 = H|ψ〉, H = ω(P2 + X 2) = −ω

2
∂2

∂x2 +
ω

2
x2

where H results from H by replacing x by position operator√
2X and p by impulsion operator

√
2P = −i ∂∂x .

PDE model: i ∂ψ∂t (x , t) = −ω
2
∂2ψ
∂x2 (x , t) + ω

2 x2ψ(x , t), x ∈ R.
9Two references: C. Cohen-Tannoudji, B. Diu, and F. Laloë. Mécanique

Quantique, volume I& II. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.
Oxford University Press, 2003.



Harmonic oscillator (2): annihilation and creation operators
Averaged position 〈X 〉t = 〈ψ|X |ψ〉 and impulsion 〈P〉t = 〈ψ|P|ψ〉
10:

〈X 〉t = 1√
2

∫ +∞

−∞
x |ψ|2dx , , 〈P〉t = − i√

2

∫ +∞

−∞
ψ∗
∂ψ

∂x
dx .

Annihilation a and creation operators a†:

a = X + iP = 1√
2

(
x +

∂

∂x

)
, a† = X − iP = 1√

2

(
x − ∂

∂x

)
Commutation relationships:

[X ,P] = i
2 , [a,a†] = 1, H = ω(P2 + X 2) = ω

(
a†a +

1
2

)
.

Set Xλ = 1
2

(
e−iλa + eiλa†

)
for any angle λ:[

Xλ,Xλ+
π
2

]
= i

2 .

10We assume everywhere that for each t , x 7→ ψ(x , t) is of the Schwartz
class (fast decay at infinity + smooth).



Harmonic oscillator (3): spectral decomposition and Fock states
[a,a†] = 1 and Ker(a) of dimension one imply that the spectrum
of N = a†a is non-degenerate and is N. More we have the
useful commutations for any entire function f :

a f (N) = f (N + I) a, f (N) a† = a† f (N + I).

Fock state with n photon(s): the eigen-state of N associated to
the eigen-value n:

N|n〉 = n|n〉, a|n〉 =
√

n |n − 1〉, a†|n〉 =
√

n + 1 |n + 1〉.

The ground state |0〉 (0 photon state or vacuum state) satisfies
a|0〉 = 0 and corresponds to the Gaussian function:

|0〉 ∼ ψ0(x) =
1
π1/4 exp(−x2/2).

The operator a (resp. a†) is the annihilation (resp. creation)
operator since it transfers |n〉 to |n − 1〉 (resp. |n + 1〉) and thus
decreases (resp. increases) the quantum number n by one unit.



Harmonic oscillator (4): displacement operator
Quantization of d2

dt2 x = −ω2x − ω
√

2u

H = ω
(

a†a +
1
2

)
+ u(a + a†).

The associated controlled PDE

i
∂ψ

∂t
(x , t) = −ω

2
∂2ψ

∂x2 (x , t) +
(
ω
2 x2 +

√
2ux

)
ψ(x , t).

Glauber displacement operator Dα (unitary) with α ∈ C:

Dα = eαa†−α∗a = e2i=αX−2ı<αP

From Baker-Campbell Hausdorf formula valid for any operators
A and B,

eABe−A = B + [A,B] + 1
2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + . . .

we get the Glauber formula when [A, [A,B]] = [B, [A,B]] = 0:

eA+B = eA eB e−
1
2 [A,B].

(show that Ct = et(A+B) − etA etB e−
t2

2 [A,B] satisfies d
dt C = (A + B)C)



Harmonic oscillator (5): identities resulting from Glauber formula
With A = αa† and B = −α∗a, Glauber formula gives:

Dα = e−
|α|2

2 eαa†e−α
∗a = e+

|α|2
2 e−α

∗aeαa†

D−αaDα = a + α and D−αa†Dα = a† + α∗.

With A = 2i=αX ∼ i
√

2=αx and B = −2ı<αP ∼ −
√

2<α ∂
∂x , Glauber

formula gives11:

Dα = e−i<α=α ei
√

2=αxe−
√

2<α ∂∂x

(Dα|ψ〉)x,t = e−i<α=α ei
√

2=αxψ(x −
√

2<α, t)

Exercice
For any α, β, ε ∈ C, prove that

Dα+β = e
α∗β−αβ∗

2 DαDβ

Dα+εD−α =
(

1 + αε∗−α∗ε
2

)
I+ εa† − ε∗a + O(|ε|2)(

d
dt

Dα
)

D−α =

(
α d

dt α
∗−α∗ d

dt α

2

)
I+

(
d
dt
α

)
a† −

(
d
dt
α∗

)
a.

11Remember that a time-delay of r corresponds to the operator e−r d
dt .



Harmonic oscillator (6): lack of controllability
Take |ψ〉 solution of the controlled Schrödinger equation
i d

dt |ψ〉 =
(
ω
(
a†a + 1

2

)
+ u(a + a†)

)
|ψ〉. Set 〈a〉 = 〈ψ|aψ〉. Then

d
dt
〈a〉 = −iω〈a〉 − iu.

From a = X + iP, we have 〈a〉 = 〈X 〉+ i〈P〉 where 〈X 〉 = 〈ψ|X |ψ〉 ∈ R
and 〈P〉 = 〈ψ|P|ψ〉 ∈ R. Consequently:

d
dt
〈X 〉 = ω〈P〉, d

dt
〈P〉 = −ω〈X 〉 − u.

Consider the change of frame |ψ〉 = e−iθt D〈a〉t |χ〉 with

θt =

∫ t

0

(
|〈a〉|2 + u<(〈a〉)

)
, D〈a〉t = e〈a〉t a

†−〈a〉∗t a,

Then |χ〉 obeys to autonomous Schrödinger equation

i
d
dt
|χ〉 = ωa†a|χ〉.

The dynamics of |ψ〉 can be decomposed into two parts:
I a controllable part of dimension two for 〈a〉
I an uncontrollable part of infinite dimension for |χ〉.



Harmonic oscillator (7): coherent states as reachable ones from |0〉

Coherent states

|α〉 = Dα|0〉 = e−
|α|2

2

+∞∑
n=0

αn
√

n!
|n〉, α ∈ C

are the states reachable from vacuum set. They are also the
eigen-state of a: a|α〉 = α|α〉.
A widely known result in quantum optics12: classical currents
and sources (generalizing the role played by u) only generate
classical light (quasi-classical states of the quantized field
generalizing the coherent state introduced here)
We just propose here a control theoretic interpretation in terms
of reachable set from vacuum13

12See complement BIII , page 217 of C. Cohen-Tannoudji, J. Dupont-Roc,
and G. Grynberg. Photons and Atoms: Introduction to Quantum
Electrodynamics.Wiley, 1989.

13see also: MM-PR, IEEE Trans. Automatic Control, 2004 and MM-PR,
CDC-ECC, 2005.
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