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Interest of flat systems

1. History: "integrability” for under-determinated systems of
differential equations (Monge, Hilbert, Cartan, ....).

2. Control theory: flat systems admit simple solutions to the
motion planing and tracking problems (Fliess and
coworkers 1991 and later).

3. Books on differentially flat systems:

» H. Sira-Ramirez and S.K. Agarwal: Differentially flat
systems. CRC, 2004.

» J. Lévine: Analysis and Control of Nonlinear Systems : A
Flatness-Based Approach. Springer-Verlag, 2009.

» J. Rudolph: Flatness Based Control of Distributed
Parameter Systems. Shaker, Germany. 2003.



Motion planning: controllability.

Difficult problem due to integration of

9x = f(x,ur(t)), x(0)=p.



Tracking for $x = f(x, u): stabilization.

. ’
real trajectory vls
& -,
7

7’
Ax Pag .
.~ reference trajectory
I
Compute Au, u = ur + Au, depending Ax (feedback), such
that Ax = x — x, tends to O (stabilization).



The simplest robot
» Newton ODE):

L9 =—psin(d) +u

Non linear oscillator with scalar input
u and parameter p > 0.

> Computed torque method:
ur dt2 20, + psind, provides an
explicit parameterization via KC?

function: t — 0,(t), the flat output.
Motion planing and tracking (£, wp > 0, two feedback gains)

(T 0, fft@) &L fr+psin 6 2£wo( %er)—(wo)%in(e—e,)

where t — 0,(t) defines the reference trajectory (control goal).



Fully actuated mechanical systems

The computed torque method for
d [oL oL
a 05| = 5 + M

consists in setting t — q(t) to obtain u as a function of g, g and
qg.
(Fully actuated: dim g = dim u and M(q) invertible).



Oscillators and linear systems
System with 2 ODEs and 3 unknowns (x1, X2, U) (ar,a > 0 and

a 35 a2)

2 a2
W)ﬁ = —a (X1 — U), WXQ 32( > — U)
defines a free module’ with basis y = e

_ d? d d d®y
X1 =y+ dt2y/a2’ X1 = dty+ ds/aZ
d? d
Xo=y+Syla;, Gxo=Sy+ %Y/ a

u=y+(F+L) Sv+(a5) S

Reference trajectory for equilibrium x; = xo =u=0att=0to
equilibriumxy =xo=u=Datt=T > 0:

. ()4 . .
= < D T >T.
y(t) 0sit<0, (T =1 site[0,T], Dsit>T
Generalization to n oscillators and any linear controllable

system, X = AX + Bu.
'See the work of Alban Quadrat and co-workers....




2k juggling robot: prototype of implicit flat system

Isochronous punctual pendulum H
(Huygens) :

mg—;H = T+mg
T /) HS
mg mg |HS|? = 1

» The suspension point S € R3 stands for the control input
» The oscillation center H € R3 is the flat output: since

T’/m = dt2H GgetT // % S is solution of the algebraic
system:

HS /) &H—g and |HS|?=1.



Return of the pendulum and smooth branch switch

In a vertical plane: H of coordinates (y4, y2) and S of
coordinates (uy, Up) satisfy

(yi—u)2+(yo—)? =1, (y1—ur) (g%k T g) - (yg—UQ)%;Y1-

Find [0, T] > t — y(t) C? such that y(0) = (0, —/), y(T) = (0, /)
and y(12)(0, T) = 0, and such that exists also [0, T] > t — u(t)
CO with u(0) = u(T) = 0 (switch between the stable and the
unstable branches).



Planning the inversion trajectory

Any smooth trajectory connecting the stable to the unstable
equilibrium is such that H(t) = g for at least one time t. During
the motion there is a switch from the stable root to the unstable
root (singularity crossing when H = g)

stable root

unstable root






Crossing smoothly the singularity H = g

The geometric path followed by H is a half-circle of radius /of
center O:

sin4(s)

At =0+1 [— cos 0(s)

} with 6(s) = u(s)mr, s=1t/T €[0,1]

where T is the transition time and x(s) a sigmoid function of the

form:
A

1

\4






Time scaling and dilatation of H — g

Denote by ’ derivation with respect to s. From

sin4(s)
—cos0(s)

H(t)—0+l[ ] 0(s) = u(t/T)x

we have

H=H"/T?
Changing T to aT yields to a dilation of factor 1/a? of the
closed geometric path described by H — g for t € [0, T]
(H(0) = H(T) = 0), the dilation center being —g.
The inversion time is obtained when this closed path passes
through 0. This construction holds true for generic .



The crane

Y




The geometric construction for the crane

Singularity when H- g is horizontal.



Single car 2

P
“ I,I AY
,ll ‘\'9
o
y—2!
\/ P
L -
v=4|9P
9x =vcosd I !,
9y ysing cosf _ &P
Y = ysin sing | = %
40=_"tanyp =w I det(P,P)
at tanp = ==)
/ P irl

2For modeling and control of non-holonomic systems, see, e.g.,B.
d’Andréa-Novel, G. Campion, G. Bastin: Control of Nonholonomic Wheeled
Mobile Robots by State Feedback Linearization. International Journal of
Robotics Research December 1995 vol. 14 no. 6 543-559.



The time scaling symmetry

Forany T — o(T), the transformation
t=0o(T), (x,y,0)=(X,Y,0), (v,w) = (V,Q)/d'(t)

leave the equations

dy _ dy — vai dg _
gX=vcost, Zy=vsing, Fl=w

unchanged:

d d . d
ﬁX: Vcos O, ﬁY_ V'sin©, ﬁ@ = Q.



SE(2) invariance

For any (a, b, «), the transformation

[x] _ [XCOSOc— Ysina+ a H=0—a, (v,w)=(V.Q)

y Xsina+ Ycosa+ b
leave the equations

d, _ dy _ i dy _
GX=vcost, Fy=vsing, FO=w

unchanged:

d d . d
EX_ Vcos©, EY_ Vsin®, a@ =Q.



Invariant tracking®

Ve ~ o
0 v N
P 97« » -~
translation
_ 7 P + rotation \

3For a general setting see: Ph. Martin, P. R., J. Rudolph: Invariant tracking,
ESAIM: Control, Optimisation and Calculus of Variations, 10:1-13,2004.



Invariant tracking for the car: goal

Given the reference trajectory
t— Sy — Pr(Sr), er(Sr), Vi = ér, Wr = .Sr/ﬂ'/r(Sr)

and the state (P, 6)
Find an invariant controller

V:Vr—'_...7 w:CUr+



Invariant tracking for the car: time-scaling

Set
V:V.Sr, W:J)Sr

and denote by ’ derivation versus s;.
Equations remain unchanged

P=v7 7=0v

with P = (x,y), 7 = (cos 0, sin#) and 7 = (—sin 6, cos 6).



Invariant errors

Construct the decoupling and/or linearizing controller with the
two following invariant errors



Computations of g and e, derivatives

Since ey = (P~ Pr)-7rand e, = (P — P;) - /; we have
(remember that’ = d/dsy)

ej=(P —P) 7+ (P—Pr)-1.
But P' = v7, P, = 7 and 7/ = ki, thus

e =7 — 145 (P~ P)- .
Similar computations for €, yield:

e =vcos(0 —0;) —1+rrer, € =vsin(d—0)—rre.



Computations of e and e, second derivatives

Derivation of
e =vcos(0 —0;) —1+rrer, € =vsin(d—0)—rre
with respect to s, gives

e =V cos(f —0,) —wvsin(d — 0,
Il

+ 2/<;,Vsin(0 — Or) + K;GJ_ — H?GH

el = V'sin(0 — 6,) + @vcos(d — 6;)
— 2K,V cos(0 — 0;) — Kje + K + K€



The dynamics feedback in s, time-scale
We have obtain

+2k,Vsin(0 —0,) + ke, — H%eu
e =V'sin(0 — 0,) + ovcos(d — 6;)

— 2k,vcos(0 — 0;) — ke + Ky + K2E).

Choose v/ and @ such that

" 1 1 , 1

=\ te)\ge)©
- (11 (1),
o\ T\ )

Possible around a large domain around the reference trajectory since
the determinant of the decoupling matrix is v ~ 1.



The dynamics feedback in physical time-scale

In the s, scale, we have the following dynamic feedback
V/ = (‘D(Va P7 Pl’agvefy'%l‘a/{/r)
(D = w(V7P7PI’79a9I’7HI'7K‘:‘)

Since ' = d/ds, = d/(s,dt) we have

€l '9“*‘%

— ¢(V, P, Pr'7 9,0[‘7 K/r,K//r) S (t)

= W(Vapypfaeael’aﬁf?’l{‘:’)
and the real control is

v ="V§(t), tan¢ =

<|&

Nothing blows up when s,(t) tends to 0: the controller is well
defined around steady-state via a simple use of time-scaling
symmetry



Conversion into chained form destroys SE(2) invariance

The car model

v
dy _ dy — vai dp _
gX=vcosl, Ly=vsing, EH_Ttangp

can be transformed into chained form

d d, _ dy,. _
X1 = U, GXoe=U2, GX3=Xolj

via change of coordinates and static feedback

_dy
- dx

But the symmetries are not preserved in such coordinates: one
privileges axis x versus axis y without any good reason. The
behavior of the system seems to depend on the origin you take
to measure the angle (artificial singularity when 6 = +7/2).

X1 =X, Xo =tanfd, xz3=y.



The standard n-trailers system




Motion planning for the standard n trailers system




The general 1-trailer system (CDC93)

S8 =% (4tanpcos(B — ) +sin(f — o)) .



With § = B/C7\ we have

—CO0So

T+
D=P—-L(6)7 with Lézab/
(6)7 @) =ab [ —

+ b? +2abcos o

Curvature is given by

5) = sind
cosd va2 + b2 —2abcos§ — L(J) sind




The geometric construction

Assume that s — P(s) is known. Let us show how to deduce
(A, B, a, B) the system configuration.
We know thus P, 7 = dP/ds and x = df/ds (0 is the angle of 7:



The geometric construction

From & we deduce § = BCA = BDA by inverting k = K(6).
D is then known since D = P — L(¢)7.
Finally 7 is parallel to AB and DB = aand DA = b.



The complete construction

One to one correspondence between P, 7 and x and (A, «, 3).




Differential forms

Eliminate v from

"4
d d i d d
d@X =V Cosa, gGy=Vvsina, go=- tanp, FB=...

to have 3 equations with 5 variables

d d, _
sina gx —cosa zy =0

9o (w) dx (M) gy —0
aB...

defining a module of differential forms, | = {n1, 72,73}
7 = sina dx —cosa dy
e = da — (neose) gy _ (mggne) g
n3 = d,@ — ...



Following 4, compute the sequence / = /(0 D /(1) D /)
where
[+ =y e [K) | dp=0 mod (/))}

and find that
dim/@ =3 dim/" =2 dim/® =1, dim/® =o.

The Cartesian coordinates (X, Y) of P are obtained via the
Pfaff normal form of the differential form 1. generating /()

p = fla,B) dX +9g(a, ) dY.

(X, Y) is not unique; SE(2) invariance simplifies computations.

4E. Cartan: Sur l'intégration de certains systémes indéterminés
d’équations différentielles. J. fir reine und angew. Math. Vol 145; 1915.



Contact systems:

The driftless system %x = fi(x)u; + f(x)uz is also a Pfaffian
system of codimension 2

n
w,zZa{.(x) dxj=0, i=1,...,n-2,
j=1
Pfaffian systems equivalent via changes of x-coordinates to
contact systems (related to chained-form, Murray-Sastry 1993)
dX2 — X3dX1 = 07 dX3 — X4dX1 = 0, R an_1 — XndX1 =0

are mainly characterized by the derived flag (Weber(1898),
Cartan(1916), Goursat (1923), Giaro-Kumpera-Ruiz(1978),
Murray (1994), Pasillas-Respondek (2000), ... ).



Interest of contact systems (chained form):

dxo — x3dx; =0, dxg—x4dx; =0, ...dXnp—1—Xpdx1 =0

The general solution reads in terms of z — w(z) and its
derivatives,

dw d" 2w

X‘|:Z, )(QZW(Z)7 ,XSZE, ,anw.

In this case, the general solution of %x = fiy(xX)uy + hLuo reads
in terms of t — z(t) any C" time function and any C"2 function
of z, z+— w(z). The quantities x; = z(t) and x» = w(z(t)) play
here a special role. We call them the flat output.



An elementary definition based on inversion

» Explicit control systems: %X = f(x,u) (x € R", u € R™) is flat, iff,
exist a € Nand h(x, u, ..., u(®) € R™ such that the generic
solution of

dx =f(x,u), y=h(xu,... u)

reads (8 € N)

x=Aly,....y"), u=B8(y,...,y»"*")

» Under-determined systems: F(x,...,x(0) =0 (x € R",
F € R™ ™M) is flat, iff, exist « € N and h(x, ..., x(®)) € R™ such
that the generic solution of

F(x,...,.x")=0, y=h(x,...,x9) reads x=A(y,...,y"")

y is called a flat output: Fliess and co-workers 1991, ....
Integrable under-determined differential systems: Monge (1784),
Darboux, Goursat, Hilbert (1912), Cartan (1914).



Flat systems (Fliess-et-al, 1992,...,1999)

A basic definition extending remark of Isidori-Moog-DelLuca
(CDC86) on dynamic feedback linearization
(Charlet-Lévine-Marino (1989)):

gx = f(x,u)
is flat, iff, exist m = dim(u) output functions
y = h(x,u,...,uP), dim(h) = dim(u), such that the inverse of

u > y has no dynamics, i.e.,

x:/\(y,y,...,y(‘”), u:T(y,y,...,y(qH)).

Behind this: an equivalence relationship exchanging
trajectories (absolute equivalence of Cartan and dynamic
feedback: Shadwick (1990), Sluis (1992), Nieuwstadt-et-al
(1994), Pomet et al (1992), Pomet (1995),...Lévine (2011) ).



Equivalence and flatness (intrinsic point of view, IEEE-AC 1999)

Take Zx = f(x,u), (x,u) € X x UC R" x R™. It generates a
system (F,2t), (D-variety) where

M= X x UxRy

with the vector field F(x, u, u',...) = (f(x,u),u', v?,...).
(F, ) is equivalent to (G, s)T) =g(z,v): M := Z X V x R
with the vector field G(z, v, v',...) := (g(z,v), v', Vv?,...)) iff
exists an invertible transformatlon O :M— M such that

VE = (x,u,u',. ) eM, G((E)) = DO(E) - F(&).



Equivalence and flatness (extrinsic point of view)

Elimination of u from the n state equations %x = f(x, u)
provides an under-determinate system of n — m equations with
n unknowns

F (x, %x) =0.
An endogenous transformation x — z is defined by

z=00x,x,....xP), x=w(zz.. ., 29)
(nonlinear analogue of uni-modular matrices, the "integral free”
transformations of Hilbert).

Two systems are equivalents, iff, exists an endogenous
transformation exchanging the equations.

A system equivalent to the trivial equation z; = 0 with
z = (24, 20) is flat with z; the flat output.



The time dependent definition

We present here the simplest version of this definition (Murray
and co-workers (SIAM JCO 1998)):

2x = f(t, x,u)

is flat, iff, exist m = dim(v) output functions

y = h(t,x,u,...,uP)), dim(h) = dim(u), such that the inverse
of u +— y has no dynamics, i.e.,

x:/\(t,y,y,...,y(‘”>, u:T(t,y,y,...,y(q“)).



The general n-trailer system for n > 2 is not flat.

Proof: by pure chance, the characterization of codimension 2
contact systems is also a characterization of drifless flat
systems (Cartan 1914, Martin-R. 1994) (adding integrator,
endogenous or exogenous or singular dynamic feedbacks are
useless here).



When the number n of trailers becomes large. ..

tends to



The nonholonomic snake: a trivial delay system.

r=0.--.

\

) ‘TalQ/./ Head
}‘:L P(rvt)
Implicit partial differential nonlinear system:

General solution via s — Q(s) arbitrary smooth:

L
’ ot '

— k k
P(r,it)=Q(s(t)+L—r) =) . klr) ch‘
k>0 '

(s(1))-



Two linearized pendulum in series

Flat output y = u+ h 61 + bbo:

Y _ my(y — kbh) my
bp=—=, b1=- 02
g (m+m)g my+mp

and u =y — h6y — h#s is a linear combination of (y, y(®, y(*).



n pendulum in series

Flat output y = u+ hé1 +... + In0p:
u=y+ay® +ay® +. . +aytn.

When ntends to oo the system tends to a partial differential
equation.



The heavy chain °

X _ 0 ( 0x
o2 9z 9% 0z
X(L,t)=U(t)

(o, t) with

U(t) = 217 /OZWy(t—z\/LTg sing) dc

®N. Petit,P. R.: motion planning for heavy chain systems. SIAM J. Control
and Optim., 41:475-495, 2001.



With the same flat output, for a discrete approximation (n
pendulums in series, n large) we have

u(t) = y(t) + aij(t) + ay@(t) + ... + any®(t),

for a continuous approximation (the heavy chain) we have

U(t):;—w /027ry<t+2\/L/7g sing‘) d

Why? Because formally

(2\/% sin C)n
nl

y(t+2+/L/g sin¢) = y(t) +.. y(t) + ...

But integral formula is preferable (divergence of the series. . .).



The general solution of the PDE

#X_ 0 [ 0X
o2 0z 0z

X(z,t):2l7r /OZWy(t—zﬁTg sinc) d

where t — y(t) is any time function.

Proof: replace % by s, the Laplace variable, to obtain a singular
second order ODE in z with bounded solutions. Symbolic
computations and operational calculus on

0 oX
2y _
SX= 0z <gzaz>'



Symbolic computations in the Laplace domain
Thanks to x = 2\/5, we get

62X oX 82X
a 2(X t) a()“ t) atz (X t) O

Use Laplace transform of X with respect to the variable t

825((x s) + g
Ox? ox

This is a the Bessel equation defining Jy and Yj:

X(z,8) = A(S) Jo(2:5\/2/9) + B(S) Yo(2:51/2/9).

Since we are looking for a bounded solution at z = 0 we
have B(s) = 0 and (remember that Jy(0) = 1):

X(z,8) = Jo(2151/2/9)X(0, 5)

(x,s) — xs°X(x,s) = 0.



X(z,8) = Jp(2151/2/9)X(0, 5).
Using Poisson’s integral representation of Jy
1 2
Jo(¢) = / exp(«(sinf) db, (eC
27T 0

we have

Jo(215\/x/g) = QL /27T exp(2s+/x/gsinf) do.
™ Jo

In terms of Laplace transforms, this last expression is a
combination of delay operators:

27
X(z,l‘):21—7T | y(t+2+/z/gsin6) do

with y(t) = X(0, t).



Explicit parameterization of the heavy chain

The general solution of

02X 0 oX
2= 2 gzt = X(L

reads
2
X(z,t) = 217 y(t+2y/z/gsin®) df
0

There is a one to one correspondence between the (smooth)
solutions of the PDE and the (smooth) functions t — y(t).



Heavy chain with a variable section

7' (z) (927X d (z)ax
g or  9z\'“oz

X(L, 1) = u(f)



The general solution of

7(z2) #X 9 (T(z)ax>

g R oz 0z

X(L 1) = u(t)

where 7(z) > 0 is the tension in the rope, can be parameterized
by an arbitrary time function y(t), the position of the free end of
the system y = X(0, t), via delay and advance operators with
compact support.



Sketch of the proof.

Main difficulty: 7(0) = 0. The bounded solution B(z, s) of

a% <T(z)g)z() = SZTQI(Z) X

is an entire function of s, is of exponential type and
R>w— B(z,w)

is L2 modulo some Jy. By the Paley-Wiener theorem B(z, s)
can be described via

b
/ K(z.¢) exp(s¢) dC.



z=0
The following maps exchange the trajectories:

2m
{ x(t) = X(0, ) X(z,t) = 21”/0 X (t—2v2/gsinc) d¢
u(t) = %Zté((o y U(t):217r/27rx<t2\/L/gsin§> d¢
0



The Indian rope.

0z \%%z) T~
X(Lt) = Ut)

The equation becomes elliptic and the Cauchy problem is not
well posed in the sense of Hadamard. Nevertheless formulas
are still valid with a complex time and y holomorphic

X(z,t) = 217 /O%y(t—(z\/zTg sin¢) V=1) d.



A computation due to Holmgren6
Take the 1D-heat equation, %7(x, t) =

set, formally, 6 = >"7°, ai( ),_ Since,

90  ~~da; (X PO & x!
a2 d (n) axz—za'+2(n>

j= i=0

8x2 o(x,t) for x € [0,1] and

the heat equation 9 reads dta, = aj,p and thus

8x2

i
Biv1 =a), ay=ay

With two arbitrary smooth time-functions f(t) and g(t), playing
the role of ay and ay, the general solution reads:

Convergence issues ?

E. Holmgren, Sur I'équation de la propagation de la chaleur. Arkiv fiir
Math. Astr. Physik, t. 4, (1908), p. 1-4




Gevrey functions’

» A C-function [0, T] > t — f(t) is of Gevrey-order a when,
AMA>0, Vte[o,T],Vi>0, |[fO(t)<MATA + i)

where I is the gamma function with n! =T(n+ 1), Vn € N.
» Analytic functions correspond to Gevrey-order < 1.

» When « > 1, the set of C>°-functions with Gevrey-order o
contains non-zero functions with compact supports.
Prototype of such functions:

1

t— f(t) = {exp <_ (t(11—t))a_1> if £ €]0, 1]

0 otherwise.

"M. Gevrey: La nature analytique des solutions des équations aux
dérivées partielles, Ann. Sc. Ecole Norm. Sup., vol.25,.pp:129-190, 1918.



Gevrey functions and exponential decay®

» Take, in the complex plane, the open bounded sector S
those vertex is the origin. Assume that f is analyticon S
and admits an exponential decay of order ¢ > 0 and type A
inS:

3C.p>0, VzeS, |f(2) < Clzlexp <A|_z1|”>

Then in any closed sub-sector S of S with origin as vertex,
exists M > 0 such that

vze§/{0), |f0(2)| < MATT (1 +"C— i 1))

» Rule of thumb: if a piece-wise analytic f admits an
exponential decay of order o then it is of Gevrey-order
1

8J.P. Ramis: Dévissage Gevrey. Astérisque, vol:59-60, pp:173—-204, 1978.
See also J.P. Ramis: Séries Divergentes et Théories Asymptotiques; SMF,
Panoramas et Syntheses, 1993.



Gevrey space and ultra-distributions®

Denote by D, the set of functions R — R of order oo > 1 and
with compact supports. As for the class of C* functions, most
of the usual manipulations remain in D,:

» D, is stable by addition, multiplication, derivation,
integration, ....

» if f € D, and F is an analytic function on the image of f,
then F(f) remains in D,,.

» if f € D, and F € L} _(R) then the convolution f x F is of

loc
Gevrey-order o on any compact interval.

As for the construction of D', the space of distributions (the dual
of D the space of C*° functions of compact supports), one can
construct D/, D D', a space of ultra-distributions, the dual of

D, CD.

°See, e.g., .M. Guelfand and G.E. Chilov: Les Distributions, tomes 2 et 3.
Dunod, Paris,1964.



Symbolic computations: s := d/dt seC
The general solution of §” = s reads (' := d/dx)

smh(xﬁ)

—=9(s
N AR

where f(s) and g(s) are the two constants of integration. Since

cosh and sinh gather the even and odd terms of the series
defining exp, we have

6 = cosh(x+/s) f(s) +

X2/+1

x? smh
cosh(xv/s) =) s (2 Zs &
i>0
and we recognize 6 = >.2°, (1) ((’2(3) +g\(t) (%)
For each x, the operators cosh(x+/s) and sinh(x\/s)//s are
ultra-distributions of D’z,:

1) (1)
Z((.2/) ‘5()“) Z (2/+X1)! 51

i>0 i>0

with §, the Dirac distribution.



Entire functions of s = d/dt as ultra-distributions
» C3 s+ P(s) =Y ;50 as is an entire function when the
radius of convergence is infinite.

» If its order at infinity is o > 0 and its type is finite, i.e.,
dM, K > 0 such that Vs € C, |P(s)| < Mexp(K]s|?), then

Bi
F(i/oc+1)

cosh(+/s) and sinh(y/s)/+/s are entire functions of order
o =1/2 and of type 1.

» Take P(s) of order o < 1 with s = d/at. Then P D', _:

P(s)f(s) corresponds, in the time domain, to absolutély
convergent series

JAB>0|Vi>0, |a<A

P(s)y(s) Z a; fO(t)

when t — f(t) is a C*>-function of Gevrey-order a < 1 /0.



Motion planning for the 1D heat equation
0,6(0,1) = 0

o(x, 1) 0(1,t) = u

[ | « =

0 x 1
The data are:
1. the model relating the control input u(t) to the state,

(00, 1)) xeo,17:

00 0%
a(xat)*ﬁ(xat)v X€[0,1]
ol

S0.0=0 6(1,0) = u(t).

2. Atransition time T > 0, the initial (resp. final) state:
[0,1] 5 x — p(x) (resp. q(x))
The goal is to find the open-loop control [0, T] > t — u(t)
steering 9(x, t) from the initial profile 6(x, 0) = p(x) to the final
profile 6(x, T) = q(x).



Series solutions

Set, formally
= X' 00 =da (X 920 X'
szai(t)ﬂy E:ZE <I|>7 W:Zai+2<i!
i=0 i=0 i=0
and & = g—fﬁ reads a; = aj,». Since a; = 92(0,t) = 0 and

ap = 0(0, t) we have
i1 =0, a= a(()i)

Set y := ap = (0, t) we have, in the time domain,

S (220N 0 () e
e(x,n—;(@,.)!)y (0, u(t)—;((z,)!)y (0

that also reads in the Laplace domain (s = d/df):

9(x,s) = cosh(xv/s) y(s), u(s) = cosh(vs)y(s).



An explicit parameterization of trajectories

For any C>°-function y(t) of Gevrey-order o < 2, the time

function N _
_ =0
— (2i)!

is well defined and smooth. The (x, t)-function

u(t)

=00
o) =3 i 2/_()’;) K

is also well defined (entire versus x and smooth versus t). More
over for all t and x € [0, 1], we have, whatever t — y(t) is,

00 020 00
a(x’ t)_ W(X) t)a 87(05 t)_ov 0(1,t)—U(t)

An infinite dimensional analogue of differential flatness.®

°Fliess et al: Flatness and defect of nonlinear systems: introductory theory
and examples, International Journal of Control. vol.61, pp:1327-1361.-1995:




Motion planning of the heat equation’

Take Z,-ZO a,-%i and Z,ZO b,-%i entire functions of £. With o > 1

. —79 _70

t’ e e ™
y(t) = Zaiﬁ (rc) Zb: <aro
i>0 : e +el-n7 i>0 ! e +el-o7

the series

RNy () , ()
IR AU _ 0
X t)_,:1 @ * “(t)_z,_ @i
are convergent and provide a trajectory from

2i
6(x,0) Za, to O(x,T) = Zb,-()z(i)'
i>0 ’

i>0

1B, Laroche, Ph. Martin, P. R.: Motion planning for the heat equation. Int.
Journal of Robust and Nonlinear Control. Vol.10, pp:629—-643, 2000.



Real-time motion planning for the heat equation

Take o > 1 and € > 0. Consider the positive function

A

Pe(t) = or te[—e¢0]

prolonged by 0 outside [—¢, 0] and where the normalization
constant A. > 0 is such that [ ¢. = 1.

Forany L! signal t — Y(t), sety, = ¢+ Y:itsorder 1 4+1/c is

loc

less than 2. Then 6, = cosh(x+/s)y, reads
Or(x,1) = Oy x Y(1), ur(t) =Dy x Y(1),

where for each x, &, . = cosh(x+/s)¢. is a smooth time
function with support contained in [—e¢, 0]. Since u,(t) and the
profile 6,(-, t) depend only on the values of Y on [t — ¢, {], such
computations are well adapted to real-time generation of
reference trajectories t — (6, ur) (see matlab code heat .m).



Quantum particle inside a moving box'2

- —
¢
v — 5 v+ 5
Schrédinger equation in a Galilean frame:
o 10%¢ 1 1
Yot = 2oz 2l pvial
1 1
¢(V_§7t):¢(v+§at)_0

2P R.: Control of a quantum particle in a moving potential well. IFAC 2nd
Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control,
2003. See, for the proof of nonlinear controllability, K. Beauchard and J.-M.
Coron: Controllability of a quantum particle in a moving potential well; J. of
Functional Analysis, vol.232, pp:328—-389, 2006.



Particle in a moving box of position v

» In a Galilean frame

09 10%¢ 1 1
ot = 202 SV Tpvial

Y — 3= (vt 3. 1) =0

where v is the position of the box and z is an absolute
position.
» In the box frame x =z — v:

0y 102 . 11
ot = 2o T XElggh
1 1



Tangent linearization around state v of energy @
With'™® — 128 = &, (- }) = () = 0 and with
b(x, 1) = exp(—wt)((x) + ¥(x, 1))

Y satisfies

ov 192y

za—i—w\lf: 2 0x2 + Vx(p + W)

0= \U(—%, ) = "’(5’ t).

Assume ¥ and v small and neglecte the second order term
VXV
ov 102V 1 1

zﬁ—l—w\U: 5 x2 +xp, W(—, 1) = Y(

13Remember that [/ 2(x)dx = 1.



Operational computations s = d/dt

The general solution of (' stands for d/dx)

1 _
(18 + @)V = jw” + s2vxy)

W = A(s, x)a(s) + B(s, x)b(s) + C(s, x)v(s)
where
A(s, x) = cos (x 215 + 2@)

Bs.x) = " \(X/zz: Z+S ;@2@)
C(s. x) = (—usxyp(x) + ¢'(x)).




Case x — ¢(x) even

The boundary conditions imply

A(s,1/2)a(s) =0, B(s,1/2)b(s) = —y'(1/2)v(s).

a(s) is a torsion element: the system is not controllable.
Nevertheless, for steady-state controllability, we have

4 -
bls) = 11/ M2 BB
v(s) = sin (3v2is + 20) sin (3v/—215 + 2&)

V215 + 25 V=215 + 2%
V(s, x) = B(s,x)b(s) + C(s, x)v(s)

y(s)



Series and convergence

in(1v2: @) sin (3v—21 @
B VOB O

where the entire function s — F(s) is of order 1/2,

JK,M >0,¥s € C, |F(s)| < Kexp(M|s|'/?).

Set F(s) = > 50 ans"” where |ap| < K"/I'(1 + 2n) with K > 0
independent of n. Then F(s)y(s) corresponds, in the time

domain, to
Z any"(t)
n>0

that is convergent when t — y(t) is C* of Gevrey-order o < 2.



Steady state controllability

SteeringfromV¥ =0,v=0attimet=0,tov=0,v=Dat
t = T is possible with the following C>°-function of
Gevrey-order o + 1:

0 fort <0
1
_ o ee((D)7)
[0, T|>t—y(t)=<D T —~ forO<t<T
o ~(5)7 ) ven(~(75)7 )
D fort>T
with D = —220___ The fact that this C>°-function is of

sin?(y/@/2)"
Gevrey-order o + 1 results from its exponential decay of order
1/0around 0 and T.



Practical computations via Cauchy formula

Using the "magic” Cauchy formula

i £ntt

where ~ is a closed path around zero, 3. any(" (t) becomes

n+1 y t+£ 1 rn+1)
é‘l’H—‘I 2'L7T f; (Z an §n+1 ) y(t+€) dé-

n>0

n>0

Sanr Gt — [ Flo)ern(-se)as = B(F))

n>0

is the Borel/Laplace transform of F in direction § € [0, 27].



Practical computations via Cauchy formula (end)

(matlab code Qbox .m)
In the time domain F(s)y(s) corresponds to

sz& y(t+¢) dg

where ~ is a closed path around zero. Such integral
representation is very useful when y is defined by convolution
with a real signal Y,

y() = - F / exp(—(¢ — 1)2/2e2)Y(t) dt

where R > t — Y(t) € R is any measurable and bounded
function. Approximate motion planning with:

vo - [ m[ 5 § BUF)©) oxp(— (€ — 7)?/22%) | V(t-r) o

we(2n)z J,



A free-boundary Stefan problem'#

Mobile interface

Y .

Heating point Liguid phase L Solid phase
| v Y ASSSSSASSTSY.
h(t)
| |
x=0 x=p(Y)
00, . 20

E(X’ t) = W(X’ t) — u%(x, t) — ph?(x,1), x€[0,y(t)]
0(0,t) = u(t), O(y(t),t)=0

06 ;

5(}’(1‘),1‘) = —gy(1)

with v, p > 0 parameters.

4W. Dunbar, N. Petit, P. R., Ph. Martin. Motion planning for a non-linear
Stefan equation. ESAIM: Control, Optimisation and Calculus of Variations,
9:275-296, 2003.



Series solutions

> Set 0(x, 1) = 0%, a;(t) &= in

09 520 0 )
E(Xv t) OX 2(X t) ax(xv t) 7/)0 (Xa t)v X € [oay(t)]
00

0(0,1) = u(t), 6(y(1),t) =0, a(}’(f)af):—%}/(f)

90 _ 920 \,;
Then 5 = 5.5 yields

i .
i
CHPRES %ai — i1 %y +vai +p E < Kk ) 8i_kak
k=0

and the boundary conditions: ap = 0 and a; = —%y.

» The series defining 6 admits a strictly positive radius of
convergence as soon as y is of Gevrey-order « strictly less
than 2.



Growth of the liquide zone with 6 > 0
v=0.5,p=1.5, y goes from 1 to 2.
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Conclusion for PDE

» For other 1D PDE of engineering interest with motion
planning see the book of J. Rudolph: Flatness Based
Control of Distributed Parameter Systems
(Shaker-Germany, 2003)

» For tracking and feedback stabilization on linear 1D
diffusion and wave equations, see the book of M. Krsti¢
and A. Smyshlyaev : Boundary Control of PDEs: a Course
on Backstepping Designs (SIAM, 2008).

» Open questions:

» Combine divergent series and smallest-term summation
(see the PhD of Th. Meurer: Feedforward and Feedback
Tracking Control of Diffusion-Convection-Reaction Systems
using Summability Methods (Stuttgart, 2005)).

» 2D heat equation with a scalar control u(t): with modal
decomposition and symbolic computations, we get
u(s) = P(s)y(s) with P(s) an entire function (coding the
spectrum) of order 1 but infinite type
|P(s)| < Mexp(K]|s|log(]sl|)). It yields divergence series for
any C* function y # 0 with compact support.



u(s) = P(s)y(s) for 1D and 2D heat equations

» 1D heat equation: eigenvalue asymptotics A\, ~ —n?:

Prototype:  P(s) = ﬁo (1 _ ﬁ) — S'”:(;éfs)

n2
n=1

entire function of order 1/2.
» 2D heat equation in a domain Q with a single scalar control
u(t) on the boundary 991 (092 = 994 |J 0Q2):

00 00
a—t—AeonQ, 6 = u(t) on 0%y, %—Oonﬁﬂg
Eigenvalue asymptotics A\, ~ —n
+0oo
: - S _s/ny — EXP(=75)
Prototype:  P(s) = || (1 + n) exp(—s/n) = ST (5)

n=1

entire function of order 1 but of infinite type'®

®For the links between the distributions of the zeros and the order at infinity
of entire functions see the book of B.Ja Levin: Distribution of Zeros of Entire
Functions; AMS, 1972.




Symbolic computations with Laplace variable s = %

» Wave 1D: u = cosh(s)y. General case is similar: u = P(s)y
where the zeros of P are the eigen-values +iw, with asymptotic
wn ~ n; P(s) entire function of order 1 and finite type (in time
domain: advance/delay operator with compact support).

» Diffusion 1D: u = cosh (v/s) u. General case is similar:
u = P(s)y where the zeros of P are the eigen-values —\, with
asymptotic A\, ~ n?; P(s) entire function of order 1/2 (in time
domain: ultra-distribution made of an infinite sum of Dirac
derivatives applied on Gevrey functions with compact support of
order < 2).

» Wave 2D: since w, ~ v/n, P entire with order 2 but infinite type;
prototype P(s) = [ (1 - s—;) exp(s?/n) = %ﬂ?
Diffusion 2D: since A, ~ —n, P entire with order 1 but infinite
type; prototype P(s) = [[155 (1 + £) exp(—s/n) = exgﬁ(’sjs).
Open Question: interpretation of P(s) in time domain as
operator on a set of time functions y(t)...




Wave 1D with internal damping

case & = 1/50 82H o 82H + 83H
SN T o T oxa

¥ HO,t)=0, H®A,t)=u(t)

°

p000000000000000000 OCom®

where the eigenvalues are the
zeros of

o

°
°
°

o

S
B BT REET . ) P(s) =cosh | —— .
(s) <\/es+ 1>

Approximate controllability depends on the functional space
chosen to have a well-posed Cauchy problem?®

Q"Wboaa

®Rosier-R, CAQ'06. 13th IFAC Workshop on Control Applications of
Optimisation. 2006.



Dispersive wave 1D (Maxwell-Lorentz)

Propagation of electro-magnetic wave in a partially transparent
medium:

0? 0? 0°D
E + D)= c?—E,

e EtD=c5aE 5
where wyq is associated to an adsorption ray and ¢ is the
coupling constant between medium of polarization P and
travelling field E

» The eigenvalues rely on the analytic function (s = d/dt
Laplace variable, L length)

Ls €s?
+ _
Q (s, L) =exp (i c J (1 +w§+82>)

The essential singularity in s = +wwg yields an
accumulation of eigenvalues around +wy.

» Few works on this kind of PDE with spectrum that
accumulates at finite distance.

— wa(eE — D)




The flatness characterization problem

%x = f(x, u) is said r-flat if exists a flat output y only function of
(x,u,u,...,ul"="); 0-flat means y = h(x).
Example:

(a1)

% (a2) _

d
=W, X7 =U, FXz=UlUz

is [r := min(aq, ap) — 1]-flat with
[e7] . i
Y1 =X3+ Z(—1 )'X1(a1_l)Ug_1), Yo = Xo,
i=1

Conjecture: there is no flat output depending on derivatives of u
of order less than r — 1.

The main difficulty: for $x = f(x, u) with y = h(x, u,...,uP)
as flat output, we do not know an upper-bound on p with
respect to n = dim(x), m = dim(u), ....



Systems linearizable by static feedback

» A system which is linearizable by static feedback and
coordinate change is flat: geometric necessary and
sufficient conditions by Jakubczyk and Respondek (1980)
(see also Hunt et al. (1983)).

» When there is only one control input, flatness reduces to
static feedback linearizability (Charlet et al. (1989))



Affine control systems of small co-dimension

» Affine systems of codimension 1.
dx = fo(x +Zu,g, ,  XER"

is O-flat as soon as it is controllable, Charlet et al. (1989)

» Affine systems with 2 inputs and 4 states. Necessary and
sufficient conditions for 1-flatness (Pomet (1997)) give a
good idea of the complexity of checking r-flathess even for
r small.



Driftless systems with two controls.

| 4
ax = f(X)u + h(xX)us

is flat if and only if the generic rank of Ey is equal to k + 2
fork=0,...,n—2where

Eo :=span{fi, f}
Eky1 = span{E, [Ex, Ex]}, k>0.

Proof: Martin and R. (1994) with a theorem of Cartan
(1916) on Pfaffian systems.

» A flat two-input driftless system satisfying some additional
regularity conditions (Murray (1994)) can be put into the
chained system

%)ﬁ = Uy, %Xz = U2

d d
EX3:X2U1, ey EXn:Xn,1U1.



Codimension 2 driftless systems

n-2
dx = Z uif(x), xeR"
i—1

is flat as soon as it is controllable (Martin and R. (1995))
» Tools: exterior differential systems.
» Many nonholonomic control systems are flat.



The ruled-manifold criterion (R. (1995))

» Assume x = f(x, u) is flat. The projection on the p-space
of the submanifold p = f(x, u), where x is considered as a
parameter, is a ruled submanifold for all x.

» Otherwise stated: eliminating u from x = f(x, u) yields a
set of equations F(x, x) = 0: for all (x, p) such that
F(x,p) = 0, there exists a € R", a # 0 such that

VAeR, F(x,p+Xa)=0.
» Proof elementary and derived from Hilbert (1912).

» Restricted version proposed by Sluis (1993).

Why static linearization coincides with flatness for single input
systems ? Because a ruled-manifold of dimension 1 is just a
straight line.



Proving that a multi-input system is not flat

Sxi=ur, o=t Gxa= ()’ + ()’

is not flat The submanifold p; = p? + p3 is not ruled: there is no
ac R3 a+0,such that

VA € R, p3 + Aag = (p1 + Aa1)? + (p2 + Aap)*.

Indeed, the cubic term in A implies a> = 0, the quadratic term
a; = 0 hence a3 = 0.

2 2
The system 9 x; = (%m) + (%xz) does not define a ruled

submanifold of R3: it is not flat in R. But it defines a ruled
submanifold in C3: in fact it is flat in C, with the flat output

Y1=x3— (X1 —Xv-1)(x1 + x2v—1)
Yo =X1+Xv—1.



JBP result on equivalent systems SIAM JCO (2010)

» Take two explicit analytic systems %x = f(x,u) and

2z = g(z,v) with dim u = dim v but not necessarily dim x
equals to dim z. Assume that they are equivalent via a
possible dynamic state feedback. Then we have

> if dim x < dim z then Zx = f(x, u) is ruled.

> if dimz < dim x then 2z = g(z, v) is ruled.

» if dim x = dim z either they are equivalent by static

feedback or they are both ruled.

» The system X = f(x, u) (resp. %z = 9g(z,v) is said ruled
when after ehmmahon of u (resp. v), the implicit system
F(x X) = 0 (resp. G(x, dt x) = 0) is ruled in the sense of
the ruled manifold criterion explained here above.



Geometric construction: SE(2) invariance

Q 1 BN &1 P _
v 1

Pn—1:Pn+dn(Z%:

» Invariance versus actions of the group SE(2).

> Flat outputs are not unique: (€ = xp, ¢ = yn + I xn) is
another flat output since x, = ¢ and y, = (¢ — %g.

» The flat output (x,, yn) formed by the cartesian coordinates
of P, seems more adapted than (&, ¢): the output map h
isequivariant.



Why the flat output z := (x, y) is better than the flat output
z=(xy+x)?

Each symmetry of the system induces a transformation on the

flat output z
X\ _ (&) Zi\ _(X\ _[(zicosa—zpsina+a
y) \z Z) \Y) \zsina+zcosa+b
which does not involve derivatives of z
This point transformation, generates an endogenous

transformation (z,z,...) — (Z,Z,...) that is holonomic.



Why the flat output z := (x, y) is better than the flat output
z=(xy+x)?

On the contrary
X B 21 NN 21 B X
y+)'( N 2> 22 C\Y+ X
z1c03a+(z1—22)3|na+a
Zisina + Zcosa + (2 — Z)sina + b

is not a point transformation and does not give to a holonomic
transformation. It is endogenous since its inverse is

(?1> |_><%1>_ ( (21—a)COSa—(f1—22)§ina_
2 22 (Zy —a)sina+ (Z, — b)cosa — (Z — Zo) sina



Symmetry preserving flat output

» Take the implicit system F(x, ..., x(")) = 0 with flat output
y=nh(x,...,xX) eR™ (i.e. x = A(y,...,y"?)

» Assume that the group G acting on the x-space via the
family of diffeomorphism X = ¢g(X) (X = ¢4-1(X)) leaves
the ideal associated to the set of equation F = 0 invariante:

F(x,...,x") =0 = F((gbg(x),...,qﬁg)(x,...,x(’))) =0

» Question: we wonder if exists always an equivariante flat
output ¥ = h(x, ..., x(®), i.e. such that exists an action of
G on the y-space via the family of diffeomorphisms
Y = pg(¥) satisfying

poly) = h (¢g(x), 8 (x, ,x(f))) .

two different flat outputs correspond via a "non-linear
uni-modular transformation ”:

7:¢(y,---,y(“)) with inverse y:@(yj_._jy(ﬁ))



Flat outputs as potentials and gauge degree of freedom

Maxwell’s equations in vacuum imply that the magnetic field H
is divergent free:

OHy 0OH> OH,
LIS

0
6X1 8X2 an

When H =V x Athe constraint V - H = 0 is automatically
satisfied

The potential A is a priori not uniquely defined, but up to an
arbitrary gradient field, the gauge degree of freedom. The
symmetries indicate how to use this degree of freedom to fix a
“natural” potential.

For flat systems: a flat output is a “potential” for the
underdetermined differential equation x — f(x, u) = 0;
endogenous transformations on the flat output correspond to
gauge degrees of freedom.



Open problems

» Zx = f(x, u) with y = h(x, u, ..., u("), r-flatness: bounds
on r with respect to dim(x) and dim(u).

» Symmetries and flat-output preserving symmetries: are
time-invariant systems flat with a time invariant flat output
map (a first step to prove that linearization via exogenous
dynamics feedback, implies flatness).

» Are the intrinsic and extrinsic definitions of flat systems
equivalent ?

» Flatness of JBP example



Jean-Baptiste Pomet example SIAM JCO (2010)

» The system

%Xg — Xo — (%X1) <%XQ — X3%X1>2 =0
is ruled with a single linear direction
a(x, X) = (1 , X3, (Xg — X3)'(1 )Z)T.
» There is no flat output y depending only on x and x (this
system is not 1-flat)
» Conjecture: this system is not flat.



	Introduction
	Two ODE examples
	Pendulum systems
	Nonholonomic car with trailers

	ODE: several definitions of flat-systems
	An elementary definition based on inversion
	The intrinsic definition with D-variety (diffiety)
	An extrinsic definition
	A time dependent definition

	PDE: two kind of flat examples
	Wave and delays
	Diffusion and Gevrey functions 

	Conclusion for PDE
	Conclusion for ODE: flatness characterization is an open problem
	Systems with only one control
	Driftless systems as Pfaffian system
	Ruled manifold criterion
	Symmetry preserving flat-output


