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Underlying issues

Quantum Error Correction (QEC) is based on a discrete-time feedback loop

▶ Current experiments: 10−3 is the typical error probability during
elementary gates (manipulations) involving few physical qubits.

▶ High-order error-correcting codes with an important overhead; more than
1000 physical qubits to encode a controllable logical qubit1.

▶ Today, no such controllable logical qubit has been built.

▶ Key issue: reduction by several magnitude orders of such error rates, far
below the threshold required by actual QEC, to build a controllable
logical qubit encoded in a reasonable number of physical qubits and
protected by QEC.

Control engineering can play a crucial role to build a controllable logical qubit
protected by adapted feedback schemes increasing precision and stability.

1A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland: Surface codes:
Towards practical large-scale quantum computation. Phys. Rev. A, 2012.
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Two kinds of quantum feedback2

quantum
system

classical
controller 

quantum world

classical world y

u

decoherence Measurement-based feedback: controller is
classical; measurement back-action on the quan-
tum system of Hilbert spaceH is stochastic (col-
lapse of the wave-packet); the measured output
y is a classical signal; the control input u is a
classical variable appearing in some controlled
Schrödinger equation; u(t) depends on the past
measurements y(τ), τ ≤ t.

QUANTUM WORLD

CLASSICAL WORLD

Hilbert space 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

quantum
interaction

Coherent/autonomous feedback and reser-
voir/dissipation engineering: the system of
Hilbert space Hs is coupled to the controller,
another quantum system; the composite system
of Hilbert space Hs ⊗ Hc , is an open-quantum
system relaxing to some target (separable) state.
Relaxation behaviors in open quantum systems
can be exploited: optical pumping of Alfred
Kastler, physics Nobel prize 1966.

2Wiseman/Milburn: Quantum Measurement and Control, 2009, Cambridge
University Press.
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The �rst experimental realization of a quantum-state feedback

microwave photons
            (10 GHz)

Experiment: C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S.
Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.M. Raimond, S. Haroche:
Real-time quantum feedback prepares and stabilizes photon number states.
Nature, 2011, 477, 73-77.

Theory: I. Dotsenko, M. Mirrahimi, M. Brune, S. Haroche, J.M. Raimond, P.
Rouchon: Quantum feedback by discrete quantum non-demolition measurements:
towards on-demand generation of photon-number states. Physical Review A, 2009,
80: 013805-013813.
M. Mirrahimi et al. CDC 2009, 1451-1456, 2009.
H. Amini et al. IEEE Trans. Automatic Control, 57 (8): 1918�1930, 2012.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.
H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.
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Experimental closed-loop data

C. Sayrin et. al., Nature 477,
73-77, Sept. 2011.

Decoherence due to �nite
photon life-time (70 ms)

Detection e�ciency 40%
Detection error rate 10%
Delay d = 4 sampling
periods

The quantum �lter includes
cavity decoherence, detector
imperfections and delays
(Bayes law).

Truncation to 9 photons

Stabilization around 3-photon state

V

u

y
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Feedback stabilization around 3-photon state: experimental data

y

u

ρdiag(ρ)
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Transmon regime 3
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Hsys(Φ,Q) = 1
2CQ

2 − Φ2
∗
L cos

(
1
Φ∗

Φ
)
with nonlinearity:

▶ anharmonic spectrum with frequency transition between the ground
and �rst excited states larger than frequency transition between �rst
and second excited states.

▶ qubit model based on restriction to these two slowest energy levels,
|g⟩ and |e⟩, with pulsation ωq ∼ 1/

√
LC .

Two weak coupling regimes:

▶ resonant, in/out wave pulsation ωq;

▶ o�-resonant , in/out wave pulsation ωq +∆ with |∆| ≪ ωq.
3J. Koch et al.: Charge-insensitive qubit design derived from the Cooper

pair box. Phys. Rev. A, 76:042319, 2007.
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A key physical example in circuit quantum electrodynamics 4

Superconducting qubit
dispersively coupled
to a cavity traversed
by a microwave signal
(input/output theory).
The back-action on the
qubit state of a single
measurement of one
output �eld quadrature y
is described by a simple
SME for the qubit density
operator ρ.

dρt =
(
− i

2
[ωqσ̂z , ρt ] + γ(σ̂zρσ̂z − ρt)

)
dt

+
√
ηγ

(
σ̂zρt + ρt σ̂z − 2 Tr (σ̂zρt) ρt

)
dWt

with yt given by dyt = 2
√
ηγ Tr (σ̂zρt) dt + dWt where γ ≥ 0 is related

to the measurement strength and η ∈ [0, 1] is the detection e�ciency.

4M. Hatridge et al. Quantum Back-Action of an Individual
Variable-Strength Measurement. Science, 2013, 339, 178-181.
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First SISO measurement-based feedback for a superconducting qubit 5
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5R. Vijay, . . . , I. Siddiqi. Stabilizing Rabi oscillations in a superconducting
qubit using quantum feedback. Nature 490, 77-80, October 2012.
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First MIMO measurement-based feedback for a superconducting qubit 6
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3 inputs

2 outputs

6P. Campagne-Ibarcq, . . . , B. Huard: Using Spontaneous Emission of a
Qubit as a Resource for Feedback Control. Phys. Rev. Lett. 117(6), 2016.

13 / 48



Outline

Feedback with classical controllers
The Haroche Photon-Box
Super-conducting qubit
Dynamics of open quantum systems

Feedback with quantum controllers
Quantum dissipation engineering
Cat-qubit and autonomous correction of bit-�ips
GKP-qubit and autonomous correction of bit and phase �ips

Quantum feedback engineering

14 / 48



Dynamics of open quantum systems based on three quantum features 7

1. Schrödinger (ℏ = 1): wave funct. |ψ⟩ ∈ H, density op. ρ ∼ |ψ⟩⟨ψ|
d

dt
|ψ⟩ = −i Ĥ|ψ⟩, Ĥ = Ĥ0 + uĤ1 = Ĥ†,

d

dt
ρ = −i [Ĥ, ρ].

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of Ô = Ô† with spectral decomp.

∑
y λy P̂y :

▶ measurement outcome y with proba.

Py = ⟨ψ|P̂y |ψ⟩= Tr
(
ρP̂y

)
depending on |ψ⟩, ρ just before

the measurement
▶ measurement back-action if outcome y :

|ψ⟩ 7→ |ψ⟩+ =
P̂y |ψ⟩√
⟨ψ|P̂y |ψ⟩

, ρ 7→ ρ+ =
P̂yρP̂y

Tr
(
ρP̂y

)
3. Tensor product for the description of composite systems (A,B):

▶ Hilbert space H = Ha ⊗Hb

▶ Hamiltonian Ĥ = Ĥa ⊗ Îb + Ĥab + Îa ⊗ Ĥb

▶ observable on sub-system B only: Ô = Îa ⊗ Ôa.
7S. Haroche and J.M. Raimond (2006). Exploring the Quantum: Atoms,

Cavities and Photons. Oxford Graduate Texts. 15 / 48



Structure of discrete-time dynamical models

Four modeling features8:

1. Schrödinger equations de�ning unitary transformations.

2. Randomness, irreversibility and dissipation induced by the measurement
of observables with degenerate spectra.

3. Entanglement and tensor product for composite systems.

4. Classical probability (e.g. Bayes law) to include classical noises,
measurement errors and uncertainties.

⇛ Hidden-state controlled Markov system
Control input u, state ρ (density op.), measured output y:

ρt+1 =
Kut,yt (ρt)

Tr(Kut,yt (ρt))
, with proba. P

(
yt

/
ρt , ut

)
= Tr (Kut,yt(ρt))

where Ku,y(ρ) =
∑m

µ=1 ηy,µM̂u,µρM̂
†
u,µ with left stochastic matrix (ηy,µ) and

Kraus operators M̂u,µ satisfying
∑

µ M̂†
u,µM̂u,µ = Î .

Kraus map Ku (ensemble average, quantum channel)

E (ρt+1|ρt) = Ku(ρt) =
∑
y

Ku,y(ρt) =
∑
µ

M̂u,µρtM̂
†
u,µ.

8See, e.g., books: E.B Davies in 1976; S. Haroche with J.M. Raimond in
2006; C. Gardiner with P. Zoller in 2014/2015.
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Continuous dynamical models relying on Stochastic Master Equation (SME) 9

QUANTUM WORLD

decoherence

quantum state

Hilbert space (dissipation) CLASSICAL WORLD

Continuous-time models: stochastic di�erential systems (Itō formulation)
Control input u, state ρ (density op.), measured output y:

dρt =
(
− i [Ĥ0 + utĤ1, ρt ] +

∑
ν=d,m

L̂νρt L̂
†
ν − 1

2
(L̂†

ν L̂νρt + ρt L̂
†
ν L̂ν)

)
dt

+
√
ηm

(
L̂mρt + ρt L̂

†
m − Tr

(
(L̂m + L̂†

m)ρt
)
ρt

)
dWt

driven by the Wiener process Wt, with measurement yt,

dyt =
√
ηm Tr

(
(L̂m + L̂†

m) ρt
)
dt + dWt detection e�ciencies ηm ∈ [0, 1].

Measurement backaction: dρt and dyt share the same noises dWt. Very
di�erent from Kalman I/O state-space description used in control engineering.

9A. Barchielli, M. Gregoratti (2009): Quantum Trajectories and
Measurements in Continuous Time: the Di�usive Case. Springer Verlag.
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Qubit (2-level system, half-spin) 10

▶ Hilbert space:

H = C2 =
{
cg |g⟩+ ce |e⟩, cg , ce ∈ C

}
.

▶ Quantum state space:
D = {ρ ∈ L(C2), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

▶ Operators and commutations:
σ̂- = |g⟩⟨e|, σ̂+ = σ̂†

- = |e⟩⟨g |
X̂ ≡ σ̂x = σ̂- + σ̂+ = |g⟩⟨e|+ |e⟩⟨g |;
Ŷ ≡ σ̂y = i σ̂- − i σ̂+ = i |g⟩⟨e| − i |e⟩⟨g |;
Ẑ ≡ σ̂z = σ̂+σ̂- − σ̂-σ̂+ = |e⟩⟨e| − |g⟩⟨g |;
σ̂2x = Î , σ̂x σ̂y = i σ̂z , [σ̂x , σ̂y ] = 2i σ̂z , . . .

▶ Hamiltonian: Ĥ = ωqσ̂z/2+ uqσ̂x .

▶ Bloch sphere representation:

D =
{

1
2

(
Î + x σ̂x + y σ̂y + z σ̂z

) ∣∣ (x , y , z) ∈ R3, x2 + y2 + z2 ≤ 1
}

|g

|e
ωq

uq

10 See S. M. Barnett, P.M. Radmore (2003): Methods in Theoretical
Quantum Optics. Oxford University Press.
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Quantum harmonic oscillator (spring system) 10

▶ Hilbert space:

H =
{∑

n≥0 ψn|n⟩, (ψn)n≥0 ∈ ℓ2(C)
}
≡ L2(R,C)

▶ Quantum state space:
D = {ρ ∈ K1(H), ρ† = ρ, Tr (ρ) = 1, ρ ≥ 0} .

▶ Operators and commutations:
â|n⟩ =

√
n |n-1⟩, â†|n⟩ =

√
n + 1|n + 1⟩;

N̂ = â†â, N̂|n⟩ = n|n⟩;
[â, â†] = Î , âf (N̂) = f (N̂ + Î )â;

D̂α = eαâ†−α† â = e iℜαℑαe i
√
2ℑαxe i

√
2ℜα ∂

∂x .
â = X̂ + i P̂ = 1√

2

(
x + ∂

∂x

)
, [X̂ , P̂] = ıÎ/2.

▶ Hamiltonian: Ĥ = ωc â
†â+ uc(â+ â†).

(associated classical dynamics:
dx
dt

= ωcp,
dp
dt

= −ωcx −
√
2uc).

▶ Quasi-classical pure state ≡ coherent state |α⟩

α ∈ C : |α⟩ =
∑

n≥0

(
e−|α|2/2 αn

√
n!

)
|n⟩; |α⟩ ≡ 1

π1/4 e
ı
√
2ℑαxe−

(x−
√
2ℜα)2

2

â|α⟩ = α|α⟩, D̂α|0⟩ = |α⟩.

|0

|1

|2

ωc

|n

ωc
uc

...
 ..

.
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Watt regulator: classical analogue of a quantum controller. 11

From WikiPedia

The �rst variations of speed δω and
governor angle δθ obey to

d

dt
δω =−aδθ

d2

dt2
δθ = −�

d

dt
δθ − 
2(δθ−bδω)

with (a, b,Λ,Ω) positive parameters.

Third order system

d3

dt3
δω + Λ

d2

dt2
δω +Ω2 d

dt
δω + abΩ2δω = 0.

Characteristic polynomial P(s) = s3 + Λs2 +Ω2s + abΩ2 with roots
having negative real parts i� Λ > ab: governor damping must be strong
enough to ensure asymptotic stability.
Key issues: asymptotic stability and convergence rates.

11J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.
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Reservoir/dissipation engineering and quantum controller (1) 12

SystemReservoir/
quantum controller

Engineered
interaction

dissipation
κ

Hint

HHres

Ĥ = Ĥres + Ĥint + Ĥ

If ρ →
t→∞

ρres ⊗ ρtarget exponentially with rate κ > 0 large enough

then . . . . . .

12See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique
des Houches", July 2011.
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Reservoir/dissipation engineering and quantum controller (2)

SystemReservoir
quantum controller

Engineered
interaction

dissipation
κ

Hint

HHres

γ

Ĥ = Ĥres + Ĥint + Ĥ

. . . . . . ρ →
t→∞

ρres ⊗ ρtarget + δρ, with ∥δρ∥ remaining small for
γ ≪ κ.
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Quantum dynamics with dissipation (decoherence)
Gorini�Kossakowski �Sudarshan�Lindblad (GKSL) master equation:

d

dt
ρ = −i [Ĥ0 + uĤ1, ρ] +

∑
ν

(
L̂νρL̂

†
ν − 1

2

(
L̂†
ν L̂νρ+ ρL̂†

ν L̂ν

))
▶ Preservation of trace, hermiticity and positivity: ρ lies in the set of

Hermitian and trace-class operators that are non-negative and of trace
one.

▶ Invariance under unitary transformations.
A time-varying change of frame ρ 7→ Û†

t ρÛt with Ût unitary.
The new density operator obeys to a similar master equation where

Ĥ0 + uĤ1 7→ Û†
t (Ĥ0 + uĤ1)Ût + i Û†

t

(
d
dt
Ût

)
and L̂ν 7→ Û†

t L̂νÛt .

▶ "L1-contraction" properties. Such master equations generate contraction
semi-groups for many distances (nuclear distance13, Hilbert metric on the
cone of non negative operators14).

▶ If the Hermitian operator Â satis�es the operator inequality

i [Ĥ0 + uĤ1, Â] +
∑
ν

(
L̂†
νÂL̂ν − 1

2

(
L̂†
ν L̂νÂ+ ÂL̂†

ν L̂ν

))
≤ 0

then V (ρ) = Tr
(
Âρ

)
is a Lyapunov function when Â ≥ 0.

13
D.Petz (1996). Monotone metrics on matrix spaces. Linear Algebra and its Applications

14
R. Sepulchre, A. Sarlette, PR (2010). Consensus in non-commutative spaces. IEEE-CDC.
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QEC: 2D redundancy to correct bit-�ip and phase-�ip errors
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Bosonic code with cat-qubits
▶ Quantum error corrrection requires redundancy.
▶ Bosonic code: instead of encoding a logical qubit in N physical qubits

living in C2N , encode a logical qubit in an harmonic oscillator living in
Fock space span{|0⟩, |1⟩, . . . , |n⟩, . . .} ∼ L2(R,C) of in�nite dimension.

▶ Cat-qubit 15: |ψL⟩ ∈ span{|α⟩, |-α⟩} where |α⟩ is the coherent state of
real amplitude α: â|α⟩ = α|α⟩ with â = (q̂ + i p̂)/

√
2 and [q̂, p̂] = i :

|ψ⟩ ∼ ψ(q) ∈ L2(R,C), q̂|ψ⟩ ∼ qψ(q), p̂|ψ⟩ ∼ −i
dψ

dq
(q), |α⟩ ∼

exp

(
−

(q−α
√
2)2

2

)
√
2π

.

▶ Stabilisation of cat-qubit via a single Lindblad dissipator L̂ = â2 − α2.
For any initial density operator ρ(0), the solution ρ(t) of

d

dt
ρ = L̂ρL̂† − 1

2
(L̂†L̂ρ+ ρL̂†L̂)

converges exponentially towards a steady-state density operator since

d

dt
Tr

(
L̂†L̂ρ

)
≤ −2 Tr

(
L̂†L̂ρ

)
, kerL̂ = span{|α⟩, |-α⟩}.

Any density operator with support in span{|α⟩, |-α⟩} is a steady-state.
15M. Mirrahimi, Z. Leghtas, . . . , M. Devoret: Dynamically protected cat-qubits: a

new paradigm for universal quantum computation. 2014, New Journal of Physics.
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Asymmetrically Threaded SQUID (ATS) stabilizing a cat-qubit 16

16R. Lescanne, M. Villiers, Th. Peronnin, . . . , M. Mirrahimi and Z. Leghtas:
Exponential suppression of bit-�ips in a qubit encoded in an oscillator. 2020,
Nature Physics

28 / 48



Driven damped oscillator
coupled to a pendulum. 

Courtesy of Raphaël Lescanne

MAIN IDEA IN A CLASSICAL PICTURE



There are 2 steady states in 
which we can encode 
information

0 1

Courtesy of Raphaël Lescanne

A BI‐STABLE SYSTEM



Stabilization regardless of the state

0 1

Neither the drive nor the dissipation
can distinguish between 0 and 1

Courtesy of Raphaël Lescanne

Important to preserve
quantum coherence

MAIN IDEA IN A CLASSICAL PICTURE



Master equations of the ATS super-conducting circuit

Oscillator â with quantum controller based on a damped oscillator b̂:

d

dt
ρ = g2

[(
â2 − α2

)
b̂†−

(
(â†)2 − α2

)
b̂ , ρ

]
+κb

(
b̂ρb̂†−(b̂†b̂ρ+ρb̂†b̂)/2

)
with α ∈ R such that α2 = u/g2, the drive amplitude u ∈ R applied to mode b̂

and 1/κb > 0 the life-time of photon in mode b̂.
Any density operators ρ̄ = ρ̄a ⊗ |0⟩⟨0|b is a steady-state as soon as the support
of ρ̄a belongs to the two dimensional vector space spanned by the
quasi-classical wave functions |α⟩ and |-α⟩ (range(ρ̄a) ⊂ span{|α⟩, |-α⟩})

Usually κb ≫ |g2|, mode b̂ relaxes rapidly to vaccuum |0⟩⟨0|b, can be
eliminated adiabatically (singular perturbations, second order corrections) to
provides the slow evolution of mode â

d

dt
ρa =

4|g2|2
κb

(
L̂ρL̂† − 1

2
(L̂†L̂ρ+ ρL̂†L̂)

)
with L̂ = â2 − α2.

Convergence via the exponential Lyapunov function V (ρ) = Tr
(
L̂†L̂ρ

)
17

17
For a mathematical proof of convergence analysis in an adapted Banach space, see :R. Azouit, A.

Sarlette, PR: Well-posedness and convergence of the Lindblad master equation for a quantum harmonic
oscillator with multi-photon drive and damping. 2016, ESAIM: COCV.
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Cat-qubit: exponential suppression of bit-�ip for large α.
Since ⟨α|-α⟩ = e−2α2

≈ 0:

|0L⟩ ≈ |α⟩, |1L⟩ ≈ |-α⟩, |+L⟩ ∝ |α⟩+|-α⟩√
2

, |−L⟩ ∝ |α⟩−|-α⟩√
2

.

Photon loss as dominant error channel (dissipator â with 0 < κ1 ≪ 1):

d

dt
ρa = Dâ2−α2(ρ) + κ1Dâ(ρ)

with DL̂(ρ) = L̂ρL̂† − 1
2
(L̂†L̂ρ+ ρL̂†L̂).

▶ if ρ(0) = |0L⟩⟨0L| or |1L⟩⟨1L|, ρ(t) converges to a statistical mixture of
quasi-classical states close to 1

2
|α⟩⟨α|+ 1

2
|-α⟩⟨-α| in a time

Tbit−flip ∼ e2α
2

κ1

since â|0L⟩ ≈ α|0L⟩ and â|1L⟩ ≈ −α|1L⟩.
▶ if ρ(0) = |+L⟩⟨+L| or |−L⟩⟨−L|, ρ(t) converges also to the same

statistical mixture in a time

Tphase−flip ∼ 1

κ1α2

since â|+L⟩ = α| − L⟩ and â|−L⟩ = α|+ L⟩.
Take α large to ignore bit-�ip and to correct only the phase-�ip with 1D
repetition code: important overhead reduction investigated by the startup
Alice&Bob and also by AWS.
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QEC: 2D redundancy to correct bit-�ip and phase-�ip errors
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Local noise assumption (1)

Wave function |ψ⟩ : R ∋ q 7→ ψ(q) ∈ C, and Wigner function

R2 ∋ (q, p) 7→ W |ψ⟩⟨ψ|(q, p) = 1
π

∫ +∞

−∞
ψ∗(q−u

2

)
ψ
(
q+u

2

)
e−2ipudu.

Local error operators q̂ and p̂ ([q̂, p̂] = i) on |ψ⟩: small random
shifts along q (e i±ϵp̂ ≡ e±ϵd/dq) and p (e i±ϵq̂ ≡ e∓ϵd/dp) similar to
di�usion along q and p axis for W |ψ⟩⟨ψ|.
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Local noise assumption (2)

For a density operator ρ, its Wigner function

R2 ∋ (q, p) 7→ W ρ(q, p) ∈ R

reads (â = q̂+i p̂√
2
)

W ρ(q, p) = 1
π Tr

(
e iπâ

†â e i(pq̂−qp̂) ρ e−i(pq̂−qp̂)
)

Since

WDq̂(ρ) =
1

2

∂2

∂p2
W ρ, WDp̂(ρ) =

1

2

∂2

∂q2
W ρ

and

WDâ(ρ) =
1

2

∂

∂q
(qW ρ) +

1

2

∂

∂p
(pW ρ) +

1

2

∂2

∂q2
W ρ +

1

2

∂2

∂p2
W ρ

dominant errors on ρ correspond to local di�erential operators in the
phase-space (q, p).
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Wigner function of coherent state |
√
2π⟩ ≡ 1√

2π
exp

(
− (q−2

√
π)2

2

)
≈ |0L⟩

35 / 48



Wigner function of coherent state |-
√
2π⟩ ≡ 1√

2π
exp

(
− (q+2

√
π)2

2

)
≈ |1L⟩
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Wigner function of |+L⟩ ∝ |
√
2π⟩+|-

√
2π⟩√

2
("Schrödinger phase cat")
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Wigner function of |−L⟩ ∝ |
√
2π⟩−|-

√
2π⟩√

2
("Schrödinger phase cat")
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Grid-states and GKP-qubits
▶ Poisson summation formula: the Fourier transform of Dirac comb f (q)

of period T is a Dirac comb g(p) = 1√
2π

∫ +∞
−∞ f (q)e−iqpdq of period 2π/T .

in�nite energy grid-states q representation p representation

|0L⟩
∑

k δ(q − 2k
√
π)

∑
k δ(p − k

√
π)

|1L⟩
∑

k δ(q − 2(k + 1)
√
π)

∑
k(−1)

kδ(p − k
√
π)

|+L⟩ ∼ |0L⟩+ |1L⟩
∑

k δ(q − k)
√
π)

∑
k δ(p − 2k

√
π)

|−L⟩ ∼ |0L⟩ − |1L⟩
∑

k(−1)
kδ(q − k)

√
π)

∑
k δ(p − 2(k + 1)

√
π)

▶ Pauli operators of a GKP-qubit18 with Bloch coordinates (x , y , z) ∈ R3:

Ẑ = sign(cos(
√
πq̂)), X̂ = sign(cos(

√
πp̂)) and Ŷ = −i Ẑ X̂ .

▶ 4 stabilizer operators Ŝ relying on commuting modular operators in q̂ and p̂:
∀Ŝ ∈ {e i2

√
πq̂, e i2

√
πp̂, e−i2

√
πq̂, e−i2

√
πp̂} and ∀|ψL⟩ ∈ span{|0L⟩, |1L⟩}: Ŝ |ψL⟩ = |ψL⟩

▶ Finite energy regularization with 0 < ϵ≪ 1,

|0ϵ⟩ ≈ e−ϵâ† â|0L⟩, |1ϵ⟩ ≈ e−ϵâ† â|0L⟩,
where â†â = 1

2
(q̂2 + p̂2) ∼ 1

2
(q2 + ∂2/∂q2), provides a �nite-energy code

space where any small local error can be corrected19.

18D. Gottesman, A. Kitaev and J. Preskill: Encoding a qubit in an oscillator.
Physical Review A, 2001.

19
3 recent experiments stabilizing GKP-qubits via classical controllers: Ph. Campagne-Ibarcq et al.

�Quantum error correction of a qubit encoded in grid states of an oscillator� Nature (2020); B. de Neeve
et al. �Error correction of a logical grid state qubit by dissipative pumping� Nature (2022); V. Sivak et
al. �Real-Time Quantum Error Correction beyond Break-Even� Nature (2023).
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Wigner function of the GKP �nite energy grid-state |0ϵ⟩ 20

20|0ϵ⟩ ≈ e−ϵq2
∑

k exp
(
− (q−2k

√
π)2

ϵ

)
with ϵ = 1

30
.
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Wigner function of the GKP �nite energy grid-state |1ϵ⟩ 21

21|1ϵ⟩ ≈ e−ϵq2
∑

k exp
(
− (q−(2k+1)

√
π)2

ϵ

)
with ϵ = 1

30
.
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Wigner function of the GKP�nite energy grid-state |+ϵ⟩ 22

22|+ϵ⟩ ≈ e−ϵq2
∑

k exp
(

(q−k
√
π)2

ϵ

)
≡ e−ϵp2

∑
k exp

(
(p−2k

√
π)2

ϵ

)
.
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Wigner function of the GKP �nite energy grid-state |−ϵ⟩ 23

23|−ϵ⟩ ≈ e−ϵq2
∑

k (−1)k exp
(
− (q−k

√
π)2

ϵ

)
≡ e−ϵp2

∑
k exp

(
− (p−(2k+1)

√
π)2

ϵ

)
.
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Exponential stabilisation of �nite energy GKP-qubits24

▶ 4 regularized stabilizers:

Ŝϵ,k ≜ e−(ϵ−i
kπ
2

)â† â e i2
√
πq̂ e(ϵ−i

kπ
2

)â† â, k = 0, 1, 2, 3.

▶ Master equation with 4 dissipators M̂ϵ,k = Ŝϵ,k − Î

d

dt
ρ =

3∑
k=0

DM̂ϵ,k
(ρ)

▶ Lyapunov function:

V (ρ) =
∑
k

Tr
(
M̂†

ϵ,kM̂ϵ,kρ
)

with
d

dt
V ≤ −

(
32π2ϵ2 + O(ϵ3)

)
V

ensuring exponential convergence towards the �nite-energy code space

span
{
e−ϵâ† â|0L⟩, e−ϵâ† â|1L⟩

}
24L.A. Sellem, Ph. Campagne-Ibarcq, M. Mirrahimi, A. Sarlette, PR:

Exponential convergence of a dissipative quantum system towards �nite-energy
grid states of an oscillator: IEEE CDC 2022 (arXiv:2203.16836).
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Approximated Lindblad dissipators with exponentially small decoherence rates 25

Replace the ideal dissipators M̂ϵ,k by more realistic dissipators L̂ϵ,k derived from
a �rst-order approximation in ϵ:

L̂ϵ,k ≜ e i
kπ
2

â† â
(
e−2πϵe i2

√
πq̂(Î − 2ϵ

√
πp̂)− Î

)
e−i

kπ
2

â† â

For ρ governed by master equation d
dt
ρ =

∑3
k=0 DL̂ϵ,k

(ρ):

▶ Energy Tr
(
â†âρ

)
remains �nite and for t large is less than 1

2ϵ
+ 0(1).

▶ For any 2π periodic function f (θ), one has

d

dt
Tr

(
f (
√
πq̂)ρ

)
= −4ϵπe−2πϵ Tr

((
sin(2

√
πq̂)f ′(

√
πq̂)− ϵπe−2πϵf ′′(

√
πq̂)

)
ρ
)
.

▶ Spect. (λn)n≥0 of Witten LaplacianLσ(f (θ)) = sin(2θ)f ′(θ)− σf ′′(θ)
with 2π-periodic function f (θ) and 0 < σ ≪ 1:

λ0 = 0 < λ1 ∼ 4
π
e−1/σ < 1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λn ≤ . . .

with eigenfunction f1(θ) ≈ sign(cos θ) corresponding to λ1. Thus
z ≈ Tr (f1(

√
πq̂)ρ) is almost constant: d

dt
z ≈ −16ϵ exp

(
− 1

ϵπ

)
z .

Similar exponentially small decays for (x , y , z) with quadrature noises,
i.e. when d

dt
ρ =

∑3
k=0 DL̂ϵ,k

(ρ) + κqDq̂(ρ) + κpDp̂(ρ) (κq, κq ≪ 1)

25L.A. Sellem, R. Robin, Ph. Campagne-Ibarcq, PR: Stability and decoherence rates
of a GKP qubit protected by dissipation. IFAC WC 2023 (arXiv:2304.03806).
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Engineering modular dissipation with super-conducting Josephson circuits 26

b)a)

c)

High impedance
√

La/Ca and low pulsation 1/
√
LaCa for storage mode â.

High pulsation 1/
√
LbCb of damped mode b̂ (quantum controller Rb > 0).

Josephson energy EJ between ℏ/
√
LaCa and ℏ/

√
LbCb.

Classical open-loop control signals Φext
J (t) and Φext

L (t) made of short pulses.

Mathematical analysis to recover master equation with dissipators L̂k .
Numerical simulations to test robustness versus experimental imperfections.

26L.A. Sellem, A. Salette, Z. Leghtas, M. Mirrahimi, PR, Ph. Campagne-Ibarcq: A
GKP qubit protected by dissipation in a high-impedance superconducting circuit
driven by a microwave frequency comb. Under review in PRX (arXiv:2304.01425 ).
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Quantum feedback engineering for robust quantum information processing

QUANTUM WORLD

CLASSICAL WORLD
Hilbert space 

classical 
controller 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

classical
input

classical
output

quantum measurement

classical
reference

quantum
interaction

To protect quantum information stored in system S:

▶ fast stabilization and protection mainly achieved by quantum controllers
(autonomous feedback stabilizing decoherence-free sub-spaces);

▶ slow decoherence and perturbations, parameter estimation mainly tackled
by classical controllers and estimation algorithms (measurement-based
feedback and estimation "�nishing the job")

Need of adapted mathematical and numerical methods for high-precision
dynamical modeling and control with (stochastic) master equations.
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Quantic research group ENS/Inria/Mines/CNRS, June 2023
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