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2-level system (1/2 spin)

The simplest quantum system: a ground
state |g) of energy wy; an excited state |e)
U of energy we. The quantum state |¢) € C?
is a linear superposition |¢) = 14 |9) + Ve |€)

and obeys to the Schrddinger equation (zg

|g) and v depend on ).
Schrédinger equation for the uncontrolled 2-level system

(h=1):

m—|c)

1G [0 = Ho[p) = (wele) (e] +wg |g) (gl) [4)

where Hj is the Hamiltonian, a Hermitian operator H! = Hp.
Energy is defined up to a constant: Hy and Hy + w ()1 (w(t) € R
arbitrary) are attached to the same physical system. If |} satisfies
i ) = Ho [1) then [x) = e~ |¢) with 29 = @ obeys to

i%|x) = (Ho +w/)|x). Thus for any 9, |1) and e~" ) represent the
same physical system: The global phase of a quantum system |4))
can be chosen arbitrarily at any time.



The controlled 2-level system

Take origin of energy such that wg (resp. we) becomes —<°5¢
(resp. “*5*9) and set weg = we — wy
The solution of i g |v) = Ho WJ> = 52(le) (el = 19) (gl) [¥) is

|¢>z—¢goe E |Q>+¢eoe h; le).

With a classical electromagnetic field described by u(t) € R,
the coherent evolution the controlled Hamiltonian

H(t) = “20,+ 205, = “9(16) (6 1g) (al)+ ) (le) (g1 +10) (&)

The controlled Schrédinger equation i% |v) = (Ho + uHy) [v)
reads:

id e\ _Weg (1 O Ve I @ 0 1> <¢e>
@ \pg) 2 \0 —1) \¢yg 2 \1 0)\wy)
The 3 Pauli Matrices?

ox = |€) (gl+]g) (el , oy = —ile) (gl+ilg) (el , oz = |e) {e|—|g) (g

2They correspond, up to multiplication by /, to the 3 imaginary quaternions.




Pauli matrices and some formula

ox = |e) (gl +|g) (el, oy = —ile) (g +ilg) (e], o2 = |€) (€] — [9) (g
0% =1, ooy =io, |ox,0y] = 2ic,, circular permutation ...

m Since for any 6 € R, e/ = cos ) + i sin o, (idem for o,
and o), the solution of i |1) = “Zo, |1)) is

V), = e_h;egtcrz 1) = (COS <wzgt> 1—Jsin (uj;gt> Uz> V)

m Foroa,B8=x,y,z, a # 3 we have

. . ) -1 . t .
Uaeleag — e_IHUﬁO'a, (eIGUQ) — (elﬂaa> — e—l@aa'
and also

i0 i0 H H
e—%aa O'/Be,?ga — e—l¢900< o= O_ﬁeleoa



Bloch sphere representation of a 2-level system

if [¢) obeys & |i) = —iH |¢), then
projector p = |¢) (¢»| obeys:

ar = —IH.pl.
For [¢)) = 1g|g) + vele):
: ) (0] = |vgl? 19) (gl + Ygts 1g) (el
—————— A +Ugve le) (gl + el &) (el

Set x = 2R(Ygv5), ¥ = 23(vg03)
and z = [1e|? — |1hg|? we get

1+ Xox + yo, + Zo,
p: 2 *
|9)

The Bloch vector M = x7+ yi+ zk evolves on the unit sphere of R3:

i% |¢> = (%Ux + 2 Uy Uz) |¢> e %M = (WXT"F wyj“" sz) X M
Bloch vector M with Euler angles (6, ¢) corresponds to

1) = e sin (§)|g) +cos (%) |e).



Bilinear Schrddinger equation

Un-measured quantum system — Bilinear Schrédinger equation
.d
i 1) = (Ho + u(t)H) [v),

m [)) € H the system’s wavefunction with H |¥) HH =1;
m the free Hamiltonian, H,, is a Hermitian operator defined
on H,

m the control Hamiltonian, Hy, is a Hermitian operator
defined on #;

m the control u(t) : R* — R is a scalar control.

Here we consider the case of finite dimensional # for
mathematical proof.



Almost periodic control

We consider the controls of the form
r . .
u(ty =e > ue™t +ure ™!
j=1

m ¢ > 0 is a small parameter;

B cu; is the constant complex amplitude associated to the
pulsation w; > 0;

m r stands for the number of independent pulsations (w; # wk
for j # k).

We are interested in approximations, for ¢ tending to 0™, of
trajectories t — [ic), on t € [0,1/€] of

.
4 |1he) = (Ao +e (Z u;e™it + u;-‘e"“’”) A1) |¥e)

j=1
where Ay = —iHp and Ay = —iH; are skew-Hermitian.



Rotating frame

Consider the following change of variables

‘we>t = ert ’¢e>t :

The resulting system is said to be in the “interaction frame”
& 10e) = eB(t) [de)

where B(t) is a skew-Hermitian operator whose
time-dependence is almost periodic:

r
B(t) _ Z ujelw/teontA1 ert + u}kef/wjteontA1 ert.
J=1

Main idea

We can write B _
B(t) = B+ 4B(t),

where B is a constant skew-Hermitian matrix and E(t) is a
bounded almost periodic skew-Hermitian matrix.



Multi-frequency averaging: first order

Consider the two systems

and

Theorem: first order approximation (Rotating Wave
Approximation)

Consider the functions |¢.) and )¢25t> initialized at the same

state and following the above dynamics. Then, there exist
M > 0 and n > 0 such that for all € €]0, [ we have

max 190 = |o1™) || < Me

Ve



Multi-frequency averaging: first order

Proof’s idea
Almost periodic change of variables:

Xe) = (1 = eB(1)) |c)

well-defined for ¢ > 0 sufficiently small.
The dynamics can be written as

gt IXe) = (eB+ €#F (e, 1) [xe)

where F(e, t) is uniformly bounded in time.



Approximation recipes

We consider the Hamiltonian
m r
H=Hy+ Z U Hy, Uk(t) = Z uk,jewft + u,*(yje_‘“/’.
k=1 j=1
The Hamiltonian in interaction frame

Ha(t) = 3 (e + U et ) i Hye ol
k?j

We define the first order Hamiltonian

T—o0

1St . 1 T
His = Fa= Jim . / Hi(1)at,
0



Slowly varying amplitudes

REINES

In the above analysis we have assumed the complex
amplitudes uy ; to be constant. However, the whole analysis
holds for the case where each one ug ’s is of a small
magnitude, admits a finite number of discontinuities and,
between two successive discontinuities, is a slowly time varying
function that is continuously differentiable.



RWA and resonant control

In i ) = (“Lo; + Yox) 1), take a resonant control
u=uewesl  ure” "”69’ with u slowly varymg complex amplitude
|Gu| < weg|u\ Set Hy = “20, and eH; = 4o, and consider

[v) = e™ “5o |p) to eliminate the drift Hy and to get the
Hamiltonian in the |nteract|on frame:

gtgz iw eqt,,

Idt‘¢> oxe 2 W) =Him\¢>
a+:|e>< | o~ =|g){el
Ox + IUy IO'y

with H,,, = %eiOJsgt _‘_%e*iwegt Ox 5
The RWA consists in neglecting the oscillating terms at
frequency 2weg When |u| < Q:

2iwegt * * a—2iwegt
ue™e" +u u+ue eq _
o= (A o (U

Thus N
— Ut +Uuoc”
Hint = — 5



First order average system and Rabi oscillation

i< o) — (U'o" +uo”) ) = (u*le) (9|;u|g> (el) )

We set u = Q,e with Q, > 0 and 6 real.
uct +uUo~ Q,
2 2

The system oscillates between |e) and |g) with the Rabi
pulsation . Since (cos fox + sinfoy,)? = 1 and

(cosfox + sinfoy)

g~ "F(cosboxtsindoy) _ oog (ert> —isin <S22,1‘> (cosfox + sinfoy),
the solution of & |¢) = =5 (cos fox + sinfoy) |¢) reads

Q i
9), —cos(ta) |g>—:sm(2t) e le), when g} =g).

0= cos (551} le) ~isin (551 ) & lg). when [o)o o).



/2 and = Pulses

We start always from |¢), = |g) we light on the resonant control
with the constant amplitude u = —iQ, during [0, T] (pulse
length T). Since

|¢) 7 = cos <QéT) |g) + sin (Q£T> le),

we see that

m if Q, T =7 (7m-pulse ) then |¢) ; = |e): stimulate absorption
of one photon. If we measure the system energy
(measurement operator 52 |e) (e| — <52 |g) (g|), then we
will find deterministically “52).

m if QT =7/2 (r/2-pulse ) when |¢) = (|g) + |€))/V2, a
coherent superposition of |g) and |e). If we measure the

energy, the result is stochastic and the probability to get
“% is 5 and to get — =% is also 3.



Exercise: controllability of the 2-level systems and Rabi oscillation

Take the first order approximation

&) 1510 = W), W6 uig e,

with control u € C.

Take constant control u(t) = Q,e" for t € [0, T], T > 0. Show
that ’dt |¢> cos«90§+sm Ooy) |¢>

Set©, = Q' T. Show that the solution at T of the propagator
U e SU(2) iU = WU Uy = 1 is given by

Ur =cos©,1—isin©, (cosfoy + sinboy),

Take a wave function |¢). Show that exist 2, and 6 such that
Ur|g) = € |¢), where « is some global phase.

Prove that for any given two wave functions |¢,) and |¢p) exists a
piece-wise constant control [0,27] 5 t — u(t) € C such that the
solution of (X) with |¢), = |¢a) satisfies |¢); = €' |¢p) for some
global phase 5.



Time-adiabatic approximation without gap conditions®

Take [0,1] > s — H(s) a C? family of Hermitian matrices n x n:
set s = et € [0,1] and € a small positive parameter. Consider a
solution [0, 1] 5 t — |)§ of

PG )s = H(et) [v); .

Take [0, s] > s — P(s) a family of orthogonal projectors such
that for each s € [0, 1], H(s)P(s) = w(s)P(s) where w(s) is an
eigenvalue of H(s). Assume that [0, s] > s — P(s) is C? and
that, for almost all s € [0, 1], P(s) is the orthogonal projector on
the eigen-space associated to the eigen-value w(s). Then

lim (sup |11P(et) w>§2P(0)w>82|) =0.

e—0t 1
te [Ovz]

3Theorem 6.2, page 175 of Adiabatic Perturbation Theory in Quantum
Dynamics, by S. Teufel, Lecture notes in Mathematics, Springer, 2003.



Chirped control of a 2-level system (1)

idly) = (“;gaz+gax) |v)  with quasi-
resonant control (lwy — weg| <  weg)
—— ) u(t) = v(t) (eftert+o( Jr e~ /(wrt+o(D))
U where v,0 € R, |v| and | 2| are small and

; slowly varying:

| )

<<weg| 2|

V2] < g, 2] < gl |22

Passage to the interaction frame |)) = ™'~ 2 72 |¢):

d
.d weg—wr— 70 g2i(wrt+0) —2i(wrt+6)
/dt|¢>:< - dt oy + Y > +va++ve z TV |¢>

Set A = weg — wr and w(t) = — 6, RWA yields following
averaged Hamiltonian

Hchirp = Ar+2W( ) Oz + (t)

where (v, w) are two real control inputs.



Chirped control of a 2-level system (2)

I Hopirp = 2% 0, + S0 set, for s = et varying in [0, 7], w = acos(et)
and v = bsin?(et). Spectral decomposition of Hy, for s €]0, 7[:

Q = _w with |—) = cosal|g) — (1 - sina) |e)
2(1 —sina)
1 s
Q+:m’+)2+vzwith |+>:( sina)|g) + cos a |e)

V2(1 —sina)

where a €]=F, Z[ is defined by tana = 22 With a > |A,|and b > 0

lim =% implies Ilim |-). = lim =|e
s—0t « 2 P s—0* | >S |g> T so0t |+>S ‘ >

lim a=-7 implies Im |[-);=—]e), lm [+);=]g).
ST ST ST

Adiabatic approximation: the solution of i% |¢) = Honip(€t) |@) starting
from |¢), = |g) reads

¢), ~ €7 |-)s_y, t€0,Z], with ¥ time-varying global phase.

At t = Z, |¢) coincides with |e) up to a global phase: robustness

€’

versus A,, a and b (ensemble controllability).



Chirped control on the Bloch sphere.

m The chirped dynamics id¢ = (2% o, + Soy) |¢) with
w = acos(ct) and v = bsin?(et) reads

—

9M = (bsin®(et)T+ (Ar + acos(et))k) xM

=G,

m The initial condition |¢), = |g) means that My = —k and
Qo = (A, + a)k with A, +a > 0.

m Since Q never vanishes for t € [0, 7], adiabatic theorem
implies that M follows the direction of —¢, i.e. that

see matlab simulations AdiabaticBloch.m).

~ ~ g ¢

—

-Att—— Q= ( A, — a)k with A, — a < 0: Mx = k and thus



Adiabatic propagator U(t) for H(et) = 5o, +

Consider the propagator U € SU(2), solution of

9U(t) = —iH(e)U(t) = —i (%az n V(g’)ay) u(t), U0) =1

assuming0 < e < 1, A, > 0and v = f(s) (s = et) where
[0,1] > s — f(s) is smooth and f(0) = f(1) = 0.
We have )

U(1/e) = e + O(e)

where 9 is given by the integral:
_ 1/e
0= ;/ A2 + f2(et) dit.
0

The phase 9 is only due to the time integral of the H(et)
eigenvalues (dynamic phase only, no Berry phase for such
adiabatic evolution).



Adiabatic propagator U(t) for H(et) = 5o, +

The frame (|—)g, |+),) that diagonalize H(s) (s = et)
H(s) [ 4), = +Y2EPO) |4 reads
|—)s = C0S&s|g) +isinésle), [+)g=isings|g) +cosésle)
where us = /1 + (f(s)/Ar)? gives
cosés = /(us +1)/(2us), sings =/ (us —1)/(2ps)

The passage from the (|g) , |e)) to (|—)s, |+)s) corresponds, in
the Bloch sphere representation, to a rotation around the
X-axis of angle —2¢:

=)= €%7|g),  [+)s = %" e)
Thus we have

v/ AZ4f2 .y i
%az + @ay = 7’; ) o 1859 5, /5%



Adiabatic propagator U(t) for H(et) = 5o, +

Consider & |v) = —iH(et) [), set
t
9(t) = ;/ A2 1 2(e7) dr
0

set [¢)) = efoxe= (o2 |y Then, with ¢ = L&,
G 10) = —iec(y €707 0 &7 07 |g) = —ieg)y ox €727 |g)

In average ¢, ox e~2/7()7z gives zero up to first order terms in e
(use [5 e 2"(Mozdr = A(t) with A(t) bounded on [0, 1/¢]). Then
|9) & | )y = € %07x 1), is almost constant and thus

1) = eferre T e )y + Ofe).
The propagator reads then for t € [0, 1/¢],
U(t) = eeoxe=7z 1 O(e)

since &y = 0 results from f(0) = 0.



Multi-frequency averaging: second order

Consider the two systems

9100 = (B+ 4B(1) 16

2”d>7
end>0 = |¢e>0 :

Theorem: second order approximation

and

Q“)Snd> (eB—¢2D)

dt

initialized at the same state

Consider the functions |¢.) and ’¢>§"d> initialized at the same

state and following the above dynamics. Then, there exist
M > 0 and n > 0 such that for all € €]0, n[ we have

max. {160, = [¢£7) || < Me
te [OZ:|




Multi-frequency averaging: second order

Proof’s idea
Another almost periodic change of variables

&) = (1- ¢ (1B, €] - D(1) ) Ixo)-
The dynamics can be written as
9 e = (eB — 2D + SG(e, t)) I€)

where G is almost periodic and therefore uniformly bounded in
time.



Approximation recipes

We consider the Hamiltonian

m r
H=H,+ Z Uy Hy, ug(t) = Z uk,jewff + u,?je’wft.
k=1 j=1

The Hamiltonian in interaction frame

Ha(t) = <Uk,je°’/t + u*,;,je*“/t> Mol Hy g~ ot
k,j

We define the first order Hamiltonian

Hrlvs: = Fipt = Ilm T/ I_Ilnt

and the second order Hamiltonian

/‘I2nd = Hrl,j - .(I'Iim - m) </t(l_l|m - Hm))




Application to a 2-level system

In i ) = (“Lo; + Yox) 1), take a resonant control
u=uewesl  ure” "”69’ with u slowly varymg complex amplitude
|Gu| < weg|u\ Set Hy = “20, and eH; = 4o, and consider

[v) = e™ “5o |p) to eliminate the drift Hy and to get the
Hamiltonian in the |nteract|on frame:

gtgz iw eqt,,

Idt‘¢> oxe 2 W) =Him\¢>
a+:|e>< | o~ =|g){el
Ox + IUy IO'y

with H,,, = %eiOJsgt _‘_%e*iwegt Ox 5
The RWA consists in neglecting the oscillating terms at
frequency 2weg When |u| < Q:

2iwegt * * a—2iwegt
ue™e" +u u+ue eq _
o= (A o (U

Thus N
— Ut +Uuoc”
Hint = — 5



Second order approximation and Bloch-Siegert shift

The decomposition of H,,

Ho=%0, + Y0 uee, | ue e,
Hit Hint— Hhot
provides the first order approximation (RWA)
Hiy = Hy = limr_oo + fo (1)dt, and also the second order
approximation H2Y = HY% — i(Hu — Hi) (f,(Ho — Ho))- Since
ft it — Hit = uiijezgtU—&— - i,;j;:egt o_, we have

. _ 2
(I_Iint - I_Iim) </(I_I|nt - I_Iim)) = _%O_Z

(use 02 =02 =0ando, =00 —o_0y).
The second order approximation reads:

n s 2 2
Hriad:ijath('u' )02— J+—|-2c7 +<\UI )JZ.

8weg

IU\

The 2nd order correction 4 -0 is called the Bloch-Siegert shift.



Stimulated Raman Adiabatic Passage (STIRAP) (1)

$
H = wg |g) (gl+we |€) (€]+wr |f) (f]
+upgr(19) (fl+1F) (gl)
f f .
oy Lf) + tper (1) (F] + 1) (e])
' Set wgr = wr—wyg, Wer = wr—we and
5 Hys Hef U = UgCos(wgrt) + Ugr COS(wert)
ol le) with slowly varying small real am-
Wy plitudes ugr and Uey.

Put i% [y = H |[+¢) in the interaction frame:

) = o 1(wg|g) (gl+wele) (el+wylf)(f]) |p) .
Rotation Wave Approximation yields /E |¢) = Huwa |¢) with
H,, = g’(]g) (F|+ 1) (g]) + = (Je) (f] + |) (e])

with slowly varying Rabi pulsations Qg = pgrtyr and
Qer = etUef-



Stimulated Raman Adiabatic Passage (STIRAP) (2)

Spectral decomposition: as soon as QZ, + Q2 > 0,
Qgr(19) (f1+17){gl) + 2
2

sl 110D agmits 3 distinct eigen-values,

= VI oo g, = VIt

2 ’ 2

They correspond to the following 3 eigen-vectors,

N = Qor Qo _ 1
=) \/2(92,+92,) 19)+ \/2 02,402, &) V2 )
_Qel
Qzl+92 95271‘+ng
— Qeor 1
= e)+ —=|f).
)= T 9+ T 10+ 1

For et = s € [0, 3F] and Qg, Qe > 0, the adiabatic control

_f Qgcos?s, forse[z, S Qesm s, forse[0,n];
Qg1(s) = { 0, elsewhere. » Ser(8) = 0, elsewhere.

provides the passage from |g) at t =0to |e) at et = 37”
(see matlab simulations stirap.m).



Stimulated Raman Adiabatic Passage (STIRAP) (3)

Exercice
Design an adiabatic passage s — (4¢(S), Qer(8)) from |g) to
%, up to a global phase.

1
—Q,
0.8 —Q
Take, e.g., s = et € [0, 7]

06 ] and © > 0, and set

. ] Y o
04 Qgr(s) = %sins—sin2s
0.2 ] Qer(s) = Qsins

00 0‘.2 0:4 0:6 018 1

sin

_Qef

Q
Results from |0) = —==<— |g) + L |e)
02,402 Q2402
of ef of ef




Controllability of bilinear Schrédinger equations*

Schrédinger equation

ig ) = (Ho +) Uka> 1)
k=1

State controllability

For any |¢4) and |¢) on the unit sphere of #, there exist a time
T > 0, a global phase 6 € [0, 27[ and a piecewise continuous
control [0, T] > t — u(t) such that the solution with initial
condition |), = |1a) satisfies [¢)) 7 = € |1hp).

“See, e.g., Introduction to Quantum Control and Dynamics by
D. D’Alessandro. Chapman & Hall/CRC, 2008.



Controllability of bilinear Schrédinger equations

Propagator equation:

m
iU = <H0+Zuka> U, U0)=1

k=1

We have [1), = U(t) [+),.

Operator controllability

For any unitary operator V on 7, there existatime T > 0, a
global phase # and a piecewise continuous control

[0, T] > t — u(t) such that the solution of propagator equation
satisfies Ur = € V.

Operator controllability implies state controllability



Lie-algebra rank condition
%U: <Ao + zm:UkAk> U

k=1
with A, = Hy/i are skew-Hermitian. We define

Lo = span{Ao, A1,...,An}
£1 = Span(‘COa [L:Oa ‘CO])
Lo = span(Ly,[Lq, L1])

L= EV = Span(£V71 y [£ll71 ’ £1/71])
Lie Algebra Rank Condition

Operator controllable if, and only if, the Lie algebra generated by
the m + 1 skew-Hermitian matrices {—iHyp, —iH, ..., —iHpn} is either
su(n) or u(n).

Exercice

Show that i § |¢) = (“go, + 4ox) |¥), [¥) € C2 is controllable.



A simple sufficient condition

We assume H |j) = wj|j) where w; € R, we consider a graph G:
V=A1),....Im}, E={(h),l2) [ 1 <ji <j2<n, (ji|Hiljz) #0}.

G amits a degenerate transition if there exist (|j1), |j2)) € E and
(Jh),]k)) € E, admitting the same transition frequencies,

‘wh - w/zl = |W/1 - w/2|'

A sulfficient controllability condition

Remove from E, all the edges with identical transition frequencies.
Denote by E C E the reduced set of edges without degenerate
transitions and by G = (V, E). If G is connected, then the system is
operator controllable.
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